Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides - Security

59 Articles
article-image-3-cybersecurity-lessons-for-e-commerce-website-administrators
Guest Contributor
25 Jun 2019
8 min read
Save for later

3 cybersecurity lessons for e-commerce website administrators

Guest Contributor
25 Jun 2019
8 min read
In large part, the security of an ecommerce company is the responsibility of its technical support team and ecommerce software vendors. In reality, cybercriminals often exploit the security illiteracy of the staff to hit a company. Of all the ecommerce team, web administrators are often targeted for hacker attacks as they control access to the admin panel with lots of sensitive data. Having broken into the admin panel, criminals can take over an online store, disrupt its operation, retrieve customer confidential data, steal credit card information, transfer payments to their own account, and do more harm to business owners and customers. Online retailers contribute to the security of their company greatly when they educate web administrators where security threats can come from and what measures they can take to prevent breaches. We have summarized some key lessons below. It’s time for a quick cybersecurity class! Lesson 1. Mind password policy Starting with the basis of cybersecurity, we will proceed to more sophisticated rules in the lessons that follow. The importance of secure password policy may seem obvious, it's still shocking how careless people can be with choosing a password. In e-commerce, web administrators set credentials for accessing the admin panel and they can “help” cybercriminals greatly if they neglect basic password rules. Never use similar or alike passwords to log into different systems. In general, sticking to the same patterns when creating passwords (for example, using a date of birth) is risky. Typically, people have a number of personal profiles in social networks and email services. If they use identical passwords to all of them, cybercriminals can steal credentials just to one social media profile to crack the others. If employees are that negligent about accessing corporate systems, they endanger the security of the company. Let’s outline the worst-case scenario. Criminals take advantage of the leaked database of 167 million LinkedIn accounts to hack a large online store. As soon as they see the password of its web administrator (the employment information is stated in the profile just for hackers’ convenience), they try to apply the password to get access to the admin panel. What luck! The way to break into this web store was too easy. Use strong and impersonalized passwords. We need to introduce the notion of doxing to fully explain the importance of this rule. Doxing is the process of collecting pieces of information from social accounts to ultimately create a virtual profile of a person. Cybercriminals engage doxing to crack a password to an ecommerce platform by using an admin’s personal information in it. Therefore, a strong password shouldn’t contain personal details (like dates, names, age, etc.) and must consist of eight or more characters featuring a mix of letters, numbers, and unique symbols. Lesson 2. Watch out for phishing attacks With the wealth of employment information people leave in social accounts, hackers hold all the cards for implementing targeted, rather than bulk, phishing attacks. When planning a malicious attack on an ecommerce business, criminals can search for profiles of employees, check their position and responsibilities, and conclude what company information they have access to. In such an easy way, hackers get to know a web store administrator and follow with a series of phishing attacks. Here are two possible scenarios of attacks: When hackers target a personal computer. Having found a LinkedIn profile of a web administrator and got a personal email, hackers can bombard them with disguised messages, for example, from bank or tax authorities. If the admin lets their guard down and clicks a malicious link, malware installs itself on their personal computer. Should they remotely log in the admin panel, hackers steal their credentials and immediately set a new password. From this moment, they take over the control over a web store. Hackers can also go a different way. They target a personal email of the web administrator with a phishing attack and succeed in taking it over. Let’s say they have already found out a URL to the admin panel by that time. All they have to do now is to request to change the password to the panel, click the confirmation link from the admin’s email and set a new password. In the described scenario, the web administrator has made three security mistakes of using a personal email for work purposes, not changing the default admin URL, and taking the bait of a phishing email. When hackers target a work computer. Here is how a cyberattack may unfold if web administrators have been reckless to disclose a work email online. This time, hackers create a targeted malicious email related to work activities. Let’s say, the admin can get a legitimate-looking email from FedEx informing about delivery problems. Not alarmed, they open the email, click the link to know the details, and compromise the security of the web store by giving away the credentials to the admin panel to hackers. The main mistake in dealing with phishing attacks is to expect a fraudulent email to look suspicious. However, phishers falsify emails from real companies so it can be easy to fall into the trap. Here are recommendations for ecommerce web administrators to follow: Don’t use personal emails to log in to the admin panel. Don’t make your work email publicly available. Don’t use work email for personal purposes (e.g., for registration in social networks). Watch out for links and downloads in emails. Always hover over the link prior to click it – in malicious emails, the destination URL doesn’t match the expected destination website. Remember that legitimate companies never ask for your credentials, credit card details or any other sensitive information in emails. Be wary of emails with urgent notifications and deadlines – hackers often try to allay suspicions by provoking anxiety and panic among their victims. Engage two-step verification for an ecommerce admin panel. Lesson 3.  Stay alert while communicating with a hosting provider Web administrators of companies that have chosen a hosted ecommerce platform for their e-shop will need to contact the technical support of their hosting provider now and then. Here, a cybersecurity threat comes unexpected. If hackers have compromised the security of the web hosting company, they can target its clients (e-commerce websites) as well. Admins are in serious danger if the hosting company stores their credentials unencrypted. In this case, hackers can get direct access to the admin panel of a web store. Otherwise, more sophisticated attacks are developed. Cybercriminals can mislead web administrators by speaking for tech support agents. When communicating with their hosting provider, web administrators should mind several rules to protect their confidential data and the web store from hacking. Use unique email and password to log in your web hosting account. The usage of similar credentials for different work services or systems leads to a company security breach in case the hosting company has been hacked. Never reveal any credentials on request of tech support agents. Having shared their password to the admin panel, web administrators can no longer authenticate themselves by using it. Track your company communication with tech support. Web administrators can set email notifications to track requests from team members to the tech support and control what information is shared. Time for an exam As a rule, ecommerce software vendors and retailers do their best for the security of ecommerce businesses. Thus, software vendors take the major role in providing for the security of SaaS ecommerce solutions (like Shopify or Salesforce Commerce Cloud), including the security of servers, databases and the application itself. In IaaS solutions (like Magento), retailers need to put more effort in maintaining the security of the environment and system, staying current on security updates, conducting regular audits and more (you can see the full list of Magento security measures as an example). Still, cybercriminals often target company employees to hack an online store. Retailers are responsible for educating their team what security rules are compulsory to follow and how to identify malicious intents. In our article, we have outlined the fundamental security lessons for web administrators to learn in order to protect a web store against illicit access. In short, they should be careful with personal information they publish online (in their social media profiles) and use unique credentials for different services and systems. There are no grades in our lessons – rather an admin’s contribution to the security of their company can become the evaluation of knowledge they have gained. About the Author Tanya Yablonskaya is Ecommerce Industry Analyst at ScienceSoft, an IT consulting and software development company headquartered in McKinney, Texas. After 2+ years of exploring the cryptocurrency and blockchain sphere, she has shifted the focus of interest to ecommerce industry. Delving into this enormous world, Tanya covers key challenges online retailers face and unveils a wealth of tools they can use to outpace competitors. The US launched a cyber attack on Iran to disable its rocket launch systems; Iran calls it unsuccessful All Docker versions are now vulnerable to a symlink race attack 12,000+ unsecured MongoDB databases deleted by Unistellar attackers
Read more
  • 0
  • 0
  • 25888

article-image-how-to-stay-safe-while-using-social-media
Guest Contributor
08 Aug 2018
7 min read
Save for later

