Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Frank Kane's Taming Big Data with Apache Spark and Python

You're reading from   Frank Kane's Taming Big Data with Apache Spark and Python Real-world examples to help you analyze large datasets with Apache Spark

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787287945
Length 296 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Frank Kane Frank Kane
Author Profile Icon Frank Kane
Frank Kane
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Spark 2. Spark Basics and Spark Examples FREE CHAPTER 3. Advanced Examples of Spark Programs 4. Running Spark on a Cluster 5. SparkSQL, DataFrames, and DataSets 6. Other Spark Technologies and Libraries 7. Where to Go From Here? – Learning More About Spark and Data Science

Counting word occurrences using flatmap()


We'll do a really common Spark and MapReduce example of dealing with a book or text file. We'll count all the words in a text file and find out how many times each word occurs within that text. We'll put a little bit of twist on this task and work our way up to doing more and more complex twists later on. The first thing we need to do is go over the difference again between map and flatMap, because using flatMap and Spark is going to be the key to doing this quickly and easily. Let's talk about that and then jump into some code later on and see it in action.

Map versus flatmap

For the next few sections in this book, we'll look at your standard "count the words in a text file" sample that you see in a lot of these sorts of books, but we're going to do a little bit of a twist. We'll work our way up from a really simple implementation of counting the words, and keep adding more and more stuff to make that even better as we go along. So, to start off with...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Frank Kane's Taming Big Data with Apache Spark and Python
You have been reading a chapter from
Frank Kane's Taming Big Data with Apache Spark and Python
Published in: Jun 2017
Publisher: Packt
ISBN-13: 9781787287945
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon