About this video

Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed. It explores the study and construction of algorithms that can learn from and make predictions on data. The R language is widely used among statisticians and data miners to develop statistical software and data analysis.

In this course, you will work through various examples on advanced algorithms, and focus a bit more on some visualization options. We’ll start by showing you how to use random forest to predict what type of insurance a patient has based on their treatment and you will get an overview of how to use random forest/decision tree and examine the model. Then, we’ll walk you through the next example on letter recognition, where you will train a program to recognize letters using a support Vector machine, examine the results, and plot a confusion matrix.
After that, you will look into the next example on soil classification from satellite data using K-Nearest Neighbor where you will predict what neighborhood a house is in based on other data about it. Finally, you’ll dive into the last example of predicting a movie genre based on its title, where you will use the tm package and learn some techniques for working with text data.

Style and Approach

These videos cover more advanced algorithms in a step-by-step manner and focus a bit more on some visualization options. The video not only makes you aware of the available ML packages in R, but also shows you examples of how to use them, such as building an automated intelligent system. A variety of real-world problem types are used to illustrate these concepts.

Publication date:
May 2017
1 hour 15 minutes

About the Author

  • Tim Hoolihan

    Tim Hoolihan currently works at DialogTech, a marketing analytics company focused on conversations. He is the Senior Director of Data Science there. Prior to that, he was CTO at Level Seven, a regional consulting company in the US Midwest. He is the organizer of the Cleveland R User Group.

    In his job, he uses deep neural networks to help automate of a lot of conversation classification problems. In addition, he works on some side-projects researching other areas of Artificial Intelligence and Machine Learning. Personally, he enjoys working on practice problems on Kaggle.com as well. Outside Data Science, he is interested in mathematical computation in general; he is a lifelong math learner and really enjoys applying it wherever he can. Recently, he has been spending time in financial analysis, and game development. He also knows a variety of languages: R, Python, Ruby, PHP, C/C++, and so on. Previously, he worked in web application and mobile development.

    Browse publications by this author
Book Title
Access this video, plus 7,500 other titles for FREE
Access now