How to stay safe while using Social Media

Guest Contributor
08 Aug 2018
7 min read
The infamous Facebook and Cambridge Analytica data breach has sparked an ongoing and much-needed debate about user privacy on social media. Given how many people are on social media today, and how easy it is for anyone to access the information stored on those accounts, it's not surprising that they can prove to be a goldmine for hackers and malicious actors. We often don’t think about the things we share on social media as being a security risk, but if we aren’t careful, that's exactly the case. On the surface, much of what we share on social media sites and services seem to be innocuous and of little danger as far as our privacy or security is concerned. However, the most adamant cybercriminals in the business have learned how they can exploit social media sites and gain access to them to gather information. Here’s a guide, to examine the security vulnerabilities of the most popular social media networks on the Internet. It provides precautionary guidelines that you should follow. Facebook’s third-party apps: A hacker’s paradise If you take cybersecurity seriously, you should consider deleting your Facebook altogether. Some of the revelations over the last few years show the extent to which Facebook has allowed its users’ data to be used. In many cases for purposes that directly oppose their best interests, the social media giant has made only vague promises about how it will protect its users’ data. If you are going to use Facebook, you should assume that anything you post there can and will be seen by third-parties. That's so because we now know that the data of Facebook users, whose friends have consented to share their data, can also be collected without their direct authorization. One of the most common ways that Facebook is used for undermining users’ privacy is in the form of what seems like a fun game. These games consist of a name generator, in which users generate a pet name, a name of a celebrity, etc., by combining two words. These words are usually things like “mother’s maiden name” or “first pet's name.” The more astute readers might recognize that such information is regularly used as answers to secret questions in case you forget your password. By posting that information on your Facebook account, you are potentially granting hackers the information they need to access your accounts elsewhere. As a rule of thumb, its best to grant as little access as possible for any Facebook app; a third-party app that asks for extensive privileges such as access to your real-time location, contact list, microphone, camera, email, etc., could prove to be a serious security liability. Twitter: privacy as a binary choice Twitter keeps things simple in regards to privacy. It's nothing like Facebook, where you can micro-manage your settings. Instead, Twitter keeps it binary; things are either public or private. You also don’t have the opportunity to change this for individual tweets. Whenever you use Twitter, ask yourself if you want other people to know where you are right now. Remember, if you are on holiday and your house is unattended, posting that information publically could put your property at risk. You should also remember that any photos you upload with embedded GPS coordinates could be used to track you back physically. Twitter automatically strips away EXIF data, but it still reads that data to provide suggested locations. For complete security, remove the data before you upload any picture. Finally, refrain from using third-party Twitter apps such as UberSocial, HootSuite, Tweetbot. If you’re going for maximum security, avoid using any at all! Instagram: location, location, location The whole idea behind Instagram is sharing of photos and videos. It’s true sharing your location is fun and even convenient, yet few users truly understand the implications of sharing such information. While it’s not a great idea to tell a random stranger on the street that you’re going out, the same concept applies to your posts and stories that indicate your current location. Make sure to refrain from location tagging as much as possible. It’s also a good idea to remove any EXIF data before posting any photo. In fact, you should consider turning off your location data altogether. Additionally, consider making your profile private. It’s a great feature that’s often overlooked. With this setting on, you’ll be able to review every single follower before they gain access to your content. Remember that if your profile remains public anyone can see your post and follow your stories, which in most instances highlights your daily activities. Giving that kind of information to total strangers online could have detrimental outcomes, to put it lightly. Reddit: a privacy safe haven Reddit is one of the best social media sites for anonymity. For one thing, you never have to share or disclose any personal information to register with Reddit. As long as you make sure never to share any personally identifiable information and you keep your location data turned off, it's easy to use Reddit with complete anonymity. Though Reddit’s track record is almost spotless when it comes to security and privacy, it’s essential to understand your account on this social media platform could still be compromised. That’s because your email address is directly linked to your Reddit account. Thus, if you want to protect your account from possible hacks, you must take precautionary steps to secure your email account as well. Remember - everything’s connected on the Internet. VPN: a universal security tool A virtual private network (VPN) will enhance your overall online privacy and security. When you use a VPN, even the website itself won’t be able to trace you; it will only know the location of the server you're connected to, which you can choose. All the data that will be sent or received will be encrypted with a military-grade cipher. In many cases, VPN providers offer further features to enhance privacy and security. As of now, quite a few VPN services can identify and blacklist potentially malicious ads, pop-ups, and websites. With the continuous updates of such databases, the feature will only get better. Additionally, DNS leak protection and automatic Kill Switches ensure that snoopers have virtually no chances of intercepting your connection in any imaginable way. Using a VPN is a no-brainer. If you still don’t have one, rest assured that it will be one of the best investments in regards to your online security and privacy. Staying safe on social media won’t happen automatically, unfortunately, It takes effort. Make sure to check the settings available on each platform, and carefully consider what you are sharing. Never share anything so sensitive that, if it were accidentally exposed to all your followers, it would be a disaster. Besides optimizing your privacy settings, make use of all virtual security solutions such as VPN services and antimalware tools. Take these security measures and remain vigilant - that way you’ll remain safe on social media. About the author   Harold Kilpatrick is a cybersecurity consultant and a freelance blogger. He's currently working on a cybersecurity campaign to raise awareness around the threats that businesses can face online.   Mozilla’s new Firefox DNS security updates spark privacy hue and cry Google to launch a censored search engine in China, codenamed Dragonfly Did Facebook just have another security scare? Time for Facebook, Twitter and other social media to take responsibility or face regulation
Read more
  • 0
  • 0
  • 25321

article-image-uk-ncsc-report-reveals-ransomware-phishing-supply-chain-threats-to-businesses
Fatema Patrawala
16 Sep 2019
7 min read
Save for later

UK's NCSC report reveals significant ransomware, phishing, and supply chain threats to businesses

Fatema Patrawala
16 Sep 2019
7 min read
Last week, the UK’s National Cyber Security Centre (NCSC) published a report on cyber incident trends in the UK from October 2018 to April 2019. The U.S. Department of Homeland Security Cybersecurity and Infrastructure Security Agency (CISA) has recommended this report to better understand and know how to defend against most prevalent cyber security threats. The NCSC report reveals five main threats and threat vectors that affected UK organizations: cloud services (Office 365 in particular); ransomware; phishing; vulnerability scanning; and supply chain attacks. The NCSC report examined each of these, presented specific methods used by threat actors and provided tips for preventing and mitigating incidents. NCSC report reveals Cloud services and Office 365 as primary targets The NCSC report highlights the primary target of the attackers as Cloud services, and Office 365. The large scale move to cloud services has put the IT infrastructure of many enterprises within reach of internet-based attacks as these services are only protected by a username and password.  Tools and scripts to try and guess users’ passwords are abundant. And a successful login gives access to corporate data stored in all Office 365 services. For example, both SharePoint and Exchange could be compromised, as well as any third-party services an enterprise has linked to Azure AD. Another common way of attacking Office 365 mentioned in the report is password spraying. In this method the attackers attempt a small number of commonly used passwords against multiple accounts. In most cases, they aren’t after just one specific account as this method can target a large number of accounts in one organisation without raising any suspicions.  Other than this, credential stuffing is another common approach to attack Office 365. Credential stuffing takes pairs of usernames and passwords from leaked data sets and tries them against other services, such as Office 365. According to the report it is difficult to detect the vulnerability in logs as an attacker may only need a single attempt to successfully log in if the stolen details match those of the user's Office 365 account. The report further suggests a few remediation strategies to prevent compromising Office 365 accounts. Ransomware attacks among enterprises continue to rise Since the WannaCry and NotPetya attacks of 2017, ransomware attacks against enterprise networks have continued to rise in number and sophistication. The NCSC report mentions that historically, ransomware were delivered as a standalone attack. But today, attackers are using their network access to maximise the impact of the ransomware attack.  Ransomware tools such as Cybercrime botnets like Emotet, Dridex and Trickbot are commonly used as an initial infection vector, prior to retrieving and installing the ransomware. The report also highlights the use of Pen-testing tools such as Cobalt Strike. Ransomware such as Ryuk, LockerGoga, Bitpaymer and Dharma were seen to be prevalent in recent months. Cases observed in the NCSC report often tend to have resulted from a trojanised document, sent via email. The malware will exploit publicly known vulnerabilities and macros in Microsoft Office documents. Some of the remediation strategies to prevent ransomware include: Reducing the chances of the initial malware reaching devices Considering the use of URL reputation services including those built into a web browser, and Internet service providers. Using email authentication via DMARC and DNS filtering products is highly recommended Making it more difficult for ransomware to run, once it is delivered. Having a tested backup of your data offline, so that it cannot be modified or deleted by ransomware.  Effective network segregation to make it more difficult for malware to spread across a network and thereby limit the impact of ransomware attacks. Phishing is the most prevalent attack delivery method in NCSC report According to the NCSC report, phishing has been the most prevalent attack delivery method over the last few years, and in recent months. Just about anyone with an email address can be a target. Specific methods observed recently by the NCSC include: targeting Office 365 credentials - the approach here is to persuade users to follow links to legitimate-looking login pages, which prompt for O365 credentials. More advanced versions of this attack also prompt the user to use Multi Factor Authentication. sending emails from real, but compromised, email accounts - quite often this approach will exploit an existing email thread or relationship to add a layer of authenticity to a spear phish. fake login pages - these are dynamically generated, and personalised, pulling the real imagery and artwork from the victim’s Office 365 portal. using Microsoft services such as Azure or Office 365 Forms to host fake login pages - these give the address bar an added layer of authenticity. Remediation strategies to prevent phishing attacks include implementing a multi-layered defence against phishing attacks. This will reduce the chances of a phishing email reaching a user and minimises the impact of those that get through. Additionally you can configure Email anti-spoofing controls such as Domain-based Message Authentication, Reporting and Conformance (DMARC), Sender Policy Framework (SPF) and Domain-Keys Identified Mail (DKIM). Vulnerability scanning is a common reconnaissance method NSCS report mentions that vulnerability scanning is a common reconnaissance method used to search for open network ports, identify unpatched, legacy or otherwise vulnerable software and to identify misconfigurations, which could have an effect on security. It further details that attackers identify known weaknesses in Internet-facing service which they then target using tested techniques or 'exploits'. This approach means the attack is more likely to work for the first time, making its detection less likely when using traditional Intrusion prevention systems (IPS) and on-host security monitoring. Once an attacker has a foothold on the edge of your infrastructure, they will then attempt to run more network scans and re-use stolen credentials to pivot through to the core network. For vulnerability remediation NSCS suggests to ensure that all internet-facing servers that an attacker might be able to find should be hardened, and the software running on them must be fully patched. They also recommend penetration test to determine what an attacker scanning for vulnerabilities could find, and potentially attack. Supply chain attacks & threat from external service providers Threats introduced to enterprise networks via their service providers continue to be a major problem according to the report. Outsourcing – particularly of IT – results in external parties and their own networks being able to access and even reconfigure enterprise services. Hence, the network will inherit the risk from these connected networks.  NSCS report also gives several examples of attackers exploiting the connections of service providers to gain access to enterprise networks. For instance, the exploitation of Remote Management and Monitoring (RMM) tooling to deploy ransomware, as reported by ZDNet. And the public disclosure of a “sophisticated intrusion” at a major outsourced IT vendor, as reported by Krebs on Security. Few remediation strategies to prevent supply chain attacks are: Supply chain security should be a consideration when procuring both products and services. Those using outsourced IT providers should ensure that any remote administration interfaces used by those service providers are secured. Ensuring the way IT service provider connects to, or administers the system, meets the organisation’s security standards. Take appropriate steps to segment and segregate the networks. Segmentation and segregation can be achieved physically or logically using access control lists, network and computer virtualisation, firewalls, and network encryption such as Internet Protocol Security. Document the remote interfaces and internal accesses in use by your service provider to ensure that they are fully revoked at the end of the contract. To read the full report, visit the official NSCS website. What’s new in security this week? A new Stuxnet-level vulnerability named Simjacker used to secretly spy over mobile phones in multiple countries for over 2 years: Adaptive Mobile Security reports Lilocked ransomware (Lilu) affects thousands of Linux-based servers Intel’s DDIO and RDMA enabled microprocessors vulnerable to new NetCAT attack  
Read more
  • 0
  • 0
  • 24489

