Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - Web Development

1802 Articles
article-image-5-key-skills-for-web-and-app-developers-to-learn-in-2020
Richard Gall
20 Dec 2019
5 min read
Save for later

5 Key skills for web and app developers to learn in 2020

Richard Gall
20 Dec 2019
5 min read
Web and application development can change quickly. Much of this is driven by user behavior and user needs - and if you can’t keep up with it, it’s going to be impossible to keep your products and projects relevant. The only way to do that, of course, is to ensure your skills are up to date and constantly looking forward to what might be coming. You can’t predict the future, but you can prepare yourself. Here are 5 key skill areas that we think web and app developers should focus on in 2020. Artificial intelligence It’s impossible to overstate the importance of AI in application development at the moment. Yes, it’s massively hyped, but that’s largely because its so ubiquitous. Indeed, to a certain extent many users won’t even realise their interacting with AI or machine learning systems. You might even say that that’s when its used best. The ways in which AI can be used by web and app developers is extensive and constantly growing. Perhaps the most obvious is personal recommendations, but it’s chatbots and augmented reality that are really pushing the boundaries of what’s possible with AI in the development field. Artificial intelligence might sound daunting if you’re primarily a web developer. But it shouldn’t - you don’t need a computer science or math degree to use it effectively. There are now many platforms and tools available to use machine learning technology out of the box, from Azure’s Cognitive Services, Amazon’s Rekognition, and ML Kit, built by Google for mobile developers. Learn how to build smart, AI-backed applications with Azure Cognitive Services in Azure Cognitive Services for Developers [Video]. New programming languages Earlier this year I wrote about how polyglot programming (being able to use more than one language) “allows developers to choose the right language to solve tough engineering problems.” For web and app developers, who are responsible for building increasingly complex applications and websites, in as elegant and as clean a manner as possible, this is particularly true. The emergence of languages like TypeScript and Kotlin attest to the importance of keeping your programming proficiency up to date. Moreover, you could even say that they highlight that, however popular core languages like JavaScript and Java are, there are now some tasks that they’re just not capable of dealing with. So, this doesn’t mean you should just ditch your favored programming languages in 2020. But it does mean that learning a new language is a great way to build your skill set. Explore new programming languages with eBook and video bundles here. Accessibility Web accessibility is a topic that has been overlooked for too long. That needs to change in 2020. It’s not hard to see how it gets ignored. When the pressure to deliver software is high, thinking about the consequences of specific design decisions on different types of users, is almost certainly going to be pushed to the bottom of developer’s priorities. But if anything this means we need a two-pronged approach - on the one hand developers need to commit to learning web accessibility themselves, but they also need to be evangelists in communicating its importance to non-technical team members. The benefits of this will be significant: it could be a big step towards a more inclusive digital world, but from a personal perspective, it will also help developers to become more aware and well-rounded in their design decisions. And insofar as no one’s taking real leadership for this at the moment, it’s the perfect opportunity for developers to prove their leadership chops. Read next: It’s a win for Web accessibility as courts can now order companies to make their sites WCAG 2.0 compliant JAMStack and (sort of) static websites Traditional CMSes like WordPress can be a pain for developers if you want to build something that is more customized than what you get out of the box. This is one of the reasons why JAMStack (a term coined by Netlify) is so popular - combining JavaScript, APIs, and markup, it offers web developers a way to build secure, performant websites very quickly. To a certain extent, JAMstack is the next generation of static websites; but JAMStack sites aren’t exactly static, as they call data from the server-side through APIs. Developers then call on the help of templated markup - usually in the form of static site generators (like Gatsby.js) or build tools - to act as a pre-built front end. The benefits of JAMstack as an approach are well-documented. Perhaps the most important, though, is that it offers a really great developer experience. It allows you to build with the tools that you want to use, and integrate with services you might already be using, and minimizes the level of complexity that can come with some development approaches. Get started with Gatsby.js and find out how to use it in JAMstack with The Gatsby Masterclass video. State management We’ve talked about state management recently - in fact, lots of people have been talking about it. We won’t go into detail about what it involves, but the issue has grown as increasing app complexity has made it harder to gain a single source of truth on what’s actually happening inside our applications. If you haven’t already, it’s essential to learn some of the design patterns and approaches for managing application state that have emerged over the last couple of years. The two most popular - Flux and Redux - are very closely associated with React, but for Vue developers Vuex is well worth learning. Thinking about state management can feel brain-wrenching at times. However, getting to grips with it can really help you to feel more in control of your projects. Get up and running with Redux quickly with the Redux Quick Start Guide.
Read more
  • 0
  • 0
  • 29370

article-image-shopify-announces-fulfillment-network-video-and-3d-model-assets-custom-storefront-tools-and-more
Vincy Davis
20 Jun 2019
6 min read
Save for later

Shopify announces Fulfillment network, video and 3D model assets, custom storefront tools and more!

Vincy Davis
20 Jun 2019
6 min read
At the ongoing Shopify Unite 2019 conference, Shopify has announced a number of new products like Fulfillment network, video and 3D model assets, custom storefront tools, new online store design experience and others. Most of these products will be launched later this year. Here are the major highlights: Shopify Fulfillment Network Shopify Fulfillment Network, will be a dispersed network of fulfillment centers which uses machine learning to automatically select the optimal inventory quantities per location, as well as the closest fulfillment option for each of the customers’ shipments. Once available, it will be possible to simply install the app, select the products, get a quote, and begin selling the products. Entrepreneurs will be able to provide fast, low-cost delivery to their customers while maintaining ownership of customer data and a branded shipping experience. A single back office A merchants order, inventory, and customer data will stay synced and up-to-date across all warehouse locations and channels. Recommended warehouse locations To save costs on shipping, it will be possible to find the best locations, based on where the sales are coming from. Low stock alerts When inventory runs low, merchants will know when to replenish to continue meeting demands. 99.5% order accuracy The correct package will be chosen and out the door on time, with good accuracy. Hands-on warehouse help A dedicated account manager will assist the merchant in finding the best path, to reach their customers so the costs can be kept low. Shopify Fulfillment Network is currently available in the United States, and interested merchants can apply for early access. https://twitter.com/treklightgear/status/1141406217815724034 Native support to video and 3D model assets Shopify’s product will natively support video and 3D model assets, thus adding a new dimension to products and providing a richer purchase experience for customers. This feature is expected to be released later this year. Manage media through a single location It will now be possible to upload, access, and store video and 3D models from the same place where the images are being managed currently. Deploy through the new Shopify video player Users can use, one of the 10 starter themes, to easily display video 3D models using the new Shopify player for video or the viewer for Shopify AR. New editor apps Shopify is inviting partners and developers to create additional apps and custom integrations to open up new ways, to create and modify images, videos, and AR experiences. https://twitter.com/Scobleizer/status/1141456478496161797 https://twitter.com/thewakdesigns/status/1141607172670926848 New Online Store Design Experience The new online store design will provide entrepreneurs, with more options for customization. This will give them more control over the layout and aesthetic of their store. This feature is expected to be released later this year. Easier customization at the page and store level Any page can now be customized by using sections, just like the homepage. It is also now possible for users to save time by setting content on multiple pages, using master pages. Portable content that moves with you From now on, users will not have to make a duplicate of their theme or move content over manually. The shop’s content will follow the owner so that they are able to make changes, like downloading a new version or trying out a new one. A new workspace to update your store It will now be possible to edit and preview updates before publishing. Any minor tweak or major changes can be done in a new space to draft changes. Custom storefront tools Shopify’s Storefront API allows customers to use the custom storefront tools to free their storefront from certain back-end dependencies. This gives customers the flexibility to sell anywhere and in any way they want. This feature is more exciting for more complex or niche businesses that use the web, mobile, gaming, and other interactive mediums as storefronts to reach their customers. Shopify merchants have already started to use the Storefront API’s. For example, NTWRK hosted a live stream shopping show using Shopify’s Storefront API. Connect microservices to create personalized experiences Third-party shipping services can be used for blogs, storefront, and product pages or accurate shipment alerts Turn the world into your storefront Entrepreneurs can engage with their customers through vending machines, live streams, smart mirrors, voice shopping, and more. Speedy and scalable to have development teams work in parallel The flexible architecture will enable the development teams to create the experiences and storefronts, according to their vision. Interested merchants can create custom experiences on the customer storefront tools website. https://twitter.com/CarloTeran/status/1141475420904157185 Customer loyalty with retail shoppers With the new Shopify Point of Sale cart app extensions, users can apply and edit loyalty and promotional details directly from the customer cart. Apply discounts lightning-quick The number of clicks needed to apply a discount has been reduced to one, thus saving users 10 seconds for each sale on average. Important information at your fingertips Key customer details, from birthdays to reward milestones will surface automatically and in-context, so the merchants or their staff won’t have to navigate to the apps to get alerts. More flexibility Shopify’s app partners will give merchants the flexibility to pick a program that works best for their customer experience, like rewarding a long-time customer, online or in-store. Interested merchants can learn more about the apps on the POS Loyalty and Promotion Apps website. https://twitter.com/ShawnBouchard/status/1141483355252199425 Shopify Payments in multiple currencies and languages From this year onwards, merchants can run their business in their own preferred language. Shopify is already available in French, German, Japanese, Italian, Brazilian Portuguese, and Spanish. Additionally, Shopify will be available in 11 additional languages like Dutch, Simplified Chinese, and more. Also, Shopify Payments will enable selling in multiple currencies and will be globally available to all Shopify merchants later this year. The displayed prices will use simple rounding rules and automatically adjust based on current foreign -exchange rates. Soon shoppers will be able to convert between nine major currencies -GBP, AUD, CAD, EUR, HKD, JPY, NZD, SGD, and USD, thus using their preferred way to pay. https://twitter.com/anthonycook/status/1141392464818900996 Users of Shopify are obviously quite elated with all the announcements. People also touted this as Shopify’s way to combat Amazon, its main competitor in the market. https://twitter.com/tomfgoodwin/status/1141434508257964032 Visit the Shopify blog, for more details. Read More Why Retailers need to prioritize eCommerce Automation in 2019 5 things to consider when developing an eCommerce website Through the customer’s eyes: 4 ways Artificial Intelligence is transforming ecommerce
Read more
  • 0
  • 0
  • 29292

article-image-firefox-70-released-with-better-security-css-and-javascript-improvements
Savia Lobo
23 Oct 2019
6 min read
Save for later

Firefox 70 released with better security, CSS, and JavaScript improvements

Savia Lobo
23 Oct 2019
6 min read
Mozilla team announced the much-awaited release of Firefox 70 yesterday with amazing new features like secure password generation with Lockwise and the new Firefox Privacy Protection Report. Firefox 70 also includes a plethora of additions for developers such as DOM mutation breakpoints and inactive CSS rule indicators in the DevTools, several new CSS text properties, two-value display syntax, and JS numeric separators, and much more. Firefox 70 centers around enhanced privacy and security The new Firefox 70 includes an Enhanced Tracking Protection, which includes a Firefox Privacy Protection Report that gives additional details and more visibility into how you’re being tracked online so you can better combat it. The Enhanced Tracking Protection was set up as default by the browser in September this year. The report highlights how ETP prevents third-party trackers from building a user’s profile based on their online activity. The report also includes the number of cross-site and social media trackers, finger-printers and crypto-miners Mozilla blocked. The report also helps users to keep themselves updated with Firefox Monitor and Firefox Lockwise. Firefox Monitor helps users to get a summary of the number of unsafe passwords that may have been used in a breach so that you can take action to update and change those passwords. Firefox Lockwise helps users to manage passwords and different synced devices. Firefox Lockwise includes a button where users can click to view their logins and updates. They can also have the ability to quickly view and manage how many devices they syncing and sharing passwords with. To know more about security in Firefox 70, read Mozilla’s blog. What’s new in Firefox 70 Updated HTML forms and secure passwords To generate secure passwords, the team has updated HTML input elements. Here, any input element of type password will have an option to generate a secure password available in the context menu, which can then be stored in Lockwise. In addition, any type="password" field with autocomplete=”new-password” set on it will have an autocomplete UI to generate a new password in-context. New CSS improvements Firefox 70 includes some CSS improvements like new options for styling underlines and new set of two-keyword values. Options for styling underlines include three new properties for text-decoration (underline): text-decoration-thickness: sets the thickness of lines added via text-decoration. text-underline-offset: sets the distance between a text-decoration and the text it is set on. Bear in mind that this only works on underlines. text-decoration-skip-ink: sets whether underlines and overlines are drawn if they cross descenders and ascenders. The default value, auto, causes them to only be drawn where they do not cross over a glyph. To allow underlines to cross glyphs, set the value to none. Two-keyword display values Until now, the display property has taken a single value. However, the team says that “the boxes on a page have an outer display type, which determines how the box is laid out in relation to other boxes on the page, and an inner display type, which determines how the box’s children will behave.” The two-keyword values allow you to explicitly specify the outer and inner display values. In supporting browsers (which currently includes only Firefox), the single keyword values will map to new two-keyword values, for example: display: flex; is equivalent to display: block flex; display: inline-flex; is equivalent to display: inline flex; JavaScript improvements Firefox 70 now supports numeric separators for JavaScript. Underscores can now be used as separators in large numbers so that they are more readable. Other improvements in JavaScript include: Intl improvements Firefox 70 includes improved JavaScript i18n (internationalization), starting with the implementation of the Intl.RelativeTimeFormat.formatToParts() method. This is a special version of Intl.RelativeTimeFormat.format() that returns an array of objects, each one representing a part of the value, rather than returning a string of the localized time value. Also,  Intl.NumberFormat.format() and Intl.NumberFormat.formatToParts() now accept BigInt values. Performance Improvements The inclusion of the new baseline interpreter has speeded up JavaScript. The code for the new interpreter includes shared code from the existing Baseline JIT. You can read more about the interpreter on The Baseline Interpreter: a faster JS interpreter in Firefox 70. New Developer tools The Developer Tools Accessibility panel now includes an audit for keyboard accessibility and a color deficiency simulator for systems with WebRender enabled. Pause option in DOM Mutation in Debugger DOM Mutation Breakpoints (aka DOM Change Breakpoints) let you pause scripts that add, remove, or change specific elements. Once a DOM mutation breakpoint is set, you’ll see it listed under “DOM Mutation Breakpoints” in the right-hand pane of the Debugger; this is also where you’ll see breaks reported. Source: Mozilla Hacks Color contrast information in the color picker! In the CSS Rules view, you can click foreground colors with the color picker to determine if their contrast with the background color meets accessibility guidelines. Accessibility inspector: keyboard checks The Accessibility inspector‘s Check for issues dropdown now includes keyboard accessibility checks: Selecting this option causes Firefox to go through each node in the accessibility tree and highlight all that have a keyboard accessibility issue: Hovering over or clicking each one will reveal information about what the issue is, along with a “Learn more” link for more details on how to fix it. Web socket inspector In Firefox DevEdition, the Network monitor now has a new “Messages” panel, which appears when you are monitoring a web socket connection (i.e. a 101 response). This can be used to inspect web socket frames sent and received through the connection. This functionality was originally supposed to be in Firefox 70 general release, but the team had a few more bugs to resolve, so expect it in Firefox 71! For now, users can explore it in the DevEdition. Fixed issues in Firefox 70 Built-in Firefox pages now follow the system dark mode preference Aliased theme properties have been removed, which may affect some themes Passwords can now be imported from Chrome on macOS in addition to existing support for Windows Readability is now greatly improved on under- or overlined texts, including links. The lines will now be interrupted instead of crossing over a glyph. Improved privacy and security indicators A new crossed-out lock icon will indicate sites delivered via insecure HTTP The formerly green lock icon is now grey The Extended Validation (EV) indicator has been moved to the identity popup that appears when clicking the lock icon To know more about other improvements and bug fixes in Firefox 70 in detail read Mozilla’s official blog. Google and Mozilla to remove Extended Validation indicators in Chrome 77 and Firefox 70 Firefox 69 allows default blocking of third-party tracking cookies and cryptomining for all users Mozilla Thunderbird 78 will include OpenPGP support, expected to be released by Summer 2020
Read more
  • 0
  • 0
  • 29223

article-image-how-to-deploy-a-blog-with-ghost-and-docker
Felix Rabe
07 Nov 2014
6 min read
Save for later

