More Information
Learn
  • Leverage market, fundamental, and alternative text and image data
  • Research and evaluate alpha factors using statistics, Alphalens, and SHAP values
  • Implement machine learning techniques to solve investment and trading problems
  • Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader
  • Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio
  • Create a pairs trading strategy based on cointegration for US equities and ETFs
  • Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data
  • Adapt generative adversarial networks to create synthetic time series
  • Design autoencoders to learn risk factors conditional on stock characteristics
About

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This thoroughly revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.

This edition introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this workflow using examples that range from linear models and tree-based ensembles to deep-learning techniques from the cutting edge of the research frontier.

This revised version shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable a machine learning model to predict returns from price data for US and international stocks and ETFs. It also demonstrates how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.

By the end of the book, you will be proficient in translating machine learning model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.

Features
  • Design, train, and evaluate machine learning algorithms that underpin automated trading strategies
  • Create your own research and strategy development process to apply predictive modeling to trading decisions
  • Leverage natural language processing and deep learning to extract tradeable signals from market and alternative data
Page Count 820
Course Length 24 hours 36 minutes
ISBN 9781839217715
Date Of Publication 31 Jul 2020

Authors

Stefan Jansen

Stefan is the founder and CEO of Applied AI. He advises Fortune 500 companies, investment firms, and startups across industries on data & AI strategy, building data science teams, and developing end-to-end machine learning solutions for a broad range of business problems. Before his current venture, he was a partner and managing director at an international investment firm, where he built the predictive analytics and investment research practice. He was also a senior executive at a global fintech company with operations in 15 markets, advised Central Banks in emerging markets, and consulted for the World Bank. He holds Master's degrees in Computer Science from Georgia Tech and in Economics from Harvard and Free University Berlin, and a CFA Charter. He has worked in six languages across Europe, Asia, and the Americas and taught data science at Datacamp and General Assembly.