article-image-crypto-ransomware
Savia Lobo
23 May 2018
7 min read
Save for later

Anatomy of a Crypto Ransomware

Savia Lobo
23 May 2018
7 min read
Crypto ransomware is the worst threat at present. There are a lot of variants in crypto ransomware. Only some make it into the limelight, while others fade away. In this article, you will get to know about Crypto Ransomware and how one can code it easily in order to encrypt certain directories and important files. The reason for a possible increase in the use of crypto ransomware could be because coding it is quite easy compared to other malware. The malware just needs to browse through user directories to find relevant files that are likely to be personal and encrypt them. The malware author need not write complex code, such as writing hooks to steal data. Most crypto ransomwares don't care about hiding in the system, so most do not have rootkit components either. They only need to execute on the system once to encrypt all files. Some crypto ransomwares also check to see whether the system is already infected by other crypto ransomware. There is a huge list of crypto ransomware. Here are a few of them: Locky Cerber CryptoLocker Petya This article is an excerpt taken from the book, 'Preventing Ransomware' written by Abhijit Mohanta, Mounir Hahad, and Kumaraguru Velmurugan.  How does crypto ransomware work? Crypto ransomware technically does the following things: Finds files on the local system. On a Windows machine, it can use the FindFirstFile(), FindNextFile() APIs to enumerate files directories. A lot of ransomware also search for files present on shared drives It next checks for the file extension that it needs to encrypt. Most have a hardcoded list of file extensions that the ransomware should encrypt. Even if it encrypts executables, it should not encrypt any of the system executables. It makes sure that you should not be able to restore the files from backup by deleting the backup. Sometimes, this is done by using the vssadmin tool. A lot of crypto ransomwares use the vssadmin command, provided by Windows to delete shadow copies. Shadow copies are backups of files and volumes. The vssadmin (vss administration) tool is used to manage shadow copies. VSS in is the abbreviation of volume shadow copy also termed as Volume Snapshot Service. The following is a screenshot of the vssadmin tool: After encrypting the files ransomware leaves a note for the victim. It is often termed a ransom note and is a message from the ransomware to the victim. It usually informs the victim that the files on his system have been encrypted and to decrypt them, he needs to pay a ransom. The ransom note instructs the victim on how to pay the ransom. The ransomware uses a few cryptographic techniques to encrypt files, communicate with the C&C server, and so on. We will explain this in an example in the next section. But before that, it's important to take a look at the basics of cryptography. Overview of cryptography A lot of cryptographic algorithms are used by malware today. Cryptography is a huge subject in itself and this section just gives a brief overview of cryptography. Malware can use cryptography for the following purposes: To obfuscate its own code so that antivirus or security researchers cannot identify the actual code easily. To communicate with its own C&C server, sometimes to send hidden commands across the network and sometimes to infiltrate and steal data To encrypt the files on the victim machine A cryptographic system can have the following components: Plaintext Encryption key Ciphertext, which is the encrypted text Encryption algorithm, also called cipher Decryption algorithm There are two types of cryptographic algorithms based on the kind of key used: Symmetric Asymmetric A few assumptions before explaining the algorithm: the sender is the person who sends the data after encrypting it and the receiver is the person who decrypts the data with a key. Symmetric key In symmetric key encryption, the same key is used by both sender and receiver, which is also called the secret key. The sender uses the key to encrypt the data while the receiver uses the same key to decrypt. The following algorithms use a symmetric key: RC4 AES DES 3DES BlowFish Asymmetric key A symmetric key is simpler to implement but it faces the problem of exchanging the keys in a secure manner. A public or asymmetric key has overcome the problem of key exchange by using a pair of keys: public and private. A public key can be distributed in an unsecured manner, while the private key is always kept with the owner secretly. Any one of the keys can be used to encrypt and the other can be used to decrypt: Here, the most popular algorithms are: RSA Diffie Hellman ECC DSA Secure protocols such as SSH have been implemented using public keys. How does ransomware use cryptography? Crypto ransomware started with simple symmetric key cryptography. But soon, researchers could decode these keys easily. So, they started using an asymmetric key. Ransomware of the current generation has started using both symmetric and asymmetric keys in a smart manner. CryptoLocker is known to use both a symmetric key and an asymmetric key. Here is the encryption process used by CryptoLocker: When CryptoLocker infects a machine, it connects to its C&C and requests a public key. An RSA public and secret key pair is generated for that particular victim machine. The public key is sent to the victim machine but the secret key or private key is retained with the C&C server. The ransomware on the victim machine generates an AES symmetric key, which is used to encrypt files. After encrypting a file with AES key, CryptoLocker encrypts the AES key with the RSA public key obtained from C&C server. The encrypted AES key along with the encrypted file contents are written back to the original file in a specific format. So, in order to get the contents back, we need to decrypt the encrypted AES key, which can only be done using the private key present in the C&C server. This makes decryption close to impossible. Analyzing crypto ransomware The malware tools and concepts remain the same here too. Here are few observations while analyzing, specific to crypto ransomwares, that are different compared to other malware. Usually, crypto ransomware, if executed, does a large number of file modifications. You can see the changes in the filemon or procmon tools from Sysinternals File extensions are changed in a lot of cases. In this case, it is changed to .scl. The extension will vary with different crypto ransomware. A lot of the time, a file with a ransom note is present on the system. The following image shows a file with a ransom note: Ransom notes are different for different kinds of ransomware. Ransom notes can be in HTML, PDF, or text files. The ransom note's file usually has decrypt instructions in the filename. Prevention and removal techniques for crypto ransomware In this case, prevention is better than cure. It's hard to decrypt the encrypted files in most cases. Security vendors came up with decryption tool to decrypt the ransomware encrypted files. There was a large increase in the number of ransomware and an increase in complexity of the encryption algorithms used by them. Hence, the decryption tools created by the ransomware vendors failed to cope sometimes. http://www.thewindowsclub.com/list-ransomware-decryptor-tools gives you a list of tools meant to decrypt ransomware encrypted files. These tools may not work in all cases of ransomware encryption. If you've enjoyed reading this post, do check out  'Preventing Ransomware' to have an end-to-end knowledge of the trending malware in the tech industry at present. Top 5 cloud security threats to look out for in 2018 How cybersecurity can help us secure cyberspace Cryptojacking is a growing cybersecurity threat, report warns
Read more
  • 0
  • 0
  • 24039

article-image-winnti-malware-chinese-hacker-group-attacks-major-german-corporations-for-years
Fatema Patrawala
26 Jul 2019
9 min read
Save for later

Winnti Malware: Chinese hacker group attacks major German corporations for years, German public media investigation reveals

