Python Machine Learning - Third Edition

More Information
Learn
  • Master the frameworks, models, and techniques that enable machines to 'learn' from data
  • Use scikit-learn for machine learning and TensorFlow for deep learning
  • Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more
  • Build and train neural networks, GANs, and other models
  • Discover best practices for evaluating and tuning models
  • Predict continuous target outcomes using regression analysis
  • Dig deeper into textual and social media data using sentiment analysis
About

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.

Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself.

Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents.

This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.

Features
  • Third edition of the bestselling, widely acclaimed Python machine learning book
  • Clear and intuitive explanations take you deep into the theory and practice of Python machine learning
  • Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices
Page Count 770
Course Length 23 hours 6 minutes
ISBN 9781789955750
Date Of Publication 12 Dec 2019

Authors

Sebastian Raschka

Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. Some of his recent research methods have been applied to solving problems in the field of biometrics for imparting privacy to face images. Other research focus areas include the development of methods related to model evaluation in machine learning, deep learning for ordinal targets, and applications of machine learning to computational biology.

Vahid Mirjalili

Vahid Mirjalili obtained his Ph.D. in mechanical engineering working on novel methods for large-scale, computational simulations of molecular structures. Currently, he is focusing his research efforts on applications of machine learning in various computer vision projects at the Department of Computer Science and Engineering at Michigan State University. He recently joined 3M Company as a research scientist, where he uses his expertise and applies state-of-the-art machine learning and deep learning techniques to solve real-world problems in various applications to make life better.

The Python Machine Learning Bundle
+
Python Machine Learning Cookbook - Second Edition
-$0.00
+
Python Machine Learning By Example - Second Edition
-$0.00
+
Python Machine Learning Blueprints - Second Edition
-$0.00
+
Python Machine Learning - Third Edition
-$0.00
Book
$19.59
RRP $27.99 Save 30%
=
Save $0.00
Get all 5 items for
$106.35