Building a learning agent
Let's see how to build a learning agent that can achieve a goal. The learning agent will learn how to achieve a goal. Create a new python file and import the following package:
import argparse import gym
Define a function to parse the input arguments:
def build_arg_parser():
parser = argparse.ArgumentParser(description='Run an environment')
parser.add_argument('--input-env', dest='input_env', required=True,
choices=['cartpole', 'mountaincar', 'pendulum'],
help='Specify the name of the environment')
return parser
Parse the input arguments:
if __name__=='__main__':
args = build_arg_parser().parse_args()
input_env = args.input_env
Build a mapping from the input arguments to the names of the environments in the OpenAI Gym package:
name_map = {'cartpole': 'CartPole-v0',
'mountaincar...