Fatema Patrawala
26 Jul 2019
9 min read
German public broadcasters, Bavarian Radio & Television Network (BR) and Norddeutscher Rundfunk (NDR), have published a joint investigation report on a hacker group spying on certain businesses since years. Security researchers, Hakan Tanriverdi, Svea Eckert, Jan Strozyk, Maximilian Zierer and Rebecca Ciesielski have contributed to this report. They shed light on how this group of hackers operate and how widespread they are. The investigation started with one of the reporters receiving this code daa0 c7cb f4f0 fbcf d6d1 which eventually led to the team discovering a hacking group with Chinese origins operating on Winnti Malware. BR and NDR reporters, in collaboration with several IT security experts, have analyzed the Winnti malware. Moritz Contag of Ruhr University Bochum extracted information from different varieties of the malware and wrote a script for this analysis. Silas Cutler, an IT security expert with US-based Chronicle Security, confirmed it. The report analyses cases from the below listed targeted companies: Gaming: Gameforge, Valve Software: Teamviewer Technology: Siemens, Sumitomo, Thyssenkrupp Pharma: Bayer, Roche Chemical: BASF, Covestro, Shin-Etsu Hakan Tanriverdi one of the reporters wrote on Twitter, “We looked at more than 250 samples, wrote Yara rules, conducted nmap scans.” Yara rules is a tool primarily used in malware research and detection. Nmap is a free and open source network scanner used to discover hosts and services on a computer network. Additionally in the report, the team has presented ways to find out if one is infected by the Winnti malware. To learn about these methods in detail, check out the research report. Winnti malware is complex, created by “digital mercenaries” of Chinese origin Winnti is a highly complex structure that is difficult to penetrate. The term denotes both a sophisticated malware and an actual group of hackers. IT security experts like to call them digital mercenaries. According to a Kasperky Lab research held in 2011, the Winnti group has been active for several years and in their initial days, specialized in cyber-attacks against the online video game industry. However, according to this investigation the hacker group has now honed in on Germany and its blue-chip DAX corporations. BR and NDR reporters analyzed hundreds of malware versions used for unsavory purposes. They found that the hacker group has targeted at least six DAX corporations and stock-listed top companies of the German industry. In October 2016, several DAX corporations, including BASF and Bayer, founded the German Cyber Security Organization (DCSO). The job of DCSO’s IT security experts was to observe and recognize hacker groups like Winnti and to get to the bottom of their motives. In Winnti’s case, DCSO speaks of a “mercenary force” which is said to be closely linked with the Chinese government. The reporters of this investigation also interviewed few company staff, IT security experts, government officials, and representatives of security authorities. An IT security expert who has been analyzing the attacks for years said, “Any DAX corporation that hasn’t been attacked by Winnti must have done something wrong.” A high-ranking German official said to the reporters, “The numbers of cases are mind-boggling.” And claims that the group continues to be highly active—to this very day. Winnti hackers are audacious and “don’t care if they’re found out” The report points out that the hackers choose convenience over anonymity. Working with Moritz Contag the reporters found that the hackers wrote the names of the companies they want to spy on directly into their malware. Contag has analyzed more than 250 variations of the Winnti malware and found them to contain the names of global corporations. According to reporters, hackers usually take precautions, which experts refer to as Opsec. But the Winnti group’s Opsec was dismal to say the least. Somebody who has been keeping an eye on Chinese hackers on behalf of a European intelligence service believes that they didn’t really care: “These hackers don’t care if they’re found out or not. They care only about achieving their goals." The reporters believed that every hacking operation leaves digital traces. They also believe that if you notice hackers carefully, each and every step can be logged. To decipher the traces of the Winnti hackers, they took a closer look at the program code of the malware itself. They used a malware research engine known as “VirusTotal” created by Google. The hacker group initially attacked the gaming industry for financial gain In the early days, the Winnti group of hackers were mainly interested in money making. Their initial target was Gameforge, a gaming company based in the German town of Karlsruhe. In 2011, an email message found its way into Gameforge’s mailbox. A staff member opened the attached file and unaware to him started the Winnti program. Shortly afterwards, the administrators became aware that someone was accessing Gameforge’s databases and raising the account balance. Gameforge decided to implement Kaspersky antivirus software and  arranged for Kaspersky's IT security experts to visit the office.The security experts found suspicious files and analyzed them. They noticed that the system had been infiltrated by hackers acting like Gameforge’s administrators. It turned out that the hackers had taken over a total of 40 servers. “They are a very, very persistente group,” says Costin Raiu, who has been watching Winnti since 2011 and was in charge of Kaspersky’s malware analysis team. “Once the Winnti hackers are inside a network, they take their sweet time to really get a feel for the infrastructure,” he says. The hackers will map a company’s network and look for strategically favorable locations for placing their malware. They keep tabs on which programs are used in a company and then exchange a file in one of these programs. The modified file looks like the original, but was secretly supplemented by a few extra lines of code. Thereafter the manipulated file does the attackers’ bidding. Raiu and his team have been following the digital tracks left behind by some of the Winnti hackers. “Nine years ago, things were much more clear-cut. There was a single team, which developed and used Winnti. It now looks like there is at least a second group that also uses Winnti.” This view is shared by many IT security companies. And it is this second group which is getting the German security authorities worried. One government official says, “Winnti is very specific to Germany. It is the attacker group that's being encountered most frequently." Second group of Winnti hackers focused on industrial espionage The report says that by 2014, the Winnti malware code was no longer limited to game manufacturers. The second group’s job was mainly industrial espionage. Hackers targeted high-tech companies as well as chemical and pharmaceutical companies. They also attacked companies in Japan, France, the U.S. and Germany. The report sheds light on how Winnti hackers broke into Henkel’s network in 2014. The reporters present three files containing the website belonging to Henkel and the name of the hacked server. For example, one starts with the letter sequence DEDUSSV. They realized that server names can be arbitrary, but it is highly probable that DE stands for Germany and DUS for Düsseldorf, where the Henkel headquarters are located. The hackers were able to monitor all activities running on the web server and reached systems which didn't have direct internet access: The company also confirmed the Winnti incident and issued the following statement: “The cyberattack was discovered in the summer of 2014 and Henkel promptly took all necessary precautions.” Henkel claims that a “very small portion” of its worldwide IT systems had been affected— the systems in Germany. According to Henkel, there was no evidence suggesting that any sensitive data had been diverted. Other than Henkel, Winnti also targeted companies like Covestro, manufacturers of adhesives, lacquers and paints, Japan’s biggest chemical company, Shin-Etsu Chemical, Roche, one of the largest pharmaceutical companies in the world. Winnti hackers also penetrated the BASF and Siemens networks. A BASF spokeswoman says that in July 2015, hackers had successfully overcome “the first levels” of defense. “When our experts discovered that the attacker was attempting to get around the next level of defense, the attacker was removed promptly and in a coordinated manner from BASF’s network.” She added that no business relevant information had been lost at any time. According to Siemens, they were penetrated by the hackers in June 2016. “We quickly discovered and thwarted the attack,” Siemens spokesperson said. Winnti hackers also involved in political espionage The hacker group also is interested in penetrating political groups and there were several such indicators according to the report. The Hong Kong government was spied on by the Winnti hackers. The reporters found four infected systems with the help of the nmap network scan, and proceeded to inform the government by email. The reporters also found out a telecommunications provider from India had been infiltrated, the company happens to be located in the region where the Tibetan government has its headquarters. Incidentally, the relevant identifier in the malware is called “CTA.” A file which ended up on VirusTotal in 2018 contains a straightforward keyword: “tibet”. Other than this the report also throws light on attacks which were not directly related to political espionage but had connection among them. For example, the team found out Marriott hotels in USA was attacked by hackers. The Indonesian airline Lion Air networks were also penetrated by them. They wanted to get to the data of where people travel and where they were located, at any given time. The team confirmed this by showing the relevant coded files in the report. To read the full research report, check out the official German broadcsaster’s website. Hackers steal bitcoins worth $41M from Binance exchange in a single go! VLC media player affected by a major vulnerability in a 3rd library, libebml; updating to the latest version may help An IoT worm Silex, developed by a 14 year old resulted in malware attack and taking down 2000 devices
Read more
  • 0
  • 0
  • 23769

article-image-top-5-penetration-testing-tools-for-ethical-hackers
Vijin Boricha
27 Apr 2018
5 min read
Save for later

Top 5 penetration testing tools for ethical hackers

Vijin Boricha
27 Apr 2018
5 min read
Software systems are vulnerable. That's down to a range of things, from the constant changes our software systems undergo, to the extent of the opportunities for criminals to take advantage of the gaps and vulnerabilities within these systems. Fortunately, penetration testers - or ethical hackers - are a vital line of defence. Yes, you need to properly understand the nature of cyber security threats before you take steps to tackle them, but penetration testing tools are the next step towards securing your software. There's famous saying from Stephane Nappo that sums up cyber security today: It takes 20 years to build a reputation and few minutes of cyber-incident to ruin it. So, make sure you have the right people with the right penetration testing tools to protect not only your software but your reputation too.  The most popular penetration testing tools Kali Linux Kali linux is a Linux distro designed for digital forensics and penetration testing. The predecessor of BackTrack, it has grown in adoption to become one of the most widely used penetration testing tools. Kali Linux is  based on debian - most of its packages are imported from Debian repositories. Kali includes more than 500 preinstalled penetration testing programs that makes it possible to exploit wired, wireless, and ARM devices. The recent release of Kali Linux 2018.1 supports Cloud penetration testing. Kali has collaborated with some of the planet's leading cloud platforms such as AWS and Azure, helping to change the way we approach cloud security. Metasploit Metasploit is another popular penetration testing framework. It was created in 2003 using Perl and was acquired by Rapid7 in 2009 by which time it was completely rewritten in Ruby. It is a collaboration of the open source community and Rapid 7 with the outcome being the Metasploit Project well known for its anti-forensic and evasion tools. Metasploit is a concept of ‘exploit’ which is a code that is capable of surpassing any security measures entering vulnerable systems. Once through the security firewalls, it runs as a ‘payload’, a code that performs operations on a target machine, as a result creating the ideal framework for penetration testing. Wireshark WireShark is one of the world’s primary network protocol analyzers also popular as a packet analyzer. It was initially released as Ethereal back in 1998 and due to some trademark issues was renamed to WireShark in 2006. Users usually use WireShark for network analysis, troubleshooting, and software and communication protocol development. Wireshark basically functions in the second to seventh layer of network protocols, and the analysis made is presented in a human readable form. Security Operations Center analysts and network forensics investigators use this protocol analysis technique to analyze the amount of bits and bytes flowing through a network. The easy to use functionalities and the fact that it is open source makes Wireshark one of the most popular packet analyzers for security professionals and network administrators who want to quickly earn money as freelancers. Burp Suite Threats to web applications have grown in recent years. Ransomware and cryptojacking have become increased techniques used by cybercriminals to attack users in the browser. Burp or Burp Suite is one widely used graphical tool for testing web application security. Since it's about application security there are two versions to this tool: a paid version that include all the functionalities and the free version that comes with few important functionalities. This tool comes preinstalled with basic functionalities that will help you with web application security checks. If you are looking at getting into web penetration testing this should definitely be your first choice as it works with Linux, Mac and Windows as well. Nmap Nmap also known as Network Mapper is a security scanner. As the name suggests it builds a map of the network to discover hosts and services on a computer network. Nmap follows a set of protocols to function where it sends a crafted packet to the target host and then analyses the responses. It was initially released in 1997 and since then it has provided a variety of features to detect vulnerabilities and network glitches. The major reason why one should opt for Nmap is that it is capable of adapting to network conditions like network delay and network congestion during a scan. To keep your environment protected from security threats you should take necessary measures. There are n number of penetration testing tools out there with exceptional capabilities. The most important thing would be to choose the necessary tool based on your environment’s requirement. You can pick and choose from the above mentioned tools as they are shortlisted taking into consideration the fact that they are effective, well supported and easy to understand and most importantly they are open-source. Learn some of the most important penetration testing tools in cyber security Kali Linux - An Ethical Hacker's Cookbook, Metasploit Penetration Testing Cookbook - Third Edition Network Analysis using Wireshark 2 Cookbook - Second Edition For a complete list of books and videos on this topic, check out our penetration testing products.
Read more
  • 0
  • 0
  • 23063
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-go-phish-what-do-thieves-get-from-stealing-our-data
Guest Contributor
24 Dec 2018
7 min read
Save for later

Go Phish! What do thieves get from stealing our data?