How to Deploy a Blog with Ghost and Docker

Felix Rabe
07 Nov 2014
6 min read
2013 gave birth to two wonderful Open Source projects: Ghost and Docker. This post will show you what the buzz is all about, and how you can use them together. So what are Ghost and Docker, exactly? Ghost is an exciting new blogging platform, written in JavaScript running on Node.js. It features a simple and modern user experience, as well as very transparent and accessible developer communications. This blog post covers Ghost 0.4.2. Docker is a very useful new development tool to package applications together with their dependencies for automated and portable deployment. It is based on Linux Containers (lxc) for lightweight virtualization, and AUFS for filesystem layering. This blog post covers Docker 1.1.2. Install Docker If you are on Windows or Mac OS X, the easiest way to get started using Docker is Boot2Docker. For Linux and more in-depth instructions, consult one of the Docker installation guides. Go ahead and install Docker via one of the above links, then come back and run: docker version You run this in your terminal to verify your installation. If you get about eight lines of detailed version information, the installation was successful. Just running docker will provide you with a list of commands, and docker help <command> will show a command's usage. If you use Boot2Docker, remember to export DOCKER_HOST=tcp://192.168.59.103:2375. Now, to get the Ubuntu 14.04 base image downloaded (which we'll use in the next sections), run the following command: docker run --rm ubuntu:14.04 /bin/true This will take a while, but only for the first time. There are many more Docker images available at the Docker Hub Registry. Hello Docker To give you a quick glimpse into what Docker can do for you, run the following command: docker run --rm ubuntu:14.04 /bin/echo Hello Docker This runs /bin/echo Hello Docker in its own virtual Ubuntu 14.04 environment, but since it uses Linux Containers instead of booting a complete operating system in a virtual machine, this only takes less than a second to complete. Pretty sweet, huh? To run Bash, provide the -ti flags for interactivity: docker run --rm -ti ubuntu:14.04 /bin/bash The --rm flag makes sure that the container gets removed after use, so any files you create in that Bash session get removed after logging out. For more details, see the Docker Run Reference. Build the Ghost image In the previous section, you've run the ubuntu:14.04 image. In this section, we'll build an image for Ghost that we can then use to quickly launch a new Ghost container. While you could get a pre-made Ghost Docker image, for the sake of learning, we'll build our own. About the terminology: A Docker image is analogous to a program stored on disk, while a Docker container is analogous to a process running in memory. Now create a new directory, such as docker-ghost, with the following files — you can also find them in this Gist on GitHub: package.json: {} This is the bare minimum actually required, and will be expanded with the current Ghost dependency by the Dockerfile command npm install --save ghost when building the Docker image. server.js: #!/usr/bin/env node var ghost = require('ghost'); ghost({ config: __dirname + '/config.js' }); This is all that is required to use Ghost as an NPM module. config.js: config = require('./node_modules/ghost/config.example.js'); config.development.server.host = '0.0.0.0'; config.production.server.host = '0.0.0.0'; module.exports = config; This will make the Ghost server accessible from outside of the Docker container. Dockerfile: # DOCKER-VERSION 1.1.2 FROM ubuntu:14.04 # Speed up apt-get according to https://gist.github.com/jpetazzo/6127116 RUN echo "force-unsafe-io" > /etc/dpkg/dpkg.cfg.d/02apt-speedup RUN echo "Acquire::http {No-Cache=True;};" > /etc/apt/apt.conf.d/no-cache # Update the distribution ENV DEBIAN_FRONTEND noninteractive RUN apt-get update RUN apt-get upgrade -y # https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager RUN apt-get install -y software-properties-common RUN add-apt-repository -y ppa:chris-lea/node.js RUN apt-get update RUN apt-get install -y python-software-properties python g++ make nodejs git # git needed by 'npm install' ADD . /src RUN cd /src; npm install --save ghost ENTRYPOINT ["node", "/src/server.js"] # Override ubuntu:14.04 CMD directive: CMD [] EXPOSE 2368 This Dockerfile will create a Docker image with Node.js and the dependencies needed to build the Ghost NPM module, and prepare Ghost to be run via Docker. See Documentation for details on the syntax. Now build the Ghost image using: cd docker-ghost docker build -t ghost-image . This will take a while, but you might have to Ctrl-C and re-run the command if, for more than a couple of minutes, you are stuck at the following step: > node-pre-gyp install --fallback-to-build Run Ghost Now start the Ghost container: docker run --name ghost-container -d -p 2368:2368 ghost-image If you run Boot2Docker, you'll have to figure out its IP address: boot2docker ip Usually, that's 192.168.59.103, so by going to http://192.168.59.103:2368, you will see your fresh new Ghost blog. Yay! For the admin interface, go to http://192.168.59.103:2368/ghost. Manage the Ghost container The following commands will come in handy to manage the Ghost container: # Show all running containers: docker ps -a # Show the container logs: docker logs [-f] ghost-container # Stop Ghost via a simulated Ctrl-C: docker kill -s INT ghost-container # After killing Ghost, this will restart it: docker start ghost-container # Remove the container AND THE DATA (!): docker rm ghost-container What you'll want to do next Some steps that are outside the scope of this post, but some steps that you might want to pursue next, are: Copy and change the Ghost configuration that currently resides in node_modules/ghost/config.js. Move the Ghost content directory into a separate Docker volume to allow for upgrades and data backups. Deploy the Ghost image to production on your public server at your hosting provider. Also, you might want to change the Ghost configuration to match your domain and change the port to 80. How I use Ghost with Docker I run Ghost in Docker successfully over at Named Data Education, a new blog about Named Data Networking. I like the fact that I can replicate an isolated setup identically on that server as well as on my own laptop. Ghost resources Official docs: The Ghost Guide, and the FAQ- / How-To-like User Guide. How To Install Ghost, Ghost for Beginners and All About Ghost are a collection of sites that provide more in-depth material on operating a Ghost blog. By the same guys: All Ghost Themes. Ghost themes on ThemeForest is also a great collection of themes. Docker resources The official documentation provides many guides and references. Docker volumes are explained here and in this post by Michael Crosby. About the Author Felix Rabe has been programming and working with different technologies and companies at different levels since 1993. Currently he is researching and promoting Named Data Networking (http://named-data.net/), an evolution of the Internet architecture that currently relies on the host-bound Internet Protocol. You can find our very best Docker content on our dedicated Docker page. Whatever you do with software, Docker will help you do it better.
Read more
  • 0
  • 0
  • 29148

article-image-deploy-nodejs-apps-aws-code-deploy
Ankit Patial
14 Sep 2015
7 min read
Save for later

Deploy Node.js Apps with AWS Code Deploy

Ankit Patial
14 Sep 2015
7 min read
As an application developer, you must be familiar with the complexity of deploying apps to a fleet of servers with minimum down time. AWS introduced a new service called AWS Code Deploy to ease out the deployment of applications to an EC2 instance on the AWS cloud. Before explaining the full process, I will assume that you are using AWS VPC and are having all of your EC2 instances inside VPC, and that each instance is having an IAM role. Let's see how we can deploy a Node.js application to AWS. Install AWS Code Deploy Agent The first thing you need to do is to install aws-codedeploy-agent on each machine that you want your code deployed on. Before installing a client, please make sure that you have trust relationship for codedeploy.us-west-2.amazonaws.com and codedeploy.us-east-1.amazonaws.com added in IAM role that EC2 instance is using. Not sure what it is? Then, click on the top left dropdown with your account name in AWS console, select Security Credentials option you will be redirected to a new page, select Roles from left menu and look for IAM role that EC2 instance is using, click it and scroll to them bottom, and you will see Edit Trust Relationship button. Click this button to edit trust relationship, and make sure it looks like the following. ... "Principal": { "Service": [ "ec2.amazonaws.com", "codedeploy.us-west-2.amazonaws.com", "codedeploy.us-east-1.amazonaws.com" ] } ... Ok we are good to install the AWS Code Deploy Agent, so make sure ruby2.0 is installed. Use the following script to install code deploy agent. aws s3 cp s3://aws-codedeploy-us-east-1/latest/install ./install-aws-codedeploy-agent --region us-east-1 chmod +x ./install-aws-codedeploy-agent sudo ./install-aws-codedeploy-agent auto rm install-aws-codedeploy-agent Ok, hopefully nothing will go wrong and agent will be installed up and running. To check if its running or not, try the following command: sudo service codedeploy-agent status Let's move to the next step. Create Code Deploy Application Login to your AWS account. Under Deployment & Management click on Code Deploy link, on next screen click on the Get Started Now button and complete the following things: Choose Custom Deployment and click the Skip Walkthrough button. Create New Application; the following are steps to create an application. –            Application Name: display name for application you want to deploy. –            Deployment Group Name: this is something similar to environments like LIVE, STAGING and QA. –            Add Instances: you can choose Amazon EC2 instances by name group name etc. In case you are using autoscaling feature, you can add that auto scaling group too. –            Deployment Config: its a way to specify how we want to deploy application, whether we want to deploy one server at-a-time or half of servers at-a-time or deploy all at-once. –            Service Role: Choose the IAM role that has access to S3 bucket that we will use to hold code revisions. –            Hit the Create Application button. Ok, we just created a Code Deploy application. Let's hold it here and move to our NodeJs app to get it ready for deployment. Code Revision Ok, you have written your app and you are ready to deploy it. The most important thing your app need is appspec.yml. This file will be used by code deploy agent to perform various steps during the deployment life cycle. In simple words the deployment process includes the following steps: Stop the previous application if already deployed; if its first time then this step will not exist. Update the latest code, such as copy files to the application directory. Install new packages or run DB migrations. Start the application. Check if the application is working. Rollback if something went wrong. All above steps seem easy, but they are time consuming and painful to perform each time. Let's see how we can perform these steps easily with AWS code deploy. Lets say we have a following appspec.yml file in our code and also we have bin folder in an app that contain executable sh scripts to perform certain things that I will explain next. First of all take an example of appspec.yml: version: 0.0 os: linux files: - source: / destination: /home/ec2-user/my-app permissions: - object: / pattern: "**" owner: ec2-user group: ec2-user hooks: ApplicationStop: - location: bin/app-stop timeout: 10 runas: ec2-user AfterInstall: - location: bin/install-pkgs timeout: 1200 runas: ec2-user ApplicationStart: - location: bin/app-start timeout: 60 runas: ec2-user ValidateService: - location: bin/app-validate timeout: 10 runas: ec2-user It's a way to tell Code Deploy to copy and provide a destination of those files. files: - source: / destination: /home/ec2-user/my-app We can specify the permissions to be set for the source file on copy. permissions: - object: / pattern: "**" owner: ec2-user group: ec2-user Hooks are executed in an order during the Code Deploy life cycle. We have ApplicationStop, DownloadBundle, BeforeInstall, Install, AfterInstall, ApplicationStart and ValidateService hooks that all have the same syntax. hooks: deployment-lifecycle-event-name - location: script-location timeout: timeout-in-seconds runas: user-name location is the relative path from code root to script file that you want to execute. timeout is the maximum time a script can run. runas is an os user to run the script, and some time you may want to run a script with diff user privileges. Lets bundle your app, exclude the unwanted files such as node_modules folder, and zip it. I use AWS CLI to deploy my code revisions, but you can install awscli using PPI (Python Package Index). sudo pip install awscli I am using awscli profile that has access to s3 code revision bucket in my account. Here is code sample that can help: aws --profile simsaw-baas deploy push --no-ignore-hidden-files --application-name MY_CODE_DEPLOY_APP_NAME --s3-location s3://MY_CODE_REVISONS/MY_CODE_DEPLOY_APP_NAME/APP_BUILD --source MY_APP_BUILD.zip Now Code Revision is published to s3 and also the same revision is registered with the Code Deploy application with the name MY_CODE_DEPLOY_APP_NAME (it will be name of the application you created earlier in the second step.) Now go back to AWS console, Code Deploy. Deploy Code Revision Select your Code Deploy application from the application list show on the Code Deploy Dashboard. It will take you to the next window where you can see the published revision(s), expand the revision and click on Deploy This Revision. You will be redirected to a new window with options like application and deployment group. Choose them carefully and hit deploy. Wait for magic to happen. Code Deploy has a another option to deploy your app from github. The process for it will be almost the same, except you need not push code revisions to S3. About the author Ankit Patial has a Masters in Computer Applications, and nine years of experience with custom APIs, web and desktop applications using .NET technologies, ROR and NodeJs. As a CTO with SimSaw Inc and Pink Hand Technologies, his job is to learn and help his team to implement the best practices of using Cloud Computing and JavaScript technologies.
Read more
  • 0
  • 0
  • 29097

article-image-bootstrap-30-mobile-first
Packt
16 Dec 2013
10 min read
Save for later

Bootstrap 3.0 is Mobile First

Packt
16 Dec 2013
10 min read
(For more resources related to this topic, see here.) But why Mobile First? Why did Bootstrap completely change its course from Desktop First to Mobile First to get into this new way to develop more suitable websites and web applications? Why did the most popular frontend framework embrace this change at a time when responsive web design is continuously growing with better suited and standard techniques such as media-queries, fluid layout, and JavaScript on demand? Mobile browsers are increasing support for the brand new HTML5 and CSS3, with the philosophy to offer, for older browsers, a less stylized but fully functional component, and for capable browsers a rich and full experience that comes from mobiles to larger screens such as TVs. For older browsers (such as IE 8 and IE 9), Bootstrap has functional support, but enhanced features such as rounded corners and a placeholder attribute for tips in input fields are not supported for these browsers. To see the full details on browser support, check the Bootstrap documentation from the Getting started section (http://getbootstrap.com/getting-started/#browsers). We are living at a time when mobile use is increasing at a pace that will soon surpass desktop usage (http://www.businessinsider.com/mobile-will-eclipsedesktop-by-2014-2012-6). Apart from the statistics, one thing we can presume is that the web scenario is changing so fast that we have to embrace the certainty of devices getting better and smarter. In this article, we will explore the main changes in Bootstrap 3. If you are already familiar with Bootstrap 2, check the migration guide (http://getbootstrap.com/getting-started/#migration) to have a practical overview about what has changed. If you're not familiar with Bootstrap, there's nothing that's too difficult for you to understand directly from this article about this new version. The only thing you need to have in mind is the Mobile First approach, which is covered well in this article. You will be guided to design with Mobile First, discover why Mobile First is so important, and how to make Bootstrap a powerful frontend platform to make your site friendly for a wider range of devices. We can take a step further and add to your previous Bootstrap knowledge by thinking of a concrete way to design processes as a continuous layer of capabilities and embrace the constraints and not fight with them. Mobile First with Bootstrap is an elegant solution for frontend development. Combined with server-side techniques, we get a full bag of solutions to get your product better suited to different users and needs in different platforms. This article will cover the following topics: Bootstrap reviewed Desktop to responsive   Bootstrap reviewed In the third era of Bootstrap that is coming, the developers have redesigned the whole framework with a different approach. Let's get started building interface components of small and simple screens, instead of adapting the existent UI components to fit in a constrained environment. From mobile, we will then go to desktop. However, we will not adapt the experience as we usually do with responsive design going from desktop to mobile. Now with Mobile First we will enhance accordingly as we increase the device screens. Why should I do this if my target audience will be using desktops? Going to mobile indirectly benefits desktop users. But how? To better understand this, let's recap Bootstrap history for a while. In 2011, Bootstrap was launched to serve as a live and agnostic style guide that was used by Twitter to create their products. It became an open source framework at that time. It was a time when we worked in pixel-perfect layouts and explored CSS3 animations, and we found in Bootstrap a well-documented and standardized set of features. Bootstrap creates a new design for the browsers because you don't need to define basic interface elements from scratch, such as buttons. At the same time, you have utility elements like badges to cover the most common interface elements. Bootstrap does what a framework is supposed to do: Bootstrapping! The term means the act of taking off a new project; it's like saying, "give me the tools that I will need to start developing my application for different needs". Bootstrap is a toolkit belt with standard conventions from well-defined classes with clean and practical documentation to live code that is ready to use and be customized for your needs. It's not a magic solution to solve the interface element reuse issue, but it's a kick-start. It fits in so many scenarios that developers are increasing its use with their own tools. "CSS moved beyond type, forms and grids. People get tired to create the same stuffs"— Mark Otto, one of Bootstrap's creators, in the Desktop First to Mobile First Bootstrap presentation (https://speakerdeck.com/mdo/desktop-firstto- with-bootstrap) A must-have from this breeding ground of possibilities is the Bootstrap extension font-awesome (http://fortawesome.github.io/Font-Awesome/). It uses font-face, which is widely supported and flexible, instead of sprites for icons. With a single CSS file and font resources used to render the custom fonts, you have a tool that can handle all your icons. This shows the flexibility of Bootstrap tools; for example, font-awesome is independent, works as a standalone project, and is a great fit with Bootstrap. There are a lot of ways to use Bootstrap. You can customize and extend components, from editing the source code in LESS variables or customize via the Bootstrap download page (http://getbootstrap.com/customize/). At the time of this writing, Bootstrap is the most popular project on Github, so it's just one more reason to consider its importance. There's now an official Bootstrap Expo (http://expo.getbootstrap.com/). This is one of the changes in this new version. Bootstrap Expo is the official directory for websites and web applications that are being developed using this framework. A lot of developers get their first touch with the capabilities of HTML5 and CSS3 with this framework. Bootstrap has amazing capabilities such as offering a responsive grid, dozens of JavaScript components, and a customizer in a web interface or through the LESS variables, if you're an experienced developer. It's suitable for any level of developer and designers because it has solutions that suit both scenarios. This is the second of Bootstrap's main philosophies—it's made for everyone. Desktop to responsive With the rise of smart phones, there is a need for responsive content to cover the growing demand. It's possible to add an optional file with media queries and a bunch of CSS code and be adapted to mobile needs. Media queries, a CSS3 module introduced in June 2012, is a basic structure that gives a namespace with a bunch of CSS rules and declarations according to the user resolution, density, and screen capabilities. So, with CSS files, it is possible to manage the ongoing rise of smartphones. It was possible with just one stylesheet file with good support to adapt according with the device and make a website mobile friendly. In Bootstrap Version 2, we used to have an optional file (responsive.less) that used to have all the media queries necessary for Bootstrap to work well with mobiles. Another good news is that we can adapt to tablets as a bonus. We have breakpoints for the most common mobile resolutions—this means we have a range of width (768 px to 979 px) that can represent tablet devices. A breakpoint is the extreme point (minimum and/or maximum) where you can define CSS rules specific to that range and change your layout. This could be achieved with a simple declaration of media queries in your CSS: @media (min-width: 768px) and (max-width: 979px) { ... } But sometimes it's indispensable to rethink some elements—some of those already developed only for desktops—in a pixel-perfect scenario. There's no flexibility in a pixel-width accommodation. No matter how much the screen is different, the website will behave like you were using a desktop when we work with fixed units. This is when we can use a bunch of media queries to get more flexible. Even with this solution, redefining dimensions and CSS rules according to the device using media queries will solve screen flexibility issues but not solve performance issues on mobiles. Performance is one of the main concerns when we go mobile. We have to consider scenarios where the Internet connection is slow and it is a recurrent issue. You will have to perform reverse engineering to make your JavaScript optimize loading, and combine it with server-side solutions. A worse solution would be to just hide content after considering what could be painful for your page load; for example, images have a deep impact on the final performance. Lower page response time is equivalent to more money spent, as we can see in this article about page loading versus user patience (http://blog.kissmetrics.com/loading-time/). One of the curious things this research points to is that mobile Internet users expect their browsing experience in phones to be comparable to what they get on their desktops. We are living at a time when the Web is filled with rich content and we have faster Internet connections. We have to be prepared to offer the closest thing to a fast and optimized loading, at least for our most important content. This does not involve just the use of CSS to hide content and show content depending on the device, as we can do using media queries. It's all about keeping the concepts simple and focused and developing each interface component thoughtfully from scratch—the primary use, with the constraints and its enhanced capabilities. It's not just about adapting, it's exploring the device's capabilities and delivering the best user experience across platforms. Sounds familiar? Yes, for sure, the same concept as progressive enhancement, you might think. You're not wrong. Progressive enhancement was a term widely used at a time when we talked about HTML page dependency on JavaScript to be functional. Progressive enhancement is a strategy for web design that relies on semantic markup and technologies such as JavaScript. Nowadays, progressive enhancement is a longer term for Mobile First because it's not just about JavaScript disabled, as it was vastly talked before. A hundred of articles tried to show its benefits in a no JavaScript environment scenarios. Now progressive enhancement is about to be faster (http://coding.smashingmagazine.com/2013/09/03/progressive-enhancement-is-faster/). Progressive enhancement is one of the three keys of Mobile First, together with responsive design and giving priority to content over navigation. So, these three rationales are at the background of all the details of Bootstrap 3, from your CSS components to your grid structure. Summary In this article we saw the Twitter Bootstrap's latest version Mobile First. We also saw how developers developed this framework. The growing world of smartphones have forced for the need for Mobile First. Resources for Article: Further resources on this subject: Downloading and setting up Bootstrap [Article] Introduction to RWD frameworks [Article] Getting started with using Chef [Article]
Read more
  • 0
  • 44
  • 29027
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-server-side-rendering
Packt
16 Aug 2016
5 min read
Save for later

Server-Side Rendering

Packt
16 Aug 2016
5 min read
In this article by Kamil Przeorski, the author of the book Mastering Full Stack React Web Development introduces Universal JavaScript or isomorphic JavaScript features that we are going to implement in thisarticle. To be more exact: we will develop our app the way that we will render the app's pages both on server and client side. It's different to Angular1 or Backbone single-page apps which are mainly rendered on the client side. Our approach is more complicated in technological terms as you need to deploy your full-stack skills which working on a server side rendering, but on the other-side having this experience will make you more desirable programmer so you can advance your career to the next level—you will be able to charge more for your skills on the market. (For more resources related to this topic, see here.) When the server-side is worth implementing h1 The server-side rendering is very useful feature in text's content (like news portals) related startups/companies because it helps to be better indexed by different search engines. It's an essential feature for any news and content heavy websites, because it helps grow them organic traffic. In this article, we will also run our app with server-side rendering. Second segment of companies where server-side rendering may be very useful are entertainment one where users have less patience and they can close the www's browser if a webpage is loading slowly. In general, all B2C (consumer facing) apps shall use server-side rendering to improve its experience with the masses of people who are visiting their websites. Our focus for article will include the following: Making whole server-side code rearrangement to prepare for the server-side rendering Start using react-dom/server and it's renderToString method Are you ready? Our first step is to mock the database's response on the backend (we will create a real DB query after whole server-side rendering will work correctly on the mocked data). Mocking the database response h2 First of all, we will mock our database response on the backend in order to get prepared to go into server-side rendering directly. $ [[you are in the server directory of your project]] $ touch fetchServerSide.js The fetchServerSide.js file will consist of all functions that will fetch data from our database in order to make the server side works.As was mentioned earlier we will mock it for the meanwhile with following code in fetchServerSide.js: export default () => { return { 'article': { '0': { 'articleTitle': 'SERVER-SIDE Lorem ipsum - article one', 'articleContent':'SERVER-SIDE Here goes the content of the article' }, '1': { 'articleTitle':'SERVER-SIDE Lorem ipsum - article two', 'articleContent':'SERVER-SIDE Sky is the limit, the content goes here.' } } } } The goal of making this mocked object once again, is that we will be able to see if our server-side rendering works correctly after implementation because as you probably have already spotted that we have added this SERVER-SIDE in the beginning of each title and content—so it will help us to learn that our app is getting the data from server-side rendering. Later this function will be replaced with a query to MongoDB. Next thing that will help us implement the server-side rendering is to make a handleServerSideRender function that will be triggered each time a request hits the server. In order to make the handleServerSideRender trigger every time the frontend calls our backend we need to use the Express middleware using app.use. So far we were using some external libraries like: app.use(cors()) app.use(bodyParser.json({extended: false})) Now, we will write our own small's middleware function that behaves similar way to the cors or bodyParser (the external libs that are also middlewares). Before doing so, let's import our dependencies that are required in React's server-side rendering (server/server.js): import React from 'react'; import {createStore} from 'redux'; import {Provider} from 'react-redux'; import {renderToStaticMarkup} from 'react-dom/server'; import ReactRouter from 'react-router'; import {RoutingContext, match} from 'react-router'; import * as hist from 'history'; import rootReducer from '../src/reducers'; import reactRoutes from '../src/routes'; import fetchServerSide from './fetchServerSide'; After adding all those imports of the server/server.js, the file will be looking as following: import http from 'http'; import express from 'express'; import cors from 'cors'; import bodyParser from 'body-parser'; import falcor from 'falcor'; import falcorExpress from 'falcor-express'; import falcorRouter from 'falcor-router'; import routes from './routes.js'; import React from 'react' import { createStore } from 'redux' import { Provider } from 'react-redux' import { renderToStaticMarkup } from 'react-dom/server' import ReactRouter from 'react-router'; import { RoutingContext, match } from 'react-router'; import * as hist from 'history'; import rootReducer from '../src/reducers'; import reactRoutes from '../src/routes'; import fetchServerSide from './fetchServerSide'; Important is to import history in the given way as in the example import * as hist from 'history'. The RoutingContext, match is the way of using React-Router on the server side. The renderToStaticMarkup function is going to generate for us a HTML markup on serverside. After we have added those new imports then under falcor's middleware setup: // this already exists in your codebase app.use('/model.json', falcorExpress.dataSourceRoute((req, res) => { return new falcorRouter(routes); // this alrady exsits in your codebase })); Under themodel.jsonfile's code, please add the following: let handleServerSideRender = (req, res) => { return; }; let renderFullHtml = (html, initialState) => { return; };app.use(handleServerSideRender); The app.use(handleServerSideRender) is fired each time the server side receives a request from a client's application. Then we have prepared empty functions that we will use: handleServerSideRender:It will use renderToString in order to create a valid server-side's HTML's markup renderFullHtml:The helper's function will embed our new React's HTML markup into a whole HTML's document as you can later in a moment down below. Summary We have done the basic server-side rendering in this article. Resources for Article: Further resources on this subject: Basic Website using Node.js and MySQL database [article] How to integrate social media with your WordPress website [article] Laravel 5.0 Essentials [article]
Read more
  • 0
  • 0
  • 28839

article-image-build-progressive-web-apps-firebase
Savia Lobo
24 May 2018
19 min read
Save for later

Build powerful progressive web apps with Firebase

Savia Lobo
24 May 2018
19 min read
Progressive Web Apps describe a collection of technologies, design concepts, and Web APIs. They work in tandem to provide an app-like experience on the mobile web. In this tutorial, we'll discuss diverse recipes and show what it takes to turn any application into a powerful, fully-optimized progressive web application using Firebase magic. This article is an excerpt taken from the book,' Firebase Cookbook', written by Houssem Yahiaoui. In this book, you will learn how to create cross-platform mobile apps, integrate Firebase in native platforms, and learn how to monetize your mobile applications using Admob for Android and iOS. Integrating Node-FCM in NodeJS server We'll see how we can fully integrate the FCM (Firebase Cloud Messaging) with any Nodejs application. This process is relatively easy and straightforward, and we will see how it can be done in a matter of minutes. How to do it... Let's ensure that our working environment is ready for our project, so let's install a couple of dependencies in order to ensure that everything will run smoothly: Open your terminal--in case you are using macOS/Linux--or your cmd--if you're using Windows--and write down the following command: ~> npm install fcm-push --save By using this command, we are downloading and installing the fcm-push library locally. If this is executed, it will help with managing the process of sending web push notification to our users. The NodeJS ecosystem has npm as part of it. So in order to have it on your working machine, you will have to download NodeJS and configure your system within. Here's the official NodeJS link; download and install the suitable version to your system: https://nodejs.org/en/download/. Now that we have successfully installed the library locally, in order to integrate it with our applications and start using it, we will just need another line of code. Within your local development project, create a new file that will host the functionality and simply implement the following code: const FCM = require('fcm-push'); Congratulations! We're typically done. In subsequent recipes, we'll see how to manage our way through the sending process and how we can successfully send our user's web push notification. Implementing service workers Service workers were, in fact, the missing piece in the web scenes of the past. They are what give us the feel of reactivity to any state that a web application, after integrating, can have from, for example, a notification message, an offline-state (no internet connection) and more. In this recipe, we'll see how we can integrate service worker into our application. Service workers files are event-driven, so everything that will happen inside them will be event based. Since it's JavaScript, we can always hook up listeners to any event. To do that, we will want to give a special logic knowing that if you will use this logic, the event will behave in its default way. You can read more about service workers and know how you can incorporate them--to achieve numerous awesome features to your application that our book won't cover--from https://developers.google.com/web/fundamentals/getting-started/primers/service-workers. How to do it... Services workers will live in the browser, so including them within your frontend bundle is the most suitable place for them. Keeping that in mind, let's create a file called firebase-messaging-sw.js and manifest.json file. The JavaScript file will be our service worker file and will host all major workload, and the JSON file will simply be a metadata config file. After that, ensure that you also create app.js file, where this file will be the starting point for our Authorization and custom UX.  We will look into the importance of each file individually later on, but for now, go back to the firebase-messaging-sw.js file and write the following: //[*] Importing Firebase Needed Dependencies importScripts('https://www.gstatic.com/firebasejs/ 3.5.2/firebase-app.js'); importScripts('https://www.gstatic.com/firebasejs/ 3.5.2/firebase-messaging.js'); // [*] Firebase Configurations var config = { apiKey: "", authDomain: "", databaseURL: "", storageBucket: "", messagingSenderId: "" }; //[*] Initializing our Firebase Application. firebase.initializeApp(config); // [*] Initializing the Firebase Messaging Object. const messaging = firebase.messaging(); // [*] SW Install State Event. self.addEventListener('install', function(event) { console.log("Install Step, let's cache some files =D"); }); // [*] SW Activate State Event. self.addEventListener('activate', function(event) { console.log('Activated!', event);}); Within any service worker file, the install event is always fired first. Within this event, we can handle and add custom logic to any event we want. This can range from saving a local copy of our application in the browser cache to practically anything we want. Inside your metadata file, which will be the manifest.json files, write the following line: { "name": "Firebase Cookbook", "gcm_sender_id": "103953800507" } How it works... For this to work, we're doing the following: Importing using importScripts while considering this as the script tag with the src attribute in HTML, the firebase app, and the messaging libraries. Then, we're introducing our Firebase config object; we've already discussed where you can grab that object content in the past chapters. Initializing our Firebase app with our config file. Creating a new reference from the firebase.messaging library--always remember that everything in Firebase starts with a reference. We're listening to the install and activate events and printing some stdout friendly message to the browser debugger. Also, within our manifest.json file, we're adding the following metadata: The application name (optional). The gcm_sender_id with the given value. Keep in mind that this value will not change for any new project you have or will create in the future. The gcm_sender_id added line might get deprecated in the future, so keep an eye on that. Implementing sending/receiving registration using Socket.IO By now, we've integrated our FCM server and made our service worker ready to host our awesome custom logic. Like we mentioned, we're about to send web push notifications to our users to expand and enlarge their experience without application. Lately, web push notification is being considered as an engagement feature that any cool application nowadays, ranging from Facebook and Twitter to numerous e-commerce sites, is making good use of. So in the first approach, let's see how we can make it happen with Socket.IO. In order to make the FCM server aware of any client--basically, a browser--Browser OEM has what we call a registration_id. This token is a unique token for every browser that will represent our clients by their browsers and needs to be sent to the FCM server. Each browser generates its own registration_id token. So if your user uses, for instance, chrome for their first interaction with the server and they used firefox for their second experience, the web push notification message won't be sent, and they need to send another token so that they can be notified. How to do it... Now, go back to your NodeJS project that was created in the first recipe. Let's download the node.js socket.io dependency: ~> npm install express socket.io --save Socket.io is also event-based and lets us create our custom event for everything we have, plus some native one for connections. Also, we've installed ExpressJS for configuration sake in order to create a socket.io server. Now after doing that, we need to configure our socket.io server using express. In this case, do as shown in the following code: const express = require('express'); const app = express(); app.io = require('socket.io')(); // [*] Configuring our static files. app.use(express.static('public/')); // [*] Configuring Routes. app.get('/', (req, res) => { res.sendFile(__dirname + '/public/index.html'); }); // [*] Configuring our Socket Connection. app.io.on('connection', socket => { console.log('Huston ! we have a new connection ...'); }) So let's discuss the preceding code, where we are simply doing the following: Importing express and creating a new express app. Using the power of object on the fly, we've included the socket.io package over a new sub-object over the express application. This integration makes our express application now support the usage of  socket.io over the Application. We're indicating that we want to use the public folder as our static files folder, which will host our HTML/CSS/Javascript/IMG resources. We're listening to the connection, which will be fired once we have a new upcoming client. Once a new connection is up, we're printing a friendly message over our console. Let's configure our frontend. Head directly to your index.html files located in the public folder, and add the following line at the head of your page: <script src="/socket.io/socket.io.js"></script> The socket.io.js file will be served in application launch time, so don't worry much if you don't have one locally. Then, at the bottom of our index.html file before the closing of our <body> tag, add the following: <script> var socket = io.connect('localhost:3000'); </script> In the preceding script, we're connecting our frontend to our socket.io backend. Supposedly, our server is in port 3000; this way, we ensured that our two applications are running in sync. Head to your app.js files--created in the earlier recipes; create and import it if you didn't do so already--and introduce the following: //[*] Importing Firebase Needed Dependencies importScripts('https://www.gstatic.com/firebasejs/ 3.5.2/firebase-app.js'); importScripts('https://www.gstatic.com/firebasejs/ 3.5.2/firebase-messaging.js'); // [*] Firebase Configurations var config = { apiKey: "", authDomain: "", databaseURL: "", storageBucket: "", messagingSenderId: "" }; //[*] Initializing our Firebase Application. firebase.initializeApp(config); // [*] Initializing the Firebase Messaging Object. const messaging = firebase.messaging(); Everything is great; don't forget to import the app.js file within your index.html file. We will now see how we can grab our registration_id token next: As I explained earlier, the registration token is unique per browser. However, in order to get it, you should know that this token is considered a privacy issue. To ensure that they do not fall into the wrong hands, it's not available everywhere and to get it, you need to ask for the Browser User Permission. Since you can use it in any particular application, let's see how we can do that. The registration_id token will be considered as security and privacy threat to the user in case this token has been compromised, because once the attacker or the hacker gets the tokens, they can send or spam users with push messages that might have a malicious intent within, so safely keeping and saving those tokens is a priority. Now, within your app.js files that we created early on, let's add the following lines of code underneath the Firebase messaging reference: messaging.requestPermission() .then(() => { console.log("We have permission !"); return messaging.getToken(); }) .then((token) => { console.log(token); socket.emit("new_user", token); }) .catch(function(err) { console.log("Huston we have a problem !",err); }); We've sent out token using the awesome feature of socket.io. In order to get it now, let's simply listen to the same event and hope that we will get some data over our NodeJS backend. We will now proceed to learn about receiving registration token: Back to the app.js file, inside our connection event, let's add the following code: socket.on('new_user', (endpoint) => { console.log(endpoint); //TODO : Add endpoint aka.registration_token, to secure place. }); Our socket.io logic will look pretty much as shown in the following code block: // [*] Configuring our Socket Connection. app.io.on('connection', socket => { console.log('Huston ! we have a new connection ...'); socket.on('new_user', (endpoint) => { console.log(endpoint); //TODO : Add endpoint aka.registration_token, to secure place. }); }); Now, we have our bidirectional connection set. Let's grab that regitration_token and save it somewhere safe for further use. How it works... In the first part of the recipe, we did the following: Importing using importScripts considering it a script tag with src attribute in HTML, the firebase app, and messaging libraries. Then, we're introducing our Firebase Config object. We've already discussed where you can grab that object content in the previous chapters. Initializing our Firebase app with our config file. Creating a new reference from firebase.messaging library--always remember that everything in Firebase starts with a reference. Let's discuss what we did previously in the section where we talked about getting the registration_token value: We're using the Firebase messaging reference that we created earlier and executing the requestPermission() function, which returns a promise. Next--assuming that you're following along with this recipe--you will do the following over your page. After launching the development server, you will get a request from your page (Figure 1): Now, let's get back to the code. If we allow the notification, the promise resolver will be executed and then we will return the registration_token value from themessaging.getToken(). Then, we're sending that token over a socket and emitting that with an even name of new_user. Socket.io uses web sockets and like we explained before, sockets are event based. So in order to have a two-way connection between nodes, we need to emit, that is, send an event after giving it a name and listening to the same event with that name. Remember the socket.io event's name because we'll incorporate that into our further recipes. Implementing sending/receiving registration using post requests In a different approach from the one used in Socket.io, let's explore the other way around using post requests. This means that we'll use a REST API that will handle all that for us. At the same time, it will handle saving the registration_token value in a secure place as well. So let's see how we can configure that. How to do it... First, let's start writing our REST API. We will do that by creating an express post endpoint. This endpoint will be porting our data to the server, but before that, let's install some dependencies using the following line: ~> npm install express body-parser --save Let's discuss what we just did: We're using npm to download ExpressJS locally to our development directory. Also, we're downloading body-parser. This is an ExpressJS middleware that will host all post requests data underneath the body subobject. This module is quite a common package in the NodeJS community, and you will find it pretty much everywhere. Now, let's configure our application. Head to the app.js file and add the following code lines there: const express = require('express'); const app = express(); const bodyParser = require('body-parser'); // [*] Configuring Body Parser. app.use(bodyParser.json()); // [*] Configuring Routes. app.post('/regtoken', (req, res) => { let reg_token =req.body.regtoken; console.log(reg_token); //TODO : Create magic while saving this token in secure place. }); In the preceding code, we're doing the following: Importing our dependencies including ExpressJS and BodyParser. In the second step, we're registering the body parser middleware. You can read more about body parser and how to properly configure it to suit your needs from https://github.com/expressjs/body-parser. Next, we're creating an express endpoint or a route. This route will host our custom logic to manage the retrieval of the registration token sent from our users. Now, let's see how we can send the registration token to form our user's side. In this step, you're free to use any HTTP client you seek. However, in order to keep things stable, we'll use the browser native fetch APIs. Since we've managed to fully configure our routes, it can host the functionality we want. Let's see how we can get the registration_token value and send it to our server using post request and the native browser HTTP client named fetch: messaging.requestPermission() .then(() => { console.log("We have permission !"); return messaging.getToken(); }) .then((token) => { console.log(token); //[*] Sending the token fetch("http://localhost:3000/regtoken", { method: "POST" }).then((resp) => { //[*] Handle Server Response. }) .catch(function(err) { //[*] Handle Server Error. }) }) .catch(function(err) { console.log("Huston we have a problem !", err); }); How it works... Let's discuss what we just wrote in the preceding code: We're using the Firebase messaging reference that we created earlier and executing the requestPermission() function that returns a promise. Next, supposing that you're following along with this recipe, after launching the development server you will get the following authorization request from your page: Moving back to the code, if we allow the notification, the promise resolver will be executed and then we will return the registration_token value from the messaging.getToken(). Next, we're using the Fetch API given it a URL as a first parameter and a method name that is post and handling the response and error. Since we saw the different approaches to exchange data between the client and the server, in the next recipe, we will see how we can receive web push notification messages from the server. Receiving web push notification messages We can definitely say that things are on a good path. We managed to configure our message to the server in the past recipes. Now, let's work on getting the message back from the server in a web push message. This is a proven way to gain more leads and regain old users. It is a sure way to re-engage your users, and success stories do not lie. Facebook, Twitter, and e-commerce websites are the living truth on how a web push message can make a difference in your ecosystem and your application in general. How to do it... Let's see how we can unleash the power of push messages. The API is simple and the way to do has never been easier, so let's how we can do that! Let's write down the following code over our firebase-messaging-sw.js file: // [*] Special object let us handle our Background Push Notifications messaging.setBackgroundMessageHandler(function(payload) { return self.registration.showNotification(payload.data.title, body: payload.data.body); }); Let's explain the preceding code: We're using the already created messaging object created using the Firebase messaging library, and we're calling. the setBackgroundMessageHandler() function. This will mean that we will catch all the messages that we will keep receiving in the background. We're using the service worker object represented in the self-object, and we're calling the showNotification() function and passing it some parameters. The first parameter is the title, and we're grabbing it from the server; we'll see how we can get it in just a second. The second parameter is the body of the message. Now, we've prepared our frontend to received messages. Let's send them from the server, and we will see how we can do that using the following code: var fcm = new FCM('<FCM_CODE>'); var message = { to: data.endpoint, // required fill with device token or topics notification: { title: data.payload.title, body: data.payload.body } }; fcm.send(message) .then(function(response) { console.log("Successfully sent with response: ", response); }) .catch(function(err) { console.log("Something has gone wrong!"); console.error(err); }) }); The most important part is FCM_CODE. You can grab it in the Firebase console by going to the Firebase Project Console and clicking on the Overview tab (Figure 3): Then, go to the CLOUD MESSAGING tab and copy and paste the Server Key in the section (Figure 4): How it works... Now, let's discuss the code that what we just wrote: The preceding code can be put everywhere, which means that you can send push notifications in every part of your application. We're composing our notification message by putting the registration token and the information we want to send. We're using the fcm.send() method in order to send our notification to the wanted users. Congratulations! We're done; now go and test your awesome new functionality! Implementing custom notification messages In the previous recipes, we saw how we can send a normal notification. Let's add some controllers and also learn how to add some pictures to it so that we can prettify it a bit. How to do it... Now write the following code and add it to our earlier code over the messaging.setBackgroundMessageHandler() function. So, the end result will look something like this: // [*] Special object let us handle our Background Push Notifications messaging.setBackgroundMessageHandler(function(payload) { const notificationOptions = { body: payload.data.msg, icon: "images/icon.jpg", actions: [ { action : 'like', title: 'Like', image: '<link-to-like-img>' }, { action : 'dislike', title: 'Dislike', image: '<link-to-like-img>' } ] } self.addEventListener('notificationclick', function(event) { var messageId = event.notification.data; event.notification.close(); if (event.action === 'like') { console.log("Going to like something !"); } else if (event.action === 'dislike') { console.log("Going to dislike something !"); } else { console.log("wh00t !"); } }, false); return self.registration.showNotification( payload.data.title,notificationOptions); }); How it works... Let's discuss what we've done so far: We added the notificationOptions object that hosts some of the required metadata, such as the body of the message and the image. Also, in this case, we're adding actions, which means we'll add custom buttons to our notification message. These will range from title to image, the most important part is the action name. Next, we listened on notificationclick, which will be fired each time one of the actions will be selected. Remember the action field we added early on; it'll be the differentiation point between all actions we might add. Then, we returned the notification and showed it using the showNotification() function. We saw how to build powerful progressive applications using Firebase. If you've enjoyed reading this tutorial, do check out, 'Firebase Cookbook', for creating serverless applications with Firebase Cloud Functions or turning your traditional applications into progressive apps with Service workers. What is a progressive web app? Windows launches progressive web apps… that don’t yet work on mobile Hybrid Mobile apps: What you need to know
Read more
  • 0
  • 0
  • 28801

article-image-building-first-vue-js-web-application
Kunal Chaudhari
17 Apr 2018
11 min read
Save for later

Building your first Vue.js 2 Web application

Kunal Chaudhari
17 Apr 2018
11 min read
Vue is a relative newcomer in the JavaScript frontend landscape, but a very serious challenger to the current leading libraries. It is simple, flexible, and very fast, while still providing a lot of features and optional tools that can help you build a modern web app efficiently. In today’s tutorial, we will explore Vue.js library and then we will start creating our first web app. Why another frontend framework? Its creator, Evan You, calls it the progressive framework. Vue is incrementally adoptable, with a core library focused on user interfaces that you can use in existing projects You can make small prototypes all the way up to large and sophisticated web applications Vue is approachable-- beginners can pick up the library easily, and confirmed developers can be productive very quickly Vue roughly follows a Model-View-ViewModel architecture, which means the View (the user interface) and the Model (the data) are separated, with the ViewModel (Vue) being a mediator between the two. It handles the updates automatically and has been already optimized for you. Therefore, you don't have to specify when a part of the View should update because Vue will choose the right way and time to do so. The library also takes inspiration from other similar libraries such as React, Angular, and Polymer. The following is an overview of its core features: A reactive data system that can update your user interface automatically, with a lightweight virtual-DOM engine and minimal optimization efforts, is required Flexible View declaration--artist-friendly HTML templates, JSX (HTML inside JavaScript), or hyperscript render functions (pure JavaScript) Composable user interfaces with maintainable and reusable components Official companion libraries that come with routing, state management, scaffolding, and more advanced features, making Vue a non-opinionated but fully fleshed out frontend framework Vue.js - A trending project Evan You started working on the first prototype of Vue in 2013, while working at Google, using Angular. The initial goal was to have all the cool features of Angular, such as data binding and data-driven DOM, but without the extra concepts that make a framework opinionated and heavy to learn and use. The first public release was published on February 2014 and had immediate success the very first day, with HackerNews frontpage, /r/javascript at the top spot and 10k unique visits on the official website. The first major version 1.0 was reached in October 2015, and by the end of that year, the npm downloads rocketed to 382k ytd, the GitHub repository received 11k stars, the official website had 363k unique visitors, and the popular PHP framework Laravel had picked Vue as its official frontend library instead of React. The second major version, 2.0, was released in September 2016, with a new virtual DOM- based renderer and many new features such as server-side rendering and performance improvements. This is the version we will use in this article. It is now one of the fastest frontend libraries, outperforming even React according to a comparison refined with the React team. At the time of writing this article, Vue was the second most popular frontend library on GitHub with 72k stars, just behind React and ahead of Angular 1. The next evolution of the library on the roadmap includes more integration with Vue-native libraries such as Weex and NativeScript to create native mobile apps with Vue, plus new features and improvements. Today, Vue is used by many companies such as Microsoft, Adobe, Alibaba, Baidu, Xiaomi, Expedia, Nintendo, and GitLab. Compatibility requirements Vue doesn't have any dependency and can be used in any ECMAScript 5 minimum- compliant browser. This means that it is not compatible with Internet Explorer 8 or less, because it needs relatively new JavaScript features such as Object.defineProperty, which can't be polyfilled on older browsers. In this article, we are writing code in JavaScript version ES2015 (formerly ES6), so you will need a modern browser to run the examples (such as Edge, Firefox, or Chrome). At some point, we will introduce a compiler called Babel that will help us make our code compatible with older browsers. One-minute setup Without further ado, let's start creating our first Vue app with a very quick setup. Vue is flexible enough to be included in any web page with a simple script tag. Let's create a very simple web page that includes the library, with a simple div element and another script tag: <html> <head> <meta charset="utf-8"> <title>Vue Project Guide setup</title> </head> <body> <!-- Include the library in the page --> <script src="https://unpkg.com/vue/dist/vue.js"></script> <!-- Some HTML --> <div id="root"> <p>Is this an Hello world?</p> </div> <!-- Some JavaScript →> <script> console.log('Yes! We are using Vue version', Vue.version) </script> </body> </html> In the browser console, we should have something like this: Yes! We are using Vue version 2.0.3 As you can see in the preceding code, the library exposes a Vue object that contains all the features we need to use it. We are now ready to go. Creating an app For now, we don't have any Vue app running on our web page. The whole library is based on Vue instances, which are the mediators between your View and your data. So, we need to create a new Vue instance to start our app: // New Vue instance var app = new Vue({ // CSS selector of the root DOM element el: '#root', // Some data data () { return { message: 'Hello Vue.js!', } }, }) The Vue constructor is called with the new keyword to create a new instance. It has one argument--the option object. It can have multiple attributes (called options). For now, we are using only two of them. With the el option, we tell Vue where to add (or "mount") the instance on our web page using a CSS selector. In the example, our instance will use the <div id="root"> DOM element as its root element. We could also use the $mount method of the Vue instance instead of the el option: var app = new Vue({ data () { return { message: 'Hello Vue.js!', } }, }) // We add the instance to the page app.$mount('#root') Most of the special methods and attributes of a Vue instance start with a dollar character. We will also initialize some data in the data option with a message property that contains a string. Now the Vue app is running, but it doesn't do much, yet. You can add as many Vue apps as you like on a single web page. Just create a new Vue instance for each of them and mount them on different DOM elements. This comes in handy when you want to integrate Vue in an existing project. Vue devtools An official debugger tool for Vue is available on Chrome as an extension called Vue.js devtools. It can help you see how your app is running to help you debug your code. You can download it from the Chrome Web Store (https://chrome.google.com/webstore/ search/vue) or from the Firefox addons registry (https://addons.mozilla.org/en-US/ firefox/addon/vue-js-devtools/?src=ss). For the Chrome version, you need to set an additional setting. In the extension settings, enable Allow access to file URLs so that it can detect Vue on a web page opened from your local drive: On your web page, open the Chrome Dev Tools with the F12 shortcut (or Shift + command + c on OS X) and search for the Vue tab (it may be hidden in the More tools... dropdown). Once it is opened, you can see a tree with our Vue instance named Root by convention. If you click on it, the sidebar displays the properties of the instance: You can drag and drop the devtools tab to your liking. Don't hesitate to place it among the first tabs, as it will be hidden in the page where Vue is not in development mode or is not running at all. You can change the name of your instance with the name option: var app = new Vue({ name: 'MyApp', // ...         }) This will help you see where your instance in the devtools is when you will have many more: Templates make your DOM dynamic With Vue, we have several systems at our disposal to write our View. For now, we will start with templates. A template is the easiest way to describe a View because it looks like HTML a lot, but with some extra syntax to make the DOM dynamically update very easily. Displaying text The first template feature we will see is the text interpolation, which is used to display dynamic text inside our web page. The text interpolation syntax is a pair of double curly braces containing a JavaScript expression of any kind. Its result will replace the interpolation when Vue will process the template. Replace the <div id="root"> element with the following: <div id="root"> <p>{{ message }}</p> </div> The template in this example has a <p> element whose content is the result of the message JavaScript expression. It will return the value of the message attribute of our instance. You should now have a new text displayed on your web page--Hello Vue.js!. It doesn't seem like much, but Vue has done a lot of work for us here--we now have the DOM wired with our data. To demonstrate this, open your browser console and change the app.message value and press Enter on the keyboard: app.message = 'Awesome!' The message has changed. This is called data-binding. It means that Vue is able to automatically update the DOM whenever your data changes without requiring anything from your part. The library includes a very powerful and efficient reactivity system that keeps track of all your data and is able to update what's needed when something changes. All of this is very fast indeed. Adding basic interactivity with directives Let's add some interactivity to our otherwise quite static app, for example, a text input that will allow the user to change the message displayed. We can do that in templates with special HTML attributes called directives. All the directives in Vue start with v- and follow the kebab-case syntax. That means you should separate the words with a dash. Remember that HTML attributes are case insensitive (whether they are uppercase or lowercase doesn't matter). The directive we need here is v-model, which will bind the value of our <input> element with our message data property. Add a new <input> element with the v-model="message" attribute inside the template: <div id="root"> <p>{{ message }}</p> <!-- New text input --> <input v-model="message" /> </div> Vue will now update the message property automatically when the input value changes. You can play with the content of the input to verify that the text updates as you type and the value in the devtools changes: There are many more directives available in Vue, and you can even create your own. To summarize, we quickly set up a web page to get started using Vue and wrote a simple app. We created a Vue instance to mount the Vue app on the page and wrote a template to make the DOM dynamic. Inside this template, we used a JavaScript expression to display text, thanks to text interpolations. Finally, we added some interactivity with an input element that we bound to our data with the v-model directive. You read an excerpt from a book written by Guillaume Chau, titled Vue.js 2 Web Development Projects. Its a project-based, practical guide to get hands-on into Vue.js 2.5 development by building beautiful, functional and performant web. Why has Vue.js become so popular? Building a real-time dashboard with Meteor and Vue.js      
Read more
  • 0
  • 0
  • 28447

article-image-app-and-web-development-in-2019-what-we-loved-and-what-mattered
Richard Gall
17 Dec 2019
10 min read
Save for later

App and web development in 2019: What we loved and what mattered

Richard Gall
17 Dec 2019
10 min read
For app and web developers, the world at the end of the decade is very different to the one that began it. Sure, change is inevitable, but the way the discipline(s) have evolved in just a matter of years (arguably the most significant changes came in the latter half of the decade) is a mark of how technologies, business needs, customer expectations, and harsh economic realities have conspired to shape and remold our notion of what software development actually looks like. Full-stack, cloud-native, DevOps (and maybe even ‘NoOps’): all these things have been shaping the way app and web developers work over the last ten years. And in 2019 it feels like that new world is beginning to settle into a specific pattern. Many of the trends and technologies that really defined 2019 are, in truth, trends that have been nascent and emerging for a number of years. Cloud and microservices When cloud first emerged - at some point much earlier this decade - it was largely just about resource efficiency. The idea was to ditch your on premises servers and move instead to a model whereby you rent server space from big vendors. Okay, perhaps that’s a somewhat crude summation; but it’s nevertheless the case that cloud was primarily a field dealt with by administrators and IT professionals, rather than developers. Today, of course, cloud is having a very real impact on the way developers work, giving a degree of agility and flexibility in how software is deployed and managed. With cloud partnering nicely with microservices - which allow developers to break down an application into constituent parts - it’s easy to see how these two trends are getting many app and web developers excited. They shorten the development lifecycle and allow developers to get closer to their code as it runs in production. Learn cloud development - explore Packt's range of cloud bundles. Pick up 5 for $25 throughout our $5 campaign. An essential resource for microservices development: Microservices Development Cookbook. $5 for the rest of December and into January. Go and Rust The growth of Go and Rust throughout 2019 (okay, and a bit before that too) is directly related to the increasing importance of cloud and microservices in software development. Although JavaScript has been taken beyond the browser, it isn’t the best programming language for building high performance applications; that’s where the likes of Go and Rust have been taking over a not insignificant slice of the collective developer imagination. Both languages share a similar history (as this article nicely details); at a fundamental level, moreover, both also aim to build on C++, but with accessibility and safety in mind (C++ has long had a reputation for being both complicated and sometimes vulnerable to bugs and security issues). Go is likely to continue to grow at a faster rate than Rust: it’s a lot easier to use, so for web and app developers with experience in Java or JavaScript, it’s a much gentler learning curve. But this isn’t to say that Rust won’t remain a fixture for developers. Consistently ranked the ‘most loved’ language in Stack Overflow surveys, as developers seek relentless improvements to performance alongside watertight reliability and security, Rust will remain an important language in a fast-changing development world. Search Packt's extensive selection of Go eBooks and videos - $5 throughout December and into the new year. Visit the Packt store. Learn Rust with Rust Programming Cookbook. WebAssembly It’s impossible to talk about web and application development without mentioning WebAssembly. Arguably the full implications of WebAssembly are yet to be realised (indeed, at ReactConf 2019, Richard Feldman suggested that it was unlikely to initiate a wholesale transformation of the web - that, he believes, will take a few more years), but 2019 has been a year when it has properly started to make many developers sit up and take notice. But why is WebAssembly so exciting? Essentially, it allows you to run code on the web using multiple languages at a speed that’s almost akin to native applications. Indeed, WebAssembly is making languages like Rust more attractive to web developers. If WebAssembly is a bridge between Rust and JavaScript, Rust immediately becomes more attractive to developers who previously would have paid very little attention to it. If 2019 was the year more developers decided to take note of WebAssembly, 2020 will be the year when we start to see increased adoption. Learn WebAssembly is $5 throughout this year's $5 campaign. Get it here. State management: Redux, Flux, Vuex… For many years, MVC (Model-View-Controller) was the dominant model for managing application state. However, as applications have grown in complexity, it has become more and more difficult for us to establish a ‘single source of truth’ inside our apps.That can impact performance and can also make them harder to maintain on the development side. To tackle this, we’ve started to see a number of different patterns and frameworks emerging to help us manage application state. The growth of React has been instrumental here - as a very lightweight library it gives developers the freedom to manage application state however they choose - and it’s worth noting that Flux architecture was developed by Facebook to complement the library. Watch: Why do React developers love Redux for state management? https://www.youtube.com/watch?v=7YzgZA_hA48&feature=emb_title Following Flux we’ve also had Redux and Vuex - all of them, each with subtly different approaches, have become an essential aspect of modern web and app development. And while they might not have first emerged in 2019, it feels as though the state management discourse has hit the heights that it previously has not. If you haven’t yet had time to dive into this topic, it's well worth making sure you commit to it in 2020. Learning React with Redux and Flux [Video] is $5 - purchase it here on the Packt store. Learn Vuex with Vuex Quick Start Guide. Functional programming Functional programming is on the rise. This doesn’t however mean that purely functional languages like Haskell and Lisp are dominating the programming language landscape - in fact, it’s been said that JavaScript is now the language used for functional programming (even though it isn’t a functional language). Functional programming is popular because it can help minimize complexity and make it easier to test and reuse code. When you’re dealing with a dense codebase that grows and grows as your application scales, this is immensely valuable. It’s also worth placing functional programming in the context of managing application state. Insofar as functional programming allows you to be specific in determining how different parts of a component should interact with one another - the function is a theoretical abstraction that makes it easier to get to grips with managing the state of a complex and dynamic application. Get to grips with functional programming and discover how to leverage its power. Read Mastering Functional Programming. The new JavaScript framework boom I’m not sure whether JavaScript fatigue is over. On the one hand the space has coalesced around a handful of core tools and frameworks - React, GraphQL, Node.js, among a couple of others - but on the other hand, the last year (and a bit) have been characterized by many other small projects developed to support these core tools. So, while it’s maybe a little bit easier to parse the JavaScript ecosystem at pretty high level of abstraction than it was in the past, at a deeper level you have a range of tools that are designed for very specific purposes or to be used alongside some of those frameworks and tools just mentioned. Tools ranging from Koa.js (for Node), to Polymer, Nuxt, Next, Gatsby, Hugo, Vuelidate (to name just a random assortment) are all vying for developer mindshare. You could say that many of these tools are ‘second-order’ frameworks and libraries - they don’t fundamentally change the way you think about development but instead make it easier to do specific things. It’s for this reason that I’m reluctant to suggest that JavaScript fatigue will return to its former glory - this new JavaScript framework boom is very much geared towards productivity and immediate gains rather than overhauling the way you build applications because of some principled belief in the ‘right’ or ‘best’ way to do things. Learn Nuxt: pick up Build a News Feed with Nuxt 2 and Firestore [Video] for $5 before the end of the year. Get to grips with Next.js with Next.js Quick Start Guide. Learn Koa with Hands-on Server-Side Development with Koa.js [Video] Learn Gatsby with GatsbyJS: Build a PWA Blog with GraphQL, React, and WordPress [Video] GraphQL Much of this decade has been dominated by REST when it comes to APIs. But just as the so called ‘API economy’ has gone into overdrive, GraphQL has come on the scene. Adoption has been rapid, with many developers turning to it because it allows them to handle more complex and sophisticated requests at scale without writing long and confusing lines of code. This isn’t to say, of course, that GraphQL has all but killed REST. Instead, it’s more the case that GraphQL has been found to be a better tool for managing APIs in specific domains than REST. If you’re dealing with APIs that are complex in terms of the number of entities and their relationships between one another, then GraphQL can prove immensely useful. Find out how to put GraphQL to use. Pick up GraphQL Projects for $5 for the rest of December and into January. React Hooks (and Vue Hooks) Launched with React 16.8, React Hooks “let you use state and other React features without writing a class” (that’s from the project’s site). That’s a good thing because building components with a class can sometimes be somewhat inelegant. For a better explanation of the ‘point’ of React Hooks you could do a lot worse than this article. Vue Hooks is part of Vue 3.0 - this won’t be officially released until early next year. But the fact that both leading front end frameworks are taking similar approaches to improve the developer experience demonstrates that they’re responding to a need for more flexibility and control over large projects. That means 2019 has been the year that both tools have hit maturity in the web development space. Learn how React Hooks work with Packt's new React Hooks video. Conclusion The web and app development world is becoming difficult to parse. A few years ago discussion and debate really centered on frameworks; today it feels like there are many other elements to consider. Part of this is symptomatic of a slow DevOps revolution - the gap between build and production is smaller than it has ever been, and developers now have a significant degree of accountability and responsibility for things that were the preserve of different breeds of engineers and IT professionals. Perhaps that story is a bit of a simplification - however, it’s hard to dispute that the web and app developer skill set is incredibly diverse. That means there are an array of options and opportunities out there for those developers looking to push their careers forward, but it also means that they’ll need to do some serious decision making about what they want to do and how they want to do it.
Read more
  • 0
  • 0
  • 28292
article-image-are-you-looking-at-transitioning-from-being-a-developer-to-manager-here-are-some-leadership-roles-to-consider
Packt Editorial Staff
04 Jul 2019
6 min read
Save for later

Are you looking at transitioning from being a developer to manager? Here are some leadership roles to consider

Packt Editorial Staff
04 Jul 2019
6 min read
What does the phrase "a manager" really mean anyway? This phrase means different things to different people and is often overused for the position which nearly matches an analyst-level profile! This term, although common, is worth defining what it really means, especially in the context of software development. This article is an excerpt from the book The Successful Software Manager written by an internationally experienced IT manager, Herman Fung. This book is a comprehensive and practical guide to managing software developers, software customers, and explores the process of deciding what software needs to be built, not how to build it. In this article, we’ll look into aspects you must be aware of before making the move to become a manager in the software industry. A simple distinction I once used to illustrate the difference between an analyst and a manager is that while an analyst identifies, collects, and analyzes information, a manager uses this analysis and makes decisions, or more accurately, is responsible and accountable for the decisions they make. The structure of software companies is now enormously diverse and varies a lot from one to another, which has an obvious impact on how the manager’s role and their responsibilities are defined, which will be unique to each company. Even within the same company, it's subject to change from time to time, as the company itself changes. Broadly speaking, a manager within software development can be classified into three categories, as we will now discuss: Team Leader/Manager This role is often a lead developer who also doubles up as the team spokesperson and single point of contact. They'll typically be the most senior and knowledgeable member of a small group of developers, who work on the same project, product, and technology. There is often a direct link between each developer in the team and their code, which means the team manager has a direct responsibility to ensure the product as a whole works. Usually, the team manager is also asked to fulfill the people management duties, such as performance reviews and appraisals, and day-to-day HR responsibilities. Development/Delivery Manager This person could be either a techie or a non-techie. They will have a good understanding of the requirements, design, code, and end product. They will manage running workshops and huddles to facilitate better overall team working and delivery. This role may include setting up visual aids, such as team/project charts or boards. In a matrix management model, where developers and other experts are temporarily asked to work in project teams, the development manager will not be responsible for HR and people management duties. Project Manager This person is most probably a non-techie, but there are exceptions, and this could be a distinct advantage on certain projects. Most importantly, a project manager will be process-focused and output-driven and will focus on distributing tasks to individuals. They are not expected to jump in to solve technical problems, but they are responsible for ensuring that the proper resources are available, while managing expectations. Specifically, they take part in managing the project budget, timeline, and risks. They should also be aware of the political landscape and management agenda within the organization to be able to navigate through them. The project manager ensures the project follows the required methodology or process framework mandated by the Project Management Office (PMO). They will not have people-management responsibilities for project team members. Agile practitioner As with all roles in today's world of tech, these categories will vary and overlap. They can even be held by the same person, which is becoming an increasingly common trait. They are also constantly evolving, which exemplifies the need to learn and grow continually, regardless of your role or position. If you are a true Agile practitioner, you may have issues in choosing these generalized categories, (Team Leader, Development Manager and Project Manager)  and you'd be right to do so! These categories are most applicable to an organization that practises the traditional Waterfall model. Without diving into the everlasting Waterfall vs Agile debate, let's just say that these are the categories that transcend any methodologies. Even if they're not referred to by these names, they are the roles that need to be performed, to varying degrees, at various times. For completeness, it is worth noting one role specific to Agile, that is being a scrum master. Scrum master A scrum master is a role often compared – rightly or wrongly – with that of the project manager. The key difference is that their focus is on facilitation and coaching, instead of organizing and control. This difference is as much of a mindset as it is a strict practice, and is often referred to as being attributes of Servant Leadership. I believe a good scrum master will show traits of a good project manager at various times, and vice versa. This is especially true in ensuring that there is clear communication at all times and the team stays focused on delivering together. Yet, as we look back at all these roles, it's worth remembering that with the advent of new disciplines such as big data, blockchain, artificial intelligence, and machine learning, there are new categories and opportunities to move from a developer role into a management position, for example, as an algorithm manager or data manager. Transitioning, growing, progressing, or simply changing from a developer to a manager is a wonderfully rewarding journey that is unique to everyone. After clarifying what being a “modern manager" really means, and the broad categories applicable in software development (Team / Development / Project / Agile), the overarching and often key consideration for developers is whether it means they will be managing people and writing less code. In this article, we looked into different leadership roles that are available for developers for their career progression plan. Develop crucial skills to enhance your performance and advance your career with The Successful Software Manager written by Herman Fung. “Developers don’t belong on a pedestal, they’re doing a job like everyone else” – April Wensel on toxic tech culture and Compassionate Coding [Interview] Curl’s lead developer announces Google’s “plan to reimplement curl in Libcrurl” ‘I code in my dreams too’, say developers in Jetbrains State of Developer Ecosystem 2019 Survey
Read more
  • 0
  • 0
  • 27962

article-image-introducing-object-oriented-programmng-typescript
Packt
17 Feb 2016
13 min read
Save for later

Introducing Object Oriented Programmng with TypeScript

Packt
17 Feb 2016
13 min read
In this article, we will see how to group our functions in reusable components, such as classes or modules. This article will cover the following topics: SOLID principles Classes Association, aggregation, and composition Inheritance (For more resources related to this topic, see here.) SOLID principles In the early days of software development, developers used to write code with procedural programming languages. In procedural programming languages, the programs follow a top-to-bottom approach and the logic is wrapped with functions. New styles of computer programming, such as modular programming or structured programming, emerged when developers realized that procedural computer programs could not provide them with the desired level of abstraction, maintainability, and reusability. The development community created a series of recommended practices and design patterns to improve the level of abstraction and reusability of procedural programming languages, but some of these guidelines required a certain level of expertise. In order to facilitate adherence to these guidelines, a new style of computer programming known as object-oriented programming (OOP) was created. Developers quickly noticed some common OOP mistakes and came up with five rules that every OOP developer should follow to create a system that is easy to maintain and extend over time. These five rules are known as the SOLID principles. SOLID is an acronym introduced by Michael Feathers, which stands for the following principles: Single responsibility principle (SRP): This principle states that a software component (function, class, or module) should focus on one unique task (have only one responsibility). Open/closed principle (OCP): This principle states that software entities should be designed with application growth (new code) in mind (should be open to extension), but the application growth should require the fewer possible number of changes to the existing code (be closed for modification). Liskov substitution principle (LSP): This principle states that we should be able to replace a class in a program with another class as long as both classes implement the same interface. After replacing the class, no other changes should be required, and the program should continue to work as it did originally. Interface segregation principle (ISP): This principle states that we should split interfaces that are very large (general-purpose interfaces) into smaller and more specific ones (many client-specific interfaces) so that clients will only need to know about the methods that are of interest to them. Dependency inversion principle (DIP): This principle states that entities should depend on abstractions (interfaces) as opposed to depending on concretion (classes). In this article, we will see how to write TypeScript code that adheres to these principles so that our applications are easy to maintain and extend over time. Classes In this section, we will look at some details and OOP concepts through examples. Let's start by declaring a simple class: class Person { public name : string; public surname : string; public email : string; constructor(name : string, surname : string, email : string){ this.email = email; this.name = name; this.surname = surname; } greet() { alert("Hi!"); } } var me : Person = new Person("Remo", "Jansen", "remo.jansen@wolksoftware.com"); We use classes to represent the type of an object or entity. A class is composed of a name, attributes, and methods. The class in the preceding example is named Person and contains three attributes or properties (name, surname, and email) and two methods (constructor and greet). Class attributes are used to describe the object's characteristics, while class methods are used to describe its behavior. A constructor is a special method used by the new keyword to create instances (also known as objects) of our class. We have declared a variable named me, which holds an instance of the Person class. The new keyword uses the Person class's constructor to return an object whose type is Person. A class should adhere to the single responsibility principle (SRP). The Person class in the preceding example represents a person, including all their characteristics (attributes) and behaviors (methods). Now let's add some email as validation logic: class Person { public name : string; public surname : string; public email : string; constructor(name : string, surname : string, email : string) { this.surname = surname; this.name = name; if(this.validateEmail(email)) { this.email = email; } else { throw new Error("Invalid email!"); } } validateEmail() { var re = /S+@S+.S+/; return re.test(this.email); } greet() { alert("Hi! I'm " + this.name + ". You can reach me at " + this.email); } } When an object doesn't follow the SRP and it knows too much (has too many properties) or does too much (has too many methods), we say that the object is a God object. The Person class here is a God object because we have added a method named validateEmail that is not really related to the Person class's behavior. Deciding which attributes and methods should or should not be part of a class is a relatively subjective decision. If we spend some time analyzing our options, we should be able to find a way to improve the design of our classes. We can refactor the Person class by declaring an Email class, responsible for e-mail validation, and use it as an attribute in the Person class: class Email { public email : string; constructor(email : string){ if(this.validateEmail(email)) { this.email = email; } else { throw new Error("Invalid email!"); } } validateEmail(email : string) { var re = /S+@S+.S+/; return re.test(email); } } Now that we have an Email class, we can remove the responsibility of validating the emails from the Person class and update its email attribute to use the type Email instead of string: class Person { public name : string; public surname : string; public email : Email; constructor(name : string, surname : string, email : Email){ this.email = email; this.name = name; this.surname = surname; } greet() { alert("Hi!"); } } Making sure that a class has a single responsibility makes it easier to see what it does and how we can extend/improve it. We can further improve our Person and Email classes by increasing the level of abstraction of our classes. For example, when we use the Email class, we don't really need to be aware of the existence of the validateEmail method; so this method could be invisible from outside the Email class. As a result, the Email class would be much simpler to understand. When we increase the level of abstraction of an object, we can say that we are encapsulating the object's data and behavior. Encapsulation is also known as information hiding. For example, the Email class allows us to use emails without having to worry about e-mail validation because the class will deal with it for us. We can make this clearer by using access modifiers (public or private) to flag as private all the class attributes and methods that we want to abstract from the use of the Email class: class Email { private email : string; constructor(email : string){ if(this.validateEmail(email)) { this.email = email; } else { throw new Error("Invalid email!"); } } private validateEmail(email : string) { var re = /S+@S+.S+/; return re.test(email); } get():string { return this.email; } } We can then simply use the Email class without needing to explicitly perform any kind of validation: var email = new Email("remo.jansen@wolksoftware.com"); Interfaces The feature that we will miss the most when developing large-scale web applications with JavaScript is probably interfaces. We have seen that following the SOLID principles can help us to improve the quality of our code, and writing good code is a must when working on a large project. The problem is that if we attempt to follow the SOLID principles with JavaScript, we will soon realize that without interfaces, we will never be able to write SOLID OOP code. Fortunately for us, TypeScript features interfaces. Traditionally, in OOP, we say that a class can extend another class and implement one or more interfaces. An interface can implement one or more interfaces and cannot extend another class or interface. Wikipedia's definition of interfaces in OOP is as follows: In object-oriented languages, the term interface is often used to define an abstract type that contains no data or code, but defines behaviors as method signatures. Implementing an interface can be understood as signing a contract. The interface is a contract, and when we sign it (implement it), we must follow its rules. The interface rules are the signatures of the methods and properties, and we must implement them. We will see many examples of interfaces later in this article. In TypeScript, interfaces don't strictly follow this definition. The two main differences are that in TypeScript: An interface can extend another interface or class An interface can define data and behaviors as opposed to only behaviors Association, aggregation, and composition In OOP, classes can have some kind of relationship with each other. Now, we will take a look at the three different types of relationships between classes. Association We call association those relationships whose objects have an independent lifecycle and where there is no ownership between the objects. Let's take an example of a teacher and student. Multiple students can associate with a single teacher, and a single student can associate with multiple teachers, but both have their own lifecycles (both can be create and delete independently); so when a teacher leaves the school, we don't need to delete any students, and when a student leaves the school, we don't need to delete any teachers. Aggregation We call aggregation those relationships whose objects have an independent lifecycle, but there is ownership, and child objects cannot belong to another parent object. Let's take an example of a cell phone and a cell phone battery. A single battery can belong to a phone, but if the phone stops working, and we delete it from our database, the phone battery will not be deleted because it may still be functional. So in aggregation, while there is ownership, objects have their own lifecycle. Composition We use the term composition to refer to relationships whose objects don't have an independent lifecycle, and if the parent object is deleted, all child objects will also be deleted. Let's take an example of the relationship between questions and answers. Single questions can have multiple answers, and answers cannot belong to multiple questions. If we delete questions, answers will automatically be deleted. Objects with a dependent life cycle (answers, in the example) are known as weak entities. Sometimes, it can be a complicated process to decide if we should use association, aggregation, or composition. This difficulty is caused in part because aggregation and composition are subsets of association, meaning they are specific cases of association. Inheritance One of the most fundamental object-oriented programming features is its capability to extend existing classes. This feature is known as inheritance and allows us to create a new class (child class) that inherits all the properties and methods from an existing class (parent class). Child classes can include additional properties and methods not available in the parent class. Let's return to our previously declared Person class. We will use the Person class as the parent class of a child class named Teacher: class Person { public name : string; public surname : string; public email : Email; constructor(name : string, surname : string, email : Email){ this.name = name; this.surname = surname; this.email = email; } greet() { alert("Hi!"); } } This example is included in the companion source code. Once we have a parent class in place, we can extend it by using the reserved keyword extends. In the following example, we declare a class called Teacher, which extends the previously defined Person class. This means that Teacher will inherit all the attributes and methods from its parent class: class Teacher extends Person { class Teacher extends Person { teach() { alert("Welcome to class!"); } } Note that we have also added a new method named teach to the class Teacher. If we create instances of the Person and Teacher classes, we will be able to see that both instances share the same attributes and methods with the exception of the teach method, which is only available for the instance of the Teacher class: var teacher = new Teacher("remo", "jansen", new Email("remo.jansen@wolksoftware.com")); var me = new Person("remo", "jansen", new Email("remo.jansen@wolksoftware.com")); me.greet(); teacher.greet(); me.teach(); // Error : Property 'teach' does not exist on type 'Person' teacher.teach(); Sometimes, we will need a child class to provide a specific implementation of a method that is already provided by its parent class. We can use the reserved keyword super for this purpose. Imagine that we want to add a new attribute to list the teacher's subjects, and we want to be able to initialize this attribute through the teacher constructor. We will use the super keyword to explicitly reference the parent class constructor inside the child class constructor. We can also use the super keyword when we want to extend an existing method, such as greet. This OOP language feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by its parent classes is known as method overriding. class Teacher extends Person { public subjects : string[]; constructor(name : string, surname : string, email : Email, subjects : string[]){ super(name, surname, email); this.subjects = subjects; } greet() { super.greet(); alert("I teach " + this.subjects); } teach() { alert("Welcome to Maths class!"); } } var teacher = new Teacher("remo", "jansen", new Email("remo.jansen@wolksoftware.com"), ["math", "physics"]); We can declare a new class that inherits from a class that is already inheriting from another. In the following code snippet, we declare a class called SchoolPrincipal that extends the Teacher class, which extends the Person class: class SchoolPrincipal extends Teacher { manageTeachers() { alert("We need to help students to get better results!"); } } If we create an instance of the SchoolPrincipal class, we will be able to access all the properties and methods from its parent classes (SchoolPrincipal, Teacher, and Person): var principal = new SchoolPrincipal("remo", "jansen", new Email("remo.jansen@wolksoftware.com"), ["math", "physics"]); principal.greet(); principal.teach(); principal.manageTeachers(); It is not recommended to have too many levels in the inheritance tree. A class situated too deeply in the inheritance tree will be relatively complex to develop, test, and maintain. Unfortunately, we don't have a specific rule that we can follow when we are unsure whether we should increase the depth of the inheritance tree (DIT). We should use inheritance in such a way that it helps us to reduce the complexity of our application and not the opposite. We should try to keep the DIT between 0 and 4 because a value greater than 4 would compromise encapsulation and increase complexity. Summary In this article, we saw how to work with classes, and interfaces in depth. We were able to reduce the complexity of our application by using techniques such as encapsulation and inheritance. To learn more about TypeScript, the following books published by Packt Publishing (https://www.packtpub.com/) are recommended: TypeScript Essentials (https://www.packtpub.com/web-development/typescript-essentials) Mastering TypeScript(https://www.packtpub.com/web-development/mastering-typescript) Resources for Article: Further resources on this subject: Writing SOLID JavaScript code with TypeScript [article] Introduction to TypeScript [article] An Introduction to Mastering JavaScript Promises and Its Implementation in Angular.js [article]
Read more
  • 0
  • 0
  • 27935