Guest Contributor
24 Dec 2018
7 min read
If black hats were sharks, then our emails would be a school of innocent, unsuspecting guppies nonchalantly drifting along. For black hats or malicious hackers, getting into the average person’s email is as challenging as overeating at a buffet. After all, e-mail is the most successful federated communication system ever built, with over 281 billion emails sent per day and growing. We’re helpless without email. Most people cannot imagine an hour going by without checking and answering emails, let alone a day. Over email, you send updates on your address and banking information to your service providers or clients, health information to your university or insurance agent, and more. Despite this, email traffic generally does not have end-to-end encryption, leaving it highly vulnerable. And 91% of cyber attacks are carried out through e-mail. Fish, meet barrel. And for whatever e-mail scanners or antivirus you have running, know that black hats are developing their own predatory tools at a much faster rate. Social engineering, baiting, and placing malicious links in places as seemingly harmless as unsubscribe buttons are just a few items from their arsenal of tricks. Cybersecurity companies are getting better at detecting threats and identifying suspicious emails or links, but most people are just not tech savvy enough to avoid these pitfalls. Many think that they don’t even need to bother, which you have to realize is like walking blindfolded through the Temple of Doom and expecting to get out of there unscathed. Don’t be that person. Don’t be in that school of fish just waiting to be a shark snack. It’s time to understand why protecting your email is so important and how black hats are plotting your demise. Data exploitation and ransom With the amount of conversation happening lately about the importance of having control over your data, it should be clear how valuable data can be. Data can be used for consumer and marketing purposes or misused to fraudulently conduct purchases on e-commerce sites. It can be sold to other parties who will use it for illicit or illegal purposes, or even just to steal even more data from your friends and family. Equifax was one of the more famous data breaches that occurred recently. It affected over 200,000 people and compromised their credit card information, social security numbers, credit scores, and other very sensitive information. Now if you’re not in the 1%, you probably think you’re not the type to be subject to be a ransom attack, but you’d be wrong. You don’t need to be famous or powerful for people to try to bleed you dry in this way. Ransomware attacks, or attacks that are meant to hold on to your data in return for ransom money, rose by 250% in 2017. WannaCry is an example of an infamous ransomware attack, which caused an estimated $1B in damage or more. Identity Theft The dangers of identity theft may be obvious, but many people don’t understand to what extent it can really affect their future. Identity theft may actually be the worst thing a hacker can do with your information. In 2017, the direct and indirect cost of identity theft in the US was estimated at $16.8 billion. Identity theft harmed 16.7 million people,  which is about 7% of American adults! And one weakness leads to another - back in 2014, the Department of Justice estimated that about ⅓ of Americans who suffered a data breach subsequently became victims of financial fraud. Now in 2018, this is only likely to have increased. Here are just a few things thieves can do with your identifying information: Open credit cards or take out loans Aside from your name, if black hats also obtain your Social Security number, birthdate, and address, they can open credit cards and apply for loans in your name. Intercept your tax refund The tax refund you are excited about may not come after all if you get hacked. People who wait until the last moment to declare are more vulnerable and thieves may counterfile a fake tax return using your identity. Use it to receive medical treatment By obtaining your SSN and health insurance account numbers, black hats can use or sell your information in order to receive medical treatment. According to a study from Michigan State University, there were nearly 1,800 incidents of medical data breaches with patients’ information from October 2009 to December 2016. These breaches can be used to receive treatments, prescriptions, and even put your own health at risk if the thief’s medical information is now mixed up with yours. Travel with your airline miles Airline miles can be exchanged for cash, gift cards, and products or upgrades. Millions of miles have been stolen easily through phishing emails and other simple email scams. Open utility accounts 13% of 2016’s fraud incidents were related to phone and utility accounts. Thieves can open an account with a gas, phone, or electric company using your stolen SSN and then run up huge bills in your name, right under your nose. Outsmarting the sharks The first and simplest step you can take to defend against email fraud is to learn to avoid phishing schemes. A phishing scheme is when someone emails you pretending to be someone they’re not. (Think Nigerian princes or friends who suddenly find themselves abroad without a wallet when you could have sworn they were at the bar Friday night.) They could also be pretending to be from your email or healthcare provider asking you to log in. These e-mails often include links to phishing sites that will collect your passwords and personal information. You may have heard that using passphrases instead of passwords can help protect you, and it’s true that they are more secure. They’re even stronger when you include special characters like quotation marks, and use languages other than English. This is the best known practice for generating strong passwords. But these passphrases can still be stolen through phishing, just like any password. So don’t let a clever passphrase lull you into a false sense of security. Phishing is extremely prevalent. About 1.4 million of these fake sites are created each month, and around 135 million phishing attempts are made via email every single day. Here are some main rules of thumb to avoid phishing, and all they take are common sense: Don’t follow any links that don’t have https in the URL. Avoid links that lack the S. Don’t enter your password after following any link from any e-mail. Even if it really looks legit. If it’s from your bank, for example, just enter your banking app normally to complete whatever the e-mail is asking you to do. Do not follow the e-mailed link. Chances are, you’ll discover your account is normal and requires no attention at all. Bullet dodged. Keep your accounts secure with two factor authentication - that means adding an extra step to your login process, like receiving a security code to your phone. This is annoying for sure, but it does help keep predators out until a better solution is offered to the masses. We’re looking at you, e-mail security industry! We’re in dangerous waters these days, and the hacker sharks are circling, but you’re not helpless if you pay attention. Treat your e-mail with the same careful consideration with which you’d (hopefully) treat your wallet or other tangible assets, and you’ll go a long way towards avoiding the worst. Good luck out there! Author Bio Georg Greve is the Co-founding Chairman and Head of Product Development at Vereign, an intuitive software platform on a mission to bring authenticity and privacy to day-to-day online communication. Georg is also a software developer, physicist, and entrepreneur, with two decades of experience working closely with Red Hat, IBM, and Google as well as the United Nations, European Commission and various countries. His interest in information security dates back even further. He previously worked on the secure messaging platform Kolab, and as Founding President of the Free Software Foundation Europe (FSFE), where he received the German Federal Cross of Merit on Ribbon for his groundbreaking work on Open Standards and Free Software. Dark Web Phishing Kits: Cheap, plentiful and ready to trick you. Using machine learning for phishing domain detection [Tutorial] Meet ‘Gophish’, the open source Phishing Toolkit that simulates real-world phishing attacks
Read more
  • 0
  • 0
  • 22419

article-image-the-evolution-cybercrime
Packt Editorial Staff
29 Mar 2018
4 min read
Save for later

The evolution of cybercrime

Packt Editorial Staff
29 Mar 2018
4 min read
A history of cybercrime As computer systems have now become integral to the daily functioning of businesses, organizations, governments, and individuals we have learned to put a tremendous amount of trust in these systems. As a result, we have placed incredibly important and valuable information on them. History has shown, that things of value will always be a target for a criminal. Cybercrime is no different. As people flood their personal computers, phones, and so on with valuable data, they put a target on that information for the criminal to aim for, in order to gain some form of profit from the activity. In the past, in order for a criminal to gain access to an individual's valuables, they would have to conduct a robbery in some shape or form. In the case of data theft, the criminal would need to break into a building, sifting through files looking for the information of greatest value and profit. In our modern world, the criminal can attack their victims from a distance, and due to the nature of the internet, these acts would most likely never meet retribution. Cybercrime in the 70s and 80s In the 70s, we saw criminals taking advantage of the tone system used on phone networks. The attack was called phreaking, where the attacker reverse-engineered the tones used by the telephone companies to make long distance calls. In 1988, the first computer worm made its debut on the internet and caused a great deal of destruction to organizations. This first worm was called the Morris worm, after its creator Robert Morris. While this worm was not originally intended to be malicious it still caused a great deal of damage. The U.S. Government Accountability Office in 1980 estimated that the damage could have been as high as $10,000,000.00. 1989 brought us the first known ransomware attack, which targeted the healthcare industry. Ransomware is a type of malicious software that locks a user's data, until a small ransom is paid, which will result in the issuance of a cryptographic unlock key. In this attack, an evolutionary biologist named Joseph Popp distributed 20,000 floppy disks across 90 countries, and claimed the disk contained software that could be used to analyze an individual's risk factors for contracting the AIDS virus. The disk however contained a malware program that when executed, displayed a message requiring the user to pay for a software license. Ransomware attacks have evolved greatly over the years with the healthcare field still being a very large target. The birth of the web and a new dawn for cybercrime The 90s brought the web browser and email to the masses, which meant new tools for cybercriminals to exploit. This allowed the cybercriminal to greatly expand their reach. Up till this time, the cybercriminal needed to initiate a physical transaction, such as providing a floppy disk. Now cybercriminals could transmit virus code over the internet in these new, highly vulnerable web browsers. Cybercriminals took what they had learned previously and modified it to operate over the internet, with devastating results. Cybercriminals were also able to reach out and con people from a distance with phishing attacks. No longer was it necessary to engage with individuals directly. You could attempt to trick millions of users simultaneously. Even if only a small percentage of people took the bait you stood to make a lot of money as a cybercriminal. The 2000s brought us social media and saw the rise of identity theft. A bullseye was painted for cybercriminals with the creation of databases containing millions of users' personal identifiable information (PII), making identity theft the new financial piggy bank for criminal organizations around the world. This information coupled with a lack of cybersecurity awareness from the general public allowed cybercriminals to commit all types of financial fraud such as opening bank accounts and credit cards in the name of others. Cybercrime in a fast-paced technology landscape Today we see that cybercriminal activity has only gotten worse. As computer systems have gotten faster and more complex we see that the cybercriminal has become more sophisticated and harder to catch. Today we have botnets, which are a network of private computers that are infected with malicious software and allow the criminal element to control millions of infected computer systems across the globe. These botnets allow the criminal element to overload organizational networks and hide the origin of the criminals: We see constant ransomware attacks across all sectors of the economy People are constantly on the lookout for identity theft and financial fraud Continuous news reports regarding the latest point of sale attack against major retailers and hospitality organizations This is an extract from Information Security Handbook by Darren Death. Follow Darren on Twitter: @DarrenDeath. 
Read more
  • 0
  • 2
  • 21727

article-image-hackers-are-our-societys-immune-system-keren-elazari-on-the-future-of-cybersecurity
Amrata Joshi
15 Dec 2018
9 min read
Save for later

Hackers are our society’s immune system - Keren Elazari on the future of Cybersecurity

Amrata Joshi
15 Dec 2018
9 min read
Keren Elazari, a world renowned cybersecurity analyst and senior researcher at the Tel Aviv University Interdisciplinary Cyber Research Center, author and speaker spoke earlier this year at Six, about the future of cybersecurity and a range of real world attacks in recent years. She also dived into the consequences as well as possible motivations behind such attacks. The Six event covers various press conferences and hackathons. The Six event organizes around one billion security events on a daily basis. The cybersecurity events organized by Six has international experts who answer various questions and give insights on various topics. This article highlights few insights from this year’s Six on Cybersecurity talk by Keren Elazari on The Future of Cybersecurity from a hacker’s perspective. How hackers used Starbucks’ free WiFi to use customer CPU resources for crypto mining “What if I told you that in 10 seconds I could take over your computer, generate thousands of dollars worth of cryptocurrencies all while you are drinking your morning coffee? You might think it’s impossible, by this is exactly what happened in Argentina earlier this year.” - Keren Elazari Earlier this year, the Starbucks customers  at Argentina experienced a slight delay of 10 seconds after logging into the website for free Wi-Fi. So what exactly happened? A security researcher discovered that the computer was running Coinhive, a type of distributed cryptocurrency mining software for those ten seconds. It was running on all the machines in Argentinian Starbucks that logged in for free Wi-Fi and the software generated a lot of  monero, the cryptocurrency (money). The hacker didn’t even have to code a JavaScript for this attack as he just had to buy the code from Coinhive. The business model of the company behind Coinhive allows anyone to monetize the user’s CPU. Cyber criminals can earn a lot of money from technologies like Coinhive. There are actually some news sites in the US that are looking at using such coinhiving solution as an alternative to paying for the news. This is an example of how creative technologies made by cybercriminals can even generate completely new business models. IoT brings a whole new set of vulnerabilities to your ecosystem “According to the Munich security conference report, they are expecting this year double the amount of devices than there are humans on this planet. This is not going to change. We definitely need an immune system for new digital universe because it is expanding without a stop.”   Devices like cameras, CCTVs, webcams etc could be used by potential hackers to spy of users. But even if measures such as blocking its vision with tape is taken, web cams can be hacked, not with an intention to steal pictures but to hack of other devices. How the Mirai DDoS attack used webcams to bring down the likes of Airbnb and Amazon This is what happened 2 years ago, when the massive internet DDoS attack - Mirai took place. Over the course of a weekend it took down websites all over the world. Websites like Amazon, Airbnb, and large news sites etc were down, due to which these companies faced losses. This attack was supercharged by the numerous devices in people’s homes. These devices where for DDoS attack because they were using basic internet protocols such as DNS which can be easily subverted. Even worse, many of the devices used default username password combinations. It’s important to change the passwords for the newly purchased devices. With shodan, a search engine, one can check the internet connected devices in their organizations or at home. This is helpful as it improves protection for the organizations from getting hacked. How hackers used a smart fish tank to steal data from a casino and an AI caught it “Hackers have found very creative, very fast automatic ways to identify devices that they can use and they will utilize any resource online. It would just become a part of their digital army. Speaking of which even an aquarium, a fish tank was hacked recently.” Recently, a smart fish tank in a US Casino was hacked. It had smart sensors that would check the temperature and the feeding schedule of the fish and the salinity of the water. While, hacking a fish tank does not appear to have any monetary incentive to a hacker, its connection to the internet make it a valuable access point.. The hackers, who already had access to the casino network, used the outgoing internet connection of the aquarium to send out 10 gigabytes of data from the casino. As the data was going of this connection, there was no firewall and it got noticed by none. The suspicious activity was flaggedby a self learning algorithm which realized that there was something fishy as the outgoing connection had no relation with the fish tank setup. How WannaCry used Ransomware attacks to target organizations “I don’t think we should shame organizations for having to deal with ransomware because it is a little bit like a flu in a sense that these attacks are designed to propagate and infect as many computers as they can.”- Keren Elazari In May 2017, the WannaCry ransomware attack by the WannaCry ransomware cryptoworm, affected the computers running the Microsoft Windows operating system by encrypting data and the criminals demanded ransom payments in the Bitcoin cryptocurrency. This attack affected the UK National Health Service the most as according to NHS, 30% of that national health services were not functioning. 80 out of the 236 trusts got affected in England. As per the UK government, North Korea was behind this attack as they are need of money because they are under sanctions. The Lazarus Group, a cybercrime group from North Korea attacked the Swift infrastructure and also attacked the central bank of Bangladesh last year. NotPetya - The Wiper attack “Whoever was hacking the tax company in the Ukraine wanted to create an effective virus that would destroy the evidence of everything they have been doing for two years in a bunch of Ukrainian companies. It might have been an accident that it infected so many other companies in the world.” In June, 2017, NotPetya, a wiper attack affected enterprise networks across Europe. The Ukrainian companies got highly affected. This attack appeared like a ransomware attack as it demanded some payment but it actually was a wiper attack. This attack affected the data and wiped off the data stored for two years. Maersk, the world's largest container shipping company got highly affected by this attack. The company faced a heavy loss of amount $300 million and was a collateral damage. Out-of-life operation systems were most affected by this virus. The software vulnerability used in both of these attacks, ransomware and wiper was a code named, EternalBlue, a cyber weapon which was discovered and developed by National Security Agency (NSA). The NSA couldn’t keep a track of EternalBlue and the criminals took advantage of this and attacked using using this cyber weapon. Earlier this year, a cyber attack was made on the German government IT network. This attack affected the defence and interior ministries' private networks. Why might motivate nation state actors back cyber-attacks? “The story is never simple when it comes to cyber attackers. Sometimes the motivations of a nation or nation state actors can be hidden behind what seems like a financial or criminal activity.” One of the reasons behind a nation or state backing a cyber-attack could be the the financial aspect, they might be under sanctions and need money for developing nuclear weapons. Another reason could be that the state or country is in a state of chaos or confusion and it is trying to create a dynamic from which they could benefit. Lastly, it could be an accident, where the cyber attack sometimes gets more effective than what the state has ever imagined of. What can organizations do to safeguard themselves from such cyberattacks? Consider making hundreds of security decisions everyday while putting personal details like credit card on a website, downloading a software that cause trouble to the system, etc. Instead of using a recycled password, go for a new one. Educating employees in the organizations about penetration testing. Sharing details of the past experience with regards to hacking, will help in working towards it. Developing a cybersecurity culture in the organization will bring change. Invite a Red team to the organizations to review the system. Encourage Bug Bounty Programs for reporting bugs in organization. Security professionals can work in collaboration with programs like Mayhem. Mayhem is an automated system that helps in finding the bugs in a system. It won the hacking challenge in 2016 but beaten by humans the next year. “Just imagine you are in a big ball room and you are looking at the hacking competition between completely automated supercomputers  and this (Mayhem) ladies and gentlemen is the winner and I think is also the future.” Just two years ago, Mayhem, a machine won in a hacking competition organized by United  States Defense Advanced Research Projects Agency (DARPA), Las Vegas, where seven machines (supercomputers) competed against each other. Mayhem is the first non-human to win a hacking competition. In 2017, Mayhem competed against humans, though humans won it. But we can still imagine how smart are smart computers. What does the Future of Cybersecurity look like? “In the years to come, automation, machine learning, algorithms, AI will be an integral part, not just of every aspect of society, but [also an] integral part of cybersecurity. That’s why I believe we need more such technologies and more humans that know how to work alongside and together with these automated creatures. If you like me think that friendly hackers, technology, and building  an ecosystem will a good way to create a safer society, I hope you take the red pill and wake up to this reality,” concludes Elazari. As 2018 comes to a close plagued with security breaches across industries, Keren’s insightful talk on cybersecurity is a must watch for everyone entering 2019. Packt has put together a new cybersecurity bundle for Humble Bundle 5 lessons public wi-fi can teach us about cybersecurity Blackberry is acquiring AI & cybersecurity startup, Cylance, to expand its next-gen endpoint solutions like its autonomous cars’ software
Read more
  • 0
  • 0
  • 21293

article-image-five-biggest-challenges-information-security-2017
Charanjit Singh
08 Nov 2016
5 min read
Save for later

Five Biggest Challenges in Information Security in 2017

Charanjit Singh
08 Nov 2016
5 min read
Living in the digital age brings its own challenges. News of security breaches in well-known companies is becoming a normal thing. In the battle between those who want to secure the Internet and those who want to exploit its security vulnerabilities, here's a list of five significant security challenges that I think information security is/will be facing in 2017. Army of young developers Everyone's beloved celebrity is encouraging the population to learn how to code, and it's working. Learning to code is becoming easier every day. There are loads of apps and programs to help people learn to code. But not many of them care to teach how to write secure code. Security is usually left as an afterthought, an "advanced" topic to learn sometime in future. Even without the recent fame, software development is a lucrative career. It has attracted a lot of 9-to-5ers who just care about getting through the day and collecting their paycheck. This army of young developers who care little about the craft is most to blame when it comes to vulnerabilities in applications. It would astonish you to learn how many people simply don't care about the security of their applications. The pressure to ship and ever-slipping deadlines don't make it any better. Rise of the robots I mean IoT devices. Sorry, I couldn't resist the temptation. IoT devices are everywhere. "Internet of Things" they call it. As if Internet wasn't insecure enough already, it's on "things" now. Most of these things rarely have any concept of security. Your refrigerator can read your tweets, and so can your 13-year-old neighbor. We've already seen a lot of famous disclosures of cars getting hacked. It's one of the examples of how dangerous it can get. Routers and other such infrastructure devices are becoming smarter and smarter. The more power they get, the more lucrative they become for a hacker to attack them. Your computer may have a firewall and anti-virus and other fancy security software, but your router might not. Most people don't even change the default password for such devices. It's much easier for an attacker to simply control your means of connecting to the Internet than connecting to your device directly. On the other front, these devices can be (and have been) used as bots to launch attacks (like DDoS) elsewhere. Internet advertisements as malware The Internet economy is hugely dependent on advertisements. Advertisements is a big big business, but it is becoming uglier and uglier every day. As if tracking users all over the webs and breaching their privacy was not enough, advertisements are now used for spreading malware. Ads are very attractive to attackers as they can be used to distribute content on fully legitimate sites without actually compromising them. They've already been in the news for this very reason lately. So the Internet can potentially be used to do great damage. Mobile devices Mobile apps go everywhere you go. That cute little tap game you installed yesterday might result in the demise of your business. But that's just the tip of the iceberg. Android will hopefully add essential features to limit permissions granted to installed apps. New exploits are emerging everyday for vulnerabilities in mobile operating systems and even in the processor chips. Your company might have a secure network with every box checked, but what about the laptop and mobile device that Cindy brought in? Organizations need to be ever more careful about the electronic devices their employees bring into the premises, or use to connect to the company network. The house of security cards crumbles fast if attackers get access to the network through a legitimate medium. The weakest links If you follow the show Mr. Robot (you should, it's brilliant), you might remember a scene from the first Season when they plan to attack the "impenetrable" Steel Mountain. Quoting Elliot: Nothing is actually impenetrable. A place like this says it is, and it’s close, but people still built this place, and if you can hack the right person, all of a sudden you have a piece of powerful malware. People always make the best exploits. People are the weakest links in many technically secure setups. They're easiest to hack. Social engineering is the most common (and probably easiest) way to get access to an otherwise secure system. With the rise in advanced social engineering techniques, it is becoming crucial everyday to teach the employees how to detect and prevent such attacks. Even if your developers are writing secure code, it's doesn’t matter if the customer care representative just gives the password away or grants access to an attacker. Here's a video of how someone can break into your phone account with a simple call to your phone company. Once your phone account is gone, all your two-factor authentications (that depend on SMS-based OTPs) are worth nothing. About the author Charanjit Singh is a freelance JavaScript (React/Express) developer. Being an avid fan of functional programming, he’s on his way to take on Haskell/Purescript as his main professional languages.
Read more
  • 0
  • 0
  • 20820
article-image-fosdem-2019-designing-better-cryptographic-mechanisms-to-avoid-pitfalls-talk-by-maximilian-blochberger
Prasad Ramesh
13 Feb 2019
3 min read
Save for later

FOSDEM 2019: Designing better cryptographic mechanisms to avoid pitfalls - Talk by Maximilian Blochberger

Prasad Ramesh
13 Feb 2019
3 min read
At FOSDEM 2019, Belgium, Maximilian Blochberger talked about preventing cryptographic pitfalls by avoiding mistakes while integrating cryptographic mechanisms correctly. Blochberger is a research associate at the University of Hamburg. FOSDEM is a free and open event for software developers with thousands of attendees, this year’s event took place on second and third February. The goal of this talk is to raise awareness of cryptographic misuse. Preventing pitfalls in cryptography is not about cryptographic protocols but about designing better APIs. Consider a scenario where a developer that values privacy intends to add encryption. This is about integrating cryptographic mechanisms into your application. Blochberger uses a mobile application as an example but the principles are no specific to mobile applications. A simple task is presented—to encrypt a string which is actually difficult. A software developer who doesn't have any cryptographic or even security background would search it online. They will then copy paste a common answer snippet available on StackOverflow. Even though it had warnings of not being secure, but had upvotes and probably worked for some people. Readily available code like that has words like “AES” or “DES” and the software developer may not know much about those encryption algorithms. Using the default algorithms listed in such template code, and using the same keys is not secure. Also, the encryption itself is not CPA (chosen-plaintext attack) secure, the key derivation can be unauthenticated, among other things. 98% of security-related snippets are insecure according to many papers. It’s hard to get encryption right. The vulnerability is high especially if the code is copied from the internet. Implementing cryptographic mechanisms should be done by cryptographic engineers who have expertise in the field. The software developer does not need to develop or even know about the details of the implementation. Doing compiler checks instead of runtime checks is better since you don’t have to wait for something to go wrong before identifying the problem. Cryptography is harder than it actually looks. Many things can and do go wrong exposing encrypted data due to incorrect choices or inadequate measures. He demonstrates an iOS and macOS example using Tafelsalz. For more details with the demonstration of code, you can watch the video. Introducing CT-Wasm, a type-driven extension to WebAssembly for secure, in-browser cryptography Sennheiser opens up about its major blunder that let hackers easily carry out man-in-the-middle attacks Tink 1.2.0: Google’s new multi-language, cross platform, cryptographic library to secure data
Read more
  • 0
  • 0
  • 19754

article-image-social-engineering-attacks-things-to-watch-out-while-online
Savia Lobo
16 Jul 2018
4 min read
Save for later

Social engineering attacks – things to watch out for while online

Savia Lobo
16 Jul 2018
4 min read
The rise in the adoption of the internet is directly proportional to the rise in cybersecurity attacks. We feel that just by having layers of firewall or browsing over ‘https’, where ‘s’ stands for secure will indeed secure us from all those malware from attacking our systems. We also feel safe by having Google secure all our credentials, just because it is Google! All this is a myth. In fact, the biggest loophole in security breakouts is us, humans! It is innate human nature to help out those in need or get curious over a sale or a competition that can fetch a huge sum of money. These and many other factors act as a bait using which hackers or attackers find out ways to fish account credentials. These ways lead to social engineering attacks, which if unnoticed can highly affect one’s security online. Common Social Engineering Attacks Phishing This method is analogous to fishing where the bait is laid to attract fishes. Similarly, here the bait are emails sent out to customers with a malicious attachment or a clickable link. These emails are sent across to millions of users who are tricked to log into fake versions of popular websites, for instance, IBM, Microsoft, and so on. The main aim of a phishing attack is to gain the login information for instance passwords, bank account information, and so on. However, some attacks might be targeted at specific people or organizations. Such a targeted phishing is known as spear phishing. Spear phishing is a targeted phishing attack where the attackers craft a message for a specific individual. Once the target is identified, for instance, a manager of a renowned firm, via browsing his/her profile on social media sites such as Twitter or LinkedIn. The attacker then creates a spoof email address, which makes the manager believe that it’s from his/her higher authority. The mail may comprise of questions on important credentials, which should be confidential among managers and the higher authorities. Ads Often while browsing the web, users encounter flash advertisements asking them permissions to allow a blocked cookie. However, these pop-ups can be, at times, malicious. Sometimes, these malicious ads attack the user’s browser and get them redirected to another new domain. While being in the new domain the browser window can’t be closed. In another case, instead of redirection to a new site, the malicious site appears on the current page, using an iframe in HTML. After any one of the two scenarios is successful, the attacker tries to trick the user to download a fake Flash update, prompting them to fill up information on a phishing form, or claiming that their system is affected with a malware. Lost USB Drive What would you do if you find a USB drive stranded next to a photocopy machine or near the water cooler? You would insert it into your system to find out who really the owner is. Most of us fall prey to such social help, while this is what could result into USB baiting. A social engineering attack where hackers load malicious file within the USB drive and drop it near a crowded place or library. The USB baiting also appeared in the famous American show Mr. Robot in 2016. Here, the USB key simply needed a fraction of seconds to start off using HID spoofing to gather FBI passwords. A similar flash drive attack actually took place in 2008 when an infected flash drive was plugged into a US military laptop situated in the middle east. The drive caused a digital breach within the foreign intelligence agency. How can you protect yourself from these attacks? For organizations to avoid making such huge mistakes, which can lead to huge financial loss, the employees should be given a good training program. In this training program employees can be made aware of the different kinds of social engineering attacks and the channels via which attackers can approach. One way could be giving them a hands-on experience by putting them into the attacker's shoes and letting them perform an attack. Tools such as Kali Linux could be used in order to find out ways and techniques in which hackers think and how to safeguard individual or organizational information. The following video will help you in learning how a social engineering attack works. The author has made use of Kali Linux to better explain the attack practically. YouTube has a $25 million plan to counter fake news and misinformation 10 great tools to stay completely anonymous online Twitter allegedly deleted 70 million fake accounts in an attempt to curb fake news      
Read more
  • 0
  • 1
  • 19524

article-image-machine-generated-videos-like-deepfakes-trick-or-treat
Natasha Mathur
30 Oct 2018
3 min read
Save for later

Machine generated videos like Deepfakes - Trick or Treat?

Natasha Mathur
30 Oct 2018
3 min read
A Reddit user named “DeepFakes” had posted real-looking explicit videos of celebrities last year. He made use of deep learning techniques to insert celebrities’ faces into the adult movies. Since then the term “Deepfakes” has been used to describe deep learning techniques that help create realistic looking fake videos or images. Video tampering is usually done using generative adversarial networks. Why is everyone afraid of deepfakes? Deepfakes are problematic as they make it very hard to differentiate between the fake and real videos or images. This gives people the liberty to use deepfakes for promoting harassment and illegal activities. The most common use of deepfakes is found in revenge porn, fake celebrities videos and political abuse. For instance, people create face-swap porn videos of ex-girlfriends, classmates, politicians, celebrities, and teachers. This not only counts as cyberbullying but poses major threat overall as one can create a fake video showing world leaders declaring war on a country. Moreover, given that deepfakes seem so real, its victims often suffer through feelings of embarrassment and shame. Deepfakes also cause major reputational harm. One such example is of a 24-year-old, Noelle Martin, whose battle with deepfake pornography started six years ago. Anonymous predators stole her non-sexual images online and then doctored them into pornographic videos. Martin says she faces harassment from people till this day. Other victims of deepfakes pornography include celebrities such as Michelle Obama, Emma Watson, Natalie Portman, Ivanka Trump, Kate Middleton, and so forth. But, Deepfakes isn’t just limited to pornography and has made its way to many other spheres. Deepfakes can also be used as a weapon of misinformation since they can be used to maliciously hoax governments, populations and cause internal conflict. From destroying careers by creating fake evidence of them doing something inappropriate to showing soldiers killing innocent civilians, deepfakes have been wreaking havoc. In defense of deepfakes Just as any tool can be used for good and bad, deepfakes is just an effective machine learning tool that creates realistic videos. Even though deepfakes are majorly used for inappropriate activities, some have put it to good use. For instance, GANs or generative adversarial networks (which help create deepfakes) can create realistic images of skin lesions and create examples of liver lesions, which plays a major role in medical research. Other examples include filmmakers using deepfakes for making great videos with swapped in backgrounds, snapchat face swap photo filters, and face swap e-cards (eg; jib jab app) among others.   Are deepfakes trick or treat? If we make pros and cons list for deepfakes, cons seem to outweigh the pros as of today. Although it has its potential good applications, it is majorly used as a tool for harassing and misinforming people. There is a long way to go till deepfakes achieves itself a good rep and right now, it is mostly fake videos, fake images, false danger warnings, and revenge porn. Trick or treat? I spy a total TRICK!
Read more
  • 0
  • 0
  • 18515
article-image-what-blockchain-means-security
Lauren Stephanian
02 Oct 2017
5 min read
Save for later