article-image-build-user-directory-app-with-angular-tutorial
Sugandha Lahoti
05 Jul 2018
12 min read
Save for later

Build user directory app with Angular [Tutorial]

Sugandha Lahoti
05 Jul 2018
12 min read
In this article, we will learn how to build a user directory with Angular. The app will have a REST API which will be created during the course of this example. In this simple example, we'll be creating a users app which will be a table with a list of users together with their email addresses and phone numbers. Each user in the table will have an active state whose value is a boolean. We will be able to change the active state of a particular user from false to true and vice versa. The app will give us the ability to add new users and also delete users from the table. diskDB will be used as the database for this example. We will have an Angular service which contains methods that will be responsible for communicating with the REST end points. These methods will be responsible for making get, post, put, and delete requests to the REST API. The first method in the service will be responsible for making a get request to the API. This will enable us to retrieve all the users from the back end. Next, we will have another method that makes a post request to the API. This will enable us to add new users to the array of existing users. The next method we shall have will be responsible for making a delete request to the API in order to enable the deletion of a user. Finally, we shall have a method that makes a put request to the API. This will be the method that gives us the ability to edit/modify the state of a user. In order to make these requests to the REST API, we will have to make use of the HttpModule. The aim of this section is to solidify your knowledge of HTTP. As a JavaScript and, in fact, an Angular developer, you are bound to make interactions with APIs and web servers almost all the time. So much data used by developers today is in form of APIs and in order to make interactions with these APIs, we need to constantly make use of HTTP requests. As a matter of fact, HTTP is the foundation of data communication for the web. This article is an excerpt from the book, TypeScript 2.x for Angular Developers, written by Chris Nwamba. Create a new Angular app To start a new Angular app, run the following command: ng new user This creates the Angular 2 user app. Install the following dependencies: Express Body-parser Cors npm install express body-parser cors --save Create a Node server Create a file called server.js at the root of the project directory. This will be our node server. Populate server.js with the following block of code: // Require dependencies const express = require('express'); const path = require('path'); const http = require('http'); const cors = require('cors'); const bodyParser = require('body-parser'); // Get our API routes const route = require('./route'); const app = express(); app.use(bodyParser.json()); app.use(bodyParser.urlencoded({ extended: false })); // Use CORS app.use(cors()); // Set our api routes app.use('/api', route); /** * Get port from environment. */ const port = process.env.PORT || '3000'; /** * Create HTTP server. */ const server = http.createServer(app); //Listen on provided port app.listen(port); console.log('server is listening'); What's going on here is pretty simple: We required and made use of the dependencies We defined and set the API routes We set a port for our server to listen to The API routes are being required from ./route, but this path does not exist yet. Let's quickly create it. At the root of the project directory, create a file called route.js. This is where the API routes will be made. We need to have a form of a database from where we can fetch, post, delete, and modify data. Just as in the previous example, we will make use of diskdb. The route will pretty much have the same pattern as in the first example. Install diskDB Run the following in the project folder to install diskdb: npm install diskdb Create a users.json file at the root of the project directory to serve as our database collection where we have our users' details. Populate users.json with the following: [{"name": "Marcel", "email": "test1@gmail.com", "phone_number":"08012345", "isOnline":false}] Now, update route.js. route.js const express = require('express'); const router = express.Router(); const db = require('diskdb'); db.connect(__dirname, ['users']); //save router.post('/users', function(req, res, next) { var user = req.body; if (!user.name && !(user.email + '') && !(user.phone_number + '') && !(user.isActive + '')) { res.status(400); res.json({ error: 'error' }); } else { console.log('ds'); db.users.save(todo); res.json(todo); } }); //get router.get('/users', function(req, res, next) { var foundUsers = db.users.find(); console.log(foundUsers); res.json(foundUsers); foundUsers = db.users.find(); console.log(foundUsers); }); //updateUsers router.put('/user/:id', function(req, res, next) { var updUser = req.body; console.log(updUser, req.params.id) db.users.update({_id: req.params.id}, updUser); res.json({ msg: req.params.id + ' updated' }); }); //delete router.delete('/user/:id', function(req, res, next) { console.log(req.params); db.users.remove({ _id: req.params.id }); res.json({ msg: req.params.id + ' deleted' }); }); module.exports = router; We've created a REST API with the API routes, using diskDB as the database. Start the server using the following command: node server.js The server is running and it is listening to the assigned port. Now, open up the browser and go to http://localhost:3000/api/users. Here, we can see the data that we imputed to the users.json file. This shows that our routes are working and we are getting data from the database. Create a new component Run the following command to create a new component: ng g component user This creates user.component.ts, user.component.html, user.component.css and user.component.spec.ts files. User.component.spec.ts is used for testing, therefore we will not be making use of it in this chapter. The newly created component is automatically imported into app.module.ts. We have to tell the root component about the user component. We'll do this by importing the selector from user.component.ts into the root template component (app.component.html): <div style="text-align:center"> <app-user></app-user> </div> Create a service The next step is to create a service that interacts with the API that we created earlier: ng generate service user This creates a user service called the user.service.ts. Next, import UserService class into app.module.ts and include it to the providers array: Import rxjs/add/operator/map in the imports section. import { Injectable } from '@angular/core'; import { Http, Headers } from '@angular/http'; import 'rxjs/add/operator/map'; Within the UserService class, define a constructor and pass in the angular 2 HTTP service. import { Injectable } from '@angular/core'; import { Http, Headers } from '@angular/http'; import 'rxjs/add/operator/map'; @Injectable() export class UserService { constructor(private http: Http) {} } Within the service class, write a method that makes a get request to fetch all users and their details from the API: getUser() { return this.http .get('http://localhost:3000/api/users') .map(res => res.json()); } Write the method that makes a post request and creates a new todo: addUser(newUser) { var headers = new Headers(); headers.append('Content-Type', 'application/json'); return this.http .post('http://localhost:3000/api/user', JSON.stringify(newUser), { headers: headers }) .map(res => res.json()); } Write another method that makes a delete request. This will enable us to delete a user from the collection of users: deleteUser(id) { return this.http .delete('http://localhost:3000/api/user/' + id) .map(res => res.json()); } Finally, write a method that makes a put request. This method will enable us to modify the state of a user: updateUser(user) { var headers = new Headers(); headers.append('Content-Type', 'application/json'); return this.http .put('http://localhost:3000/api/user/' + user._id, JSON.stringify(user), { headers: headers }) .map(res => res.json()); } Update app.module.ts to import HttpModule and FormsModule and include them to the imports array: import { HttpModule } from '@angular/http'; import { FormsModule } from '@angular/forms'; ..... imports: [ ..... HttpModule, FormsModule ] The next thing to do is to teach the user component to use the service: Import UserService in user.component.ts. import {UserService} from '../user.service'; Next, include the service class in the user component constructor. constructor(private userService: UserService) { }. Just below the exported UserComponent class, add the following properties and define their data types: users: any = []; user: any; name: any; email: any; phone_number: any; isOnline: boolean; Now, we can make use of the methods from the user service in the user component. Updating user.component.ts Within the ngOnInit method, make use of the user service to get all users from the API: ngOnInit() { this.userService.getUser().subscribe(users => { console.log(users); this.users = users; }); } Below the ngOnInit method, write a method that makes use of the post method in the user service to add new users: addUser(event) { event.preventDefault(); var newUser = { name: this.name, email: this.email, phone_number: this.phone_number, isOnline: false }; this.userService.addUser(newUser).subscribe(user => { this.users.push(user); this.name = ''; this.email = ''; this.phone_number = ''; }); } Let's make use of the delete method from the user service to enable us to delete users: deleteUser(id) { var users = this.users; this.userService.deleteUser(id).subscribe(data => { console.log(id); const index = this.users.findIndex(user => user._id == id); users.splice(index, 1) }); } Finally, we'll make use of user service to make put requests to the API: updateUser(user) { var _user = { _id: user._id, name: user.name, email: user.email, phone_number: user.phone_number, isActive: !user.isActive }; this.userService.updateUser(_user).subscribe(data => { const index = this.users.findIndex(user => user._id == _user._id) this.users[index] = _user; }); } We have all our communication with the API, service, and component. We have to update user.component.html in order to illustrate all that we have done in the browser. We'll be making use of bootstrap for styling. So, we have to import the bootstrap CDN in index.html: <!doctype html> <html lang="en"> <head> //bootstrap CDN <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/css/bootstrap.min.css" integrity="sha384-/Y6pD6FV/Vv2HJnA6t+vslU6fwYXjCFtcEpHbNJ0lyAFsXTsjBbfaDjzALeQsN6M" crossorigin="anonymous"> <meta charset="utf-8"> <title>User</title> <base href="/"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="icon" type="image/x-icon" href="favicon.ico"> </head> <body> <app-root></app-root> </body> </html> Updating user.component.html Here is the component template for the user component: <form class="form-inline" (submit) = "addUser($event)"> <div class="form-row"> <div class="col"> <input type="text" class="form-control" [(ngModel)] ="name" name="name"> </div> <div class="col"> <input type="text" class="form-control" [(ngModel)] ="email" name="email"> </div> <div class="col"> <input type="text" class="form-control" [(ngModel)] ="phone_number" name="phone_number"> </div> </div> <br> <button class="btn btn-primary" type="submit" (click) = "addUser($event)"><h4>Add User</h4></button> </form> <table class="table table-striped" > <thead> <tr> <th>Name</th> <th>Email</th> <th>Phone_Number</th> <th>Active</th> </tr> </thead> <tbody *ngFor="let user of users"> <tr> <td>{{user.name}}</td> <td>{{user.email}}</td> <td>{{user.phone_number}}</td> <td>{{user.isActive}}</td> <td><input type="submit" class="btn btn-warning" value="Update Status" (click)="updateUser(user)" [ngStyle]="{ 'text-decoration-color:': user.isActive ? 'blue' : ''}"></td> <td><button (click) ="deleteUser(user._id)" class="btn btn-danger">Delete</button></td> </tr> </tbody> </table> A lot is going on in the preceding code, let's drill down into the code block: We have a form which takes in three inputs and a submit button which triggers the addUser() method when clicked There is a delete button which triggers the delete method when it is clicked There is also an update status input element that triggers the updateUser() method when clicked We created a table in which our users' details will be displayed utilizing Angular's *ngFor directive and Angular's interpolation binding syntax, {{}} Some extra styling will be added to the project. Go to user.component.css and add the following: form{ margin-top: 20px; margin-left: 20%; size: 50px; } table{ margin-top:20px; height: 50%; width: 50%; margin-left: 20%; } button{ margin-left: 20px; } Running the app Open up two command line interfaces/terminals. In both of them, navigate to the project directory. Run node server.js to start the server in one. Run ng serve in the other to serve the Angular 2 app. Open up the browser and go to localhost:4200. In this simple users app, we can perform all CRUD operations. We can create new users, get users, delete users, and update the state of users. By default, a newly added user's active state is false. That can be changed by clicking on the change state button. We created an Angular app from scratch for building a user directory. To know more, on how to write unit tests and perform debugging in Angular, check our book TypeScript 2.x for Angular Developers. Everything new in Angular 6: Angular Elements, CLI commands and more Why switch to Angular for web development – Interview with Minko Gechev Building Components Using Angular
Read more
  • 0
  • 0
  • 27551
article-image-django-12-e-commerce-generating-pdf-reports-python-using-reportlab
Packt
19 May 2010
6 min read
Save for later

Django 1.2 E-commerce: Generating PDF Reports from Python using ReportLab

Packt
19 May 2010
6 min read
(Read more interesting articles on Django 1.2 e-commerce here.) ReportLab is an open source project available at http://www.reportlab.org. It is a very mature tool and includes binaries for several platforms as well as source code. It also contains extension code written in C, so it's relatively fast. It is possible for ReportLab to insert PNG and GIF image files into PDF output, but in order to do so we must have the Python Imaging Library (PIL) installed. We will not require this functionality in this article, but if you need it for a future project, see the PIL documentation for setup instructions. The starting point in the ReportLab API is drawing to canvas objects. Canvas objects are exactly what they sound like: blank slates that are accessible using various drawing commands that paint graphics, images, and words. This is sometimes referred to as a low-level drawing interface because generating output is often tedious. If we were creating anything beyond basic reporting output, we would likely want to build our own framework or set of routines on top of these low-level drawing functions. Drawing to a canvas object is a lot like working with the old LOGO programming language. It has a cursor that we can move around and draw points from one position to another. Mostly, these drawing functions work with two-dimensional (x, y) coordinates to specify starting and ending positions. This two-dimensional coordinate system in ReportLab is different from the typical system used in many graphics applications. It is the standard Cartesian plane, whose origin (x and y coordinates both equal to 0) begins in the lower-left hand corner instead of the typical upper-right hand corner. This coordinate system is used in most mathematics courses, but computer graphics tools, including HTML and CSS layouts, typically use a different coordinate system, where the origin is in the upper-left. ReportLab's low-level interface also includes functions to render text to a canvas. This includes support for different fonts and colors. The text routines we will see, however, may surprise you with their relative crudeness. For example, word-wrapping and other typesetting operations are not automatically implemented. ReportLab includes a more advanced set of routines called PLATYPUS, which can handle page layout and typography. Most low-level drawing tools do not include this functionality by default (hence the name "low-level"). This low-level drawing interface is called pdfgen and is located in the reportlab.pdfgen module. The ReportLab User's Guide includes extensive information about its use and a separate API reference is also available. The ReportLab canvas object is designed to work directly on files. We can create a new canvas from an existing open file object or by simply passing in a file name. The canvas constructor takes as its first argument the filename or an open file object. For example: from reportlab.pdfgen import canvasc = canvas.Canvas("myreport.pdf") Once we obtained a canvas object, we can access the drawing routines as methods on the instance. To draw some text, we can call the drawString method: c.drawString(250, 250, "Ecommerce in Django") This command moves the cursor to coordinates (250, 250) and draws the string "Ecommerce in Django". In addition to drawing strings, the canvas object includes methods to create rectangles, lines, circles, and other shapes. Because PDF was originally designed for printed output, consideration needs to be made for page size. Page size refers to the size of the PDF document if it were to be output to paper. By default, ReportLab uses the A4 standard, but it supports most popular page sizes, including letter, the typical size used in the US. Various page sizes are defined in reportlab.lib.pagesizes. To change this setting for our canvas object, we pass in the pagesize keyword argument to the canvas constructor. from reportlab.lib.pagesizes import letterc = canvas.Canvas('myreport.pdf', pagesize=letter) Because the units passed to our drawing functions, like rect, will vary according to what page size we're using, we can use ReportLab's units module to precisely control the output of our drawing methods. Units are stored in reportlab.lib.units. We can use the inch unit to draw shapes of a specific size: from reportlab.lib.units import inchc.rect(1*inch, 1*inch, 0.5*inch, 1*inch) The above code fragment draws a rectangle, starting one inch from the bottom and one inch from the left of the page, with sides that are length 0.5 inches and one inch, as shown in the following screenshot: Not particularly impressive is it? As you can see, using the low-level library routines require a lot of work to generate very little results. Using these routines directly is tedious. They are certainly useful and required for some tasks. They can also act as building blocks for your own, more sophisticated routines. Building our own library of routines would still be a lot of work. Fortunately ReportLab includes a built-in high-level interface for creating sophisticated report documents quickly. These routines are called PLATYPUS; we mentioned them earlier when talking about typesetting text, but they can do much more. PLATYPUS is an acronym for "Page Layout and Typography Using Scripts". The PLATYPUS code is located in the reportlab.platypus module. It allows us to create some very sophisticated documents suitable for reporting systems in an e-commerce application. Using PLATYPUS means we don't have to worry about things such as page margins, font sizes, and word-wrapping. The bulk of this heavy lifting is taken care of by the high-level routines. We can, if we wish, access the low-level canvas routines. Instead we can build a document from a template object, defining and adding the elements (such as paragraphs, tables, spacers, and images) to the document container. The following example generates a PDF report listing all the products in our Product inventory: from reportlab.platypus.doctemplate import SimpleDocTemplatefrom reportlab.platypus import Paragraph, Spacerfrom reportlab.lib import sytlesdoc = SimpleDocTemplate("products.pdf")Catalog = []header = Paragraph("Product Inventory", styles['Heading1']) Catalog.append(header)style = styles['Normal']for product in Product.objects.all(): for product in Product.objects.all(): p = Paragraph("%s" % product.name, style) Catalog.append(p) s = Spacer(1, 0.25*inch) Catalog.append(s)doc.build(Catalog) The previous code generates a PDF file called products.pdf that contains a header and a list of our product inventory. The output is displayed in the accompanying screenshot.
Read more
  • 0
  • 0
  • 26836

article-image-angular-cli-build-angular-components
Amarabha Banerjee
09 May 2018
13 min read
Save for later

Getting started with Angular CLI and build your first Angular Component

Amarabha Banerjee
09 May 2018
13 min read
When it comes to Angular development, there are some things that are good to know and some things that we need to know to embark on our great journey. One of the things that is good to know is semantic versioning. This is good to know because it is the way the Angular team has chosen to deal with changes. This will hopefully make it easier to find the right solutions to future app development challenges when you go to https://angular.io/ or Stack Overflow and other sites to search for solutions. In this tutorial, we will discuss Angular components and few practical examples to help you get real world understanding of Angular components. This article is an excerpt from the book Learning Angular Second edition, written by Christoffer Noring & Pablo Deeleman. Web components Web components is a concept that encompasses four technologies designed to be used together to build feature elements with a higher level of visual expressivity and reusability, thereby leading to a more modular, consistent, and maintainable web. These four technologies are as follows: Templates: These are pieces of HTML that structure the content we aim to render. Custom elements: These templates not only contain traditional HTML elements, but also the custom wrapper items that provide further presentation elements or API functionalities. Shadow DOM: This provides a sandbox to encapsulate the CSS layout rules and JavaScript behaviors of each custom element. HTML imports: HTML is no longer constrained to host HTML elements, but to other HTML documents as well. In theory, an Angular component is indeed a custom element that contains a template to host the HTML structure of its layout, the latter being governed by a scoped CSS style sheet encapsulated within a shadow DOM container. Let's try to rephrase this in plain English. Think of the range input control type in HTML5. It is a handy way to give our users a convenient input control for entering a value ranging between two predefined boundaries. If you have not used it before, insert the following piece of markup in a blank HTML template and load it in your browser: <input id="mySlider" type="range" min="0" max="100" step="10"> You will see a nice input control featuring a horizontal slider in your browser. Inspecting such control with the browser developer tools will unveil a concealed set of HTML tags that were not present at the time you edited your HTML template. There you have an example of shadow DOM in action, with an actual HTML template governed by its own encapsulated CSS with advanced dragging functionality. You will probably agree that it would be cool to do that yourself. Well, the good news is that Angular gives you the tool set required for delivering this very same functionality, to build our own custom elements (input controls, personalized tags, and self-contained widgets). We can feature the inner HTML markup of our choice and our very own style sheet that is not affected (nor is impacted) by the CSS of the page hosting our component. Why TypeScript over other syntaxes to code Angular apps? Angular applications can be coded in a wide variety of languages and syntaxes: ECMAScript 5, Dart, ECMAScript 6, TypeScript, or ECMAScript 7. TypeScript is a typed superset of ECMAScript 6 (also known as ECMAScript 2015) that compiles to plain JavaScript and is widely supported by modern OSes. It features a sound object-oriented design and supports annotations, decorators, and type checking. The reason why we picked (and obviously recommend) TypeScript as the syntax of choice for instructing how to develop Angular applications is based on the fact that Angular itself is written in this language. Being proficient in TypeScript will give the developer an enormous advantage when it comes to understanding the guts of the framework. On the other hand, it is worth remarking that TypeScript's support for annotations and type introspection turns out to be paramount when it comes to managing dependency injection and type binding between components with a minimum code footprint. Check out the book, Learning Angular 2nd edition, to learn how to do this. Ultimately, you can carry out your Angular projects in plain ECMAScript 6 syntax if that is your preference. Even the examples provided in this book can be easily ported to ES6 by removing type annotations and interfaces, or replacing the way dependency injection is handled in TypeScript with the most verbose ES6 way. For the sake of brevity, we will only cover examples written in TypeScript. We recommend its usage because of its higher expressivity thanks to type annotations, and its neat way of approaching dependency injection based on type introspection out of such type annotations. Setting up our workspace with Angular CLI There are different ways to get started, either using the Angular quickstart repository on the https://angular.io/ site, or installing the scaffolding tool Angular CLI, or, you could use Webpack to set up your project. It is worth pointing out that the standard way of creating a new Angular project is through using Angular CLI and scaffold your project. Systemjs, used by the quickstart repository, is something that used to be the default way of building Angular projects. It is now rapidly diminishing, but it is still a valid way of setting up an Angular project. Setting up a frontend project today is more cumbersome than ever. We used to just include the necessary script with our JavaScript code and a link tag for our CSS and img tag for our [SN1] assets and so on. Life used to be simple. Then frontend development became more ambitious and we started splitting up our code in modules, we started using preprocessors for both our code and CSS. All in all, our projects became more complicated and we started to rely on build systems such as Grunt, Gulp, Webpack, and so on. Most developers out there are not huge fans of configuration, they just want to focus on building apps. Modern browsers, however, do more to support the latest ECMAScript standard and some browsers have even started to support modules, which are resolved at runtime. This is far from being widely supported though. In the meantime, we still have to rely on tools for bundling and module support. Setting up a project with leading frameworks such as React or Angular can be quite difficult. You need to know what libraries to import and ensure that files are processed in the correct order, which leads us to the topic of scaffolding tools. For AngularJS, it was quite popular to use Yeoman to scaffold up a new application quickly and get a lot of nice things preconfigured. React has a scaffolder tool called create-react-app, which you probably have saved and it saves countless hours for React developers. Scaffolder tools becomes almost a necessity as complexity grows, but also where every hour counts towards producing business value rather than fighting configuration problems. The main motivation behind creating the Angular CLI tool was to help developers focus on app building and not so much on configuration. Essentially, with a simple command, you should be able to scaffold an application, add a new construct to it, run tests, or create a production grade bundle. Angular CLI supports all that. Prerequisites for installing Angular CLI What you need to get started is to have Git and Node.js installed. Node.js will also install something called NPM, a node package manager that you will use later to install files you need for your project. After this is done, you are ready to set up your Angular application. You can find installation files to Node.js. The easiest way to have it installed is to go to the site: Installing Node.js will also install something called NPM, Node Package Manager, which you will need to install dependencies and more. The Angular CLI requires Node 6.9.0 and NPM 3 or higher. Currently on the site, you can choose between an LTS version and the current version. The LTS version should be enough. Angular CLI Installation Installing the Angular CLI is as easy as running the following command in your Terminal: npm install -g @angular/cli On some systems, you may need to have elevated permissions to do so; in that case, run your Terminal window as an administrator and on Linux/macOS instead run the command like this: sudo npm install -g @angular/cli Building your first app Once the Angular CLI is in place the time has come to create your first project. To do so place yourself in a directory of your choice and type the following: ng new <give it a name here> Type the following: ng new TodoApp This will create a directory called TodoApp. After you have run the preceding command, there are two things you need to do to see your app in a browser: Navigate to the just created directory Serve up the application This will be accomplished by the following commands: cd TodoApp npm start At this point, open up your browser on http://localhost:4200 and you should see the following: Testing your app The Angular CLI doesn't just come with code that makes your app work. It also comes with code that sets up testing and includes a test. Running the said test is as easy as typing the following in the Terminal: You should see the following: How come this works? Let's have a look at the package.json file that was just created and the scripts tag. Everything specified here can be run using the following syntax: npm run <key> In some cases, it is not necessary to type run and it will be enough to just type: npm <key> This is the case with the start and test commands. The following listing makes it clear that it is possible to run more commands than start and test that we just learned about: "scripts": { "ng": "ng", "start": "ng serve", "build": "ng build", "test": "ng test", "lint": "ng lint", "e2e": "ng e2e" } So far we have learned how to install the Angular CLI. Using the Angular CLI we have learned to:    Scaffold a new project.    Serve up the project and see it displayed in a browser.    Run tests. That is quite an accomplishment. We will revisit the Angular CLI in a later chapter as it is a very competent tool, capable of a lot more. Hello Angular We are about to take the first trembling steps into building our first component. The Angular CLI has already scaffolded our project and thereby carried out a lot of heavy lifting. All we need to do is to create new file and starting filling it with content. The million dollar question is what to type? So let's venture into building our first component. There are three steps you need to take in creating a component. Those are:    Import the component decorator construct.    Decorate a class with a component decorator.    Add a component to its module (this might be in two different places). Creating the component First off, let's import the component decorator: import { Component } from '@angular/core'; Then create the class for your component: class AppComponent { title:string = 'hello app'; } Then decorate your class using the Component decorator: @Component({ selector: 'app', template: `<h1>{{ title }}</h1>` }) export class AppComponent { title: string = 'hello app'; } We give the Component decorator, which is function, an object literal as an input parameter. The object literal consists at this point of the selector and template keys, so let's explain what those are. Selector A selector is what it should be referred to if used in a template somewhere else. As we call it app, we would refer to it as: <app></app> Template/templateUrl The template or templateUrl is your view. Here you can write HTML markup. Using the  template keyword, in our object literal, means we get to define the HTML markup in the same file as the component class. Were we to use templateUrl, we would then place our HTML markup in a separate file. The preceding  example also lists the following double curly braces, in the markup: <h1>{{ title }}</h1> This will be treated as an interpolation and the expression will be replaced with the value of AppComponent's title field. The component, when rendered, will therefore look like this: hello app Telling the module Now we need to introduce a completely new concept, an Angular module. All types of constructs that you create in Angular should be registered with a module. An Angular module serves as a facade to the outside world and it  is nothing more than a class that is decorated by the decorate @NgModule. Just like the @Component decorator, the @NgModule decorator takes an object literal as an input parameter. To register our component with our Angular module, we need to give the object literal the property declarations. The declarations property is of a type array and by adding our component to that array we are registering it with the Angular module. The following code shows the creation of an Angular module and the component being registered with it by being added to declarations keyword array: import { AppComponent } from './app.component'; @NgModule({ declarations: [AppComponent] }) export class AppModule {} At this point, our Angular module knows about the component. We need to add one more property to our module, bootstrap. The bootstrap keyword states that whatever is placed in here serves as the entry component for the entire application. Because we only have one component, so far, it makes sense to register our component with this bootstrap keyword: @NgModule({ declarations:  [AppComponent], bootstrap: [AppComponent] }) export class AppModule {} It's definitely possible to have more than one entry component, but the usual scenario is that there is only one. For any future components, however, we will only need to add them to the declarations property, to ensure the module knows about them. So far we have created a component and an Angular module and registered the component with said the module. We don't really have a working application yet, as there is one more step we need to take. We need to set up the bootstrapping. To summarize, we have shown how to get started with the Angular CLI and create your first Angular component efficiently. If you are interested to know more, check out Learning Angular Second edition, to get your way through Angular and create dynamic applications with it. Building Components Using Angular Why switch to Angular for web development – Interview Insights 8 built-in Angular Pipes in Angular 4 that you should know    
Read more
  • 0
  • 0
  • 26686
Modal Close icon
Modal Close icon