What Blockchain Means for Security

Lauren Stephanian
02 Oct 2017
5 min read
It is estimated that hacks and flaws in security have cost the US over $445B every year. It is clear at this point that the cost of hacking attacks and ransomware has increased and will continue to increase year by year. Therefore, industries—especially those that require large amounts of important data—will need to invest in technologies to continue to be more secure. By design, Blockchain is theoretically a secure means of storing data. Each transaction is detailed on an immutable ledger, which serves to prevent and detect any form of tampering. Besides this, Blockchain also eliminates the need for verification from trusted third parties, which can come at high costs. But is this a promise that the technology has yet to fulfill, or is it part of the security revolution of the future we so desperately need? How Blockchain is resolving security issues One security issue that can be resolved by Blockchain relates to the fact that many industries rely heavily on “cloud and on-demand services, where our data is accessed and processed by untrusted third parties.” There are also many situations where they may want to jointly work on data without revealing our portion to untrusted entities. Blockchain can be used to create a system where users can jointly store data and also remain anonymous. In this case, Blockchain can be used to record time-stamped events that can’t be removed—so in the case of a cyber attack, it is easy to see where it came from. The Enigma Project, originally developed at MIT, is a good example of this use case. Another issue that Blockchain can improve is data tampering. There have been a number of cyber attacks where the attackers don’t delete or steal data, but alter it. One infamous example of this is the Stuxnet malware, which severely and physically damaged Iran's nuclear program. If this data were altered on the Blockchain, the transactions will be marked and will not be able to be altered or covered, and therefore hackers will not be able to hide their tracks. Blockchain's security vulnerabilities The inalterability of Blockchain and its decentralization clearly has many advantages, however, it does not entirely remove the possibility of data being altered. It is possible to introduce data unrelated to transactions to the Blockchain, and therefore this Blockchain data could be exposed to malware. The extent to which malware could impact the entire Blockchain and all its data is not yet known, however, there have been some instances of proven vulnerabilities. One such proven vulnerability includes Vitaly Kamluk’s proof of concept software that could take information from a hacker’s Bitcoin address and essentially pull malicious data and store it on the Blockchain. Private vs. public Blockchain implementations When understanding security risks in Blockchain technology, it is also important to understand the difference between private and public implementations. On public Blockchains, anyone can read or write transactions and anyone can aggregate those transactions and publish them if they are able to solve a cryptographic puzzle. Solving these puzzles takes a lot of computer power, and therefore a high amount of energy is required to solve many of these problems. This leads to a market where most of the transactions and puzzle solving is done in countries where energy is cheapest. This, in turn, leads to centralization and potential collusion. Private Blockchains, in comparison, give the network operator control over who can read and write to the ledger. In the case of Bitcoin in particular, ownership is proven through a private key linked to a transaction and just like physical money, these can easily be lost or stolen. One estimate puts the value of lost Bitcoins at $950M. There are many pros and cons which should be considered when deciding whether or not to use Blockchain. It is important to note here that the most important thing Blockchain provides us is with the ability to track who committed a particular transaction—for good or for bad—and when. There are some security measures with which it certainly would help a great deal—especially when it comes to tracking what information was breached, altered, or stolen. However, it is not an end-all-be-all when it comes to keeping data secured. If Blockchain is to be used to store important data, such as financial information, or client health records, it should be a wrapped in a layer of other cyber security software. Lauren Stephanian is a software developer by training and an analyst for the structured notes trading desk at Bank of America Merrill Lynch. She is passionate about staying on top of the latest technologies and understanding their place in society. When she is not working, programming, or writing, she is playing tennis, traveling, or hanging out with her good friends in Manhattan or Brooklyn. You can follow her on Twitter or Medium at @lstephanian or via her website.
Read more
  • 0
  • 0
  • 18485

article-image-defending-your-business-from-the-next-wave-of-cyberwar-iot-threats
Guest Contributor
15 Sep 2018
6 min read
Save for later

Defending your business from the next wave of cyberwar: IoT Threats

Guest Contributor
15 Sep 2018
6 min read
There’s no other word for the destabilization of another nation through state action other than war -- even if it’s done with ones and zeros. Recent indictments of thirteen Russians and three Russian companies tampering with US elections is a stark reminder. Without hyperbole it is safe to say that we are in the throes of an international cyber war and the damage is spreading massively over the corporate economy. Reports have reached a fever pitch and the costs globally are astronomical. According to Cybersecurity Ventures, damage related to cybercrime in general is projected to hit $6 trillion annually by 2021. Over the past year, journalists for many news agencies have reported credible studies regarding the epidemic of state sponsored cyber attacks. Wired and The Washington Post among many others have outlined threats that have reached the US energy grid and other elements of US infrastructure. However, the cost to businesses is just as devastating. While many attacks have been government targeted, businesses are increasingly at risk from state sponsored cyber campaigns. A recent worldwide threat assessment from the US Department of Justice discusses several examples of state-sponsored cyber attacks that affect commercial entities including diminishing trust from consumers, ransomware proliferation, IoT threats, the collateral damage from disruptions of critical infrastructure, and the disruption of shipping lanes. How Cyberwar Affects Us on a Personal Level An outcome of cyberwarfare that isn’t usually considered, but a large amount of damage is reflected in human capital. This can be found in the undermining of consumer and employee confidence in the ability of a company to protect data. According to a recent study examining how Americans feel about internet privacy in 2018, 51% of respondents said their main concern was online threats stealing their information, and over a quarter listed that they were particularly concerned about companies collecting/sharing their personal data. This kind of consumer fear is justified by a seeming lack of ability of companies to protect the data of individuals. Computing and quantitative business expert Dr. Benjamin Silverstone points out that recent cyber-attacks focus on the information of consumers (rather than other confidential documentation or state secrets which may have greater protection). Silverstone says, “Rather than blaming the faceless cyber-criminals, consumers will increasingly turn to the company that is being impersonated to ask how this sort of thing could happen in the first place. The readiness to share details online, even with legitimate companies, is being affected and this will damage their business in the long term.” So, how can businesses help restore consumer confidence? You should: Increase your budget toward better cybercrime solutions and tell your consumers about it liberally. Proven methods include investing in firewalls with intrusion prevention tools, teaching staff how to detect and avoid malware software, and enforcing strict password protocols to bolster security. Invest in two-factor authorization so that consumers feel safer when accessing your product Educate your consumer base -- it is equally important that everyone be more aware when it comes to cyber attack. Give your consumers regular updates about suspected scams and send tips and tricks on password safety. Ransomware and Malware Attacks CSO Online reports that ransomware damage costs exceeded $5 billion in 2017, 15 times the cost in 2015. Accordingly, Cybersecurity Ventures says that costs from ransomware attacks will rise to $11.5 billion next year. In 2019, they posit, a business will fall victim to a ransomware attack every 14 seconds. But is This International Warfare? The North Korean government’s botnet has been shown to be able to pull off DDoS attacks and is linked to the wannacry ransomware attack. In 2017, over 400,000 machines were infected by the wannacry virus, costing companies  over $4 Billion in over 150 countries. To protect yourself from ransomware attacks: Back up your data often and store in non-networked spaces or on the cloud. Ransomware only works if there is a great deal of data that is at risk. Encrypt whatever you can and keep firewalls/two-factor authorization in place wherever possible. Keep what cyber experts call the  “crown jewels” (the top 5% most important and confidential documents) on a dedicated computer with very limited access. The Next Wave of Threat - IoT IoT devices make mundane tasks like scheduling or coordination more convenient. However, proliferation of these devices create cybersecurity risk. Companies are bringing in devices like printers and coffee makers that are avenues for hackers to enter a network.   Many experts point to IoT as their primary concern. A study from shared assessment found that 97% of IT respondents felt that unsecured IoT devices could cause catastrophic levels of damage to their company. However, less than a third of the companies represented reported thorough monitoring of the risks associated with third-party technology. Here’s a list of how to protect yourself from IoT threats: Evaluate what data IoT devices are accumulating and limit raw storage. Create policies regarding anonymizing user data as much as possible. Apply security patches to any installed IoT device. This can be as simple as making sure you change the default password. Vet your devices - make sure you are buying from sources that (you believe) will be around a long time. If the business you purchase your IoT device from goes under, they will stop updating safety protocols. Make a diversified plan, just in case major components of your software set up are compromised. While we may not be soldiers, a war is currently on that affects us all and everyone must be vigilant. Ultimately, communication is key. Consumers rely on businesses to protect them from individual attack. These are individuals who are more likely to remain your customers if you can demonstrate how you are maneuvering to respond to global threats. About the author           Zach is a freelance writer who likes to cover all things tech. In particular, he enjoys writing about the influence of emerging technologies on both businesses and consumers. When he's not blogging or reading up on the latest tech trend, you can find him in a quiet corner reading a good book, or out on the track enjoying a run. New cybersecurity threats posed by artificial intelligence Top 5 cybersecurity trends you should be aware of in 2018 Top 5 cybersecurity myths debunked  
Read more
  • 0
  • 0
  • 16820
Modal Close icon
Modal Close icon