Home Data Data Lake for Enterprises

Data Lake for Enterprises

By Vivek Mishra , Tomcy John , Pankaj Misra
books-svg-icon Book
Subscription FREE
eBook + Subscription €14.99
eBook €22.99
Print + eBook €27.99
READ FOR FREE Free Trial for 7 days. €14.99 p/m after trial. Cancel Anytime! BUY NOW BUY NOW BUY NOW
What do you get with a Packt Subscription?
This book & 7000+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook + Subscription?
Download this book in EPUB and PDF formats
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook?
Download this book in EPUB and PDF formats
Access this title in our online reader
DRM FREE - Read whenever, wherever and however you want
Online reader with customised display settings for better reading experience
What do you get with video?
Download this video in MP4 format
Access this title in our online reader
DRM FREE - Watch whenever, wherever and however you want
Online reader with customised display settings for better learning experience
What do you get with Audiobook?
Download a zip folder consisting of audio files (in MP3 Format) along with supplementary PDF
READ FOR FREE Free Trial for 7 days. €14.99 p/m after trial. Cancel Anytime! BUY NOW BUY NOW BUY NOW
Subscription FREE
eBook + Subscription €14.99
eBook €22.99
Print + eBook €27.99
What do you get with a Packt Subscription?
This book & 7000+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook + Subscription?
Download this book in EPUB and PDF formats
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook?
Download this book in EPUB and PDF formats
Access this title in our online reader
DRM FREE - Read whenever, wherever and however you want
Online reader with customised display settings for better reading experience
What do you get with video?
Download this video in MP4 format
Access this title in our online reader
DRM FREE - Watch whenever, wherever and however you want
Online reader with customised display settings for better learning experience
What do you get with Audiobook?
Download a zip folder consisting of audio files (in MP3 Format) along with supplementary PDF
  1. Free Chapter
    Introduction to Data
About this book
The term "Data Lake" has recently emerged as a prominent term in the big data industry. Data scientists can make use of it in deriving meaningful insights that can be used by businesses to redefine or transform the way they operate. Lambda architecture is also emerging as one of the very eminent patterns in the big data landscape, as it not only helps to derive useful information from historical data but also correlates real-time data to enable business to take critical decisions. This book tries to bring these two important aspects — data lake and lambda architecture—together. This book is divided into three main sections. The first introduces you to the concept of data lakes, the importance of data lakes in enterprises, and getting you up-to-speed with the Lambda architecture. The second section delves into the principal components of building a data lake using the Lambda architecture. It introduces you to popular big data technologies such as Apache Hadoop, Spark, Sqoop, Flume, and ElasticSearch. The third section is a highly practical demonstration of putting it all together, and shows you how an enterprise data lake can be implemented, along with several real-world use-cases. It also shows you how other peripheral components can be added to the lake to make it more efficient. By the end of this book, you will be able to choose the right big data technologies using the lambda architectural patterns to build your enterprise data lake.
Publication date:
May 2017
Publisher
Packt
Pages
596
ISBN
9781787281349

 

Chapter 1. Introduction to Data

Through this book, we are embarking on a huge task of implementing a technology masterpiece for your enterprise. In this journey, you will not only have to learn many new tools and technologies but also have to know a good amount of jargon and theoretical stuff. This will surely help you in your journey to reach the ultimate goal of creating the masterpiece, namely Data lake.

This part of the book aims at preparing you for a tough road ahead so that you are quite clear in the head as to what you want to achieve. The concept of a Data lake has evolved over time in enterprises, starting with concepts of data warehouse which contained data for long term retention and stored differently for reporting and historic needs. Then the concept of data mart came into existence which would expose small sets of data with enterprise relevant attributes. Data lake evolved with these concepts as a central data repository for an enterprise that could capture data as is, produce processed data, and serve the most relevant enterprise information.

The topic or technology of Data lake is not new, but very few enterprises have implemented a fully functional Data lake in their organization. Through this book, we want enterprises to start thinking seriously on investing in a Data lake. Also, with the help of you engineers, we want to give the top management in your organization a glimpse of what can be achieved by creating a Data lake which can then be used to implement a use case more relevant to your own enterprise.

So, fasten your seatbelt, hold on tight, and let's start the journey!

Rest assured that after completing this book, you will help your enterprise (small or big) to think and model their business in a data-centric approach, using Data lake as its technical nucleus.

The intent of this chapter is to give the reader insight into data, big data, and some of the important details in connection with data. The chapter gives some important textbook-based definitions, which need to be understood in depth so that the reader is convinced about how data is relevant to an enterprise. The reader would also have grasped the main crux of the difference between data and big data. The chapter soon delves into the types of data in depth and where we can find in an enterprise.

The latter part of the chapter tries to enlighten the user with the current state of enterprises with regard to data management and also tries to give a high-level glimpse on what enterprises are looking to transform themselves into, with data at the core. The whole book is based on a real-life example, and the last section is dedicated to explaining this example in more detail. The example is detailed in such a manner that the reader would get a good amount of concepts implemented in the form of this example.

 

Exploring data


Data refers to a set of values of qualitative or quantitative variables.

Data is measured, collected and reported, and analyzed, whereupon it can be visualized using graphs, images or other analysis tools. Data as a general concept refers to the fact that some existing information or knowledge is represented or coded in some form suitable for better usage or processing.

- Wikipedia

Data can be broadly categorized into three types:

  • Structured data
  • Unstructured data
  • Semi-structured data

Structured data is data that we conventionally capture in a business application in the form of data residing in a relational database (relational database management system (RDBMS)) or non-relational database (NoSQL - originally referred to as non SQL).

Structured data can again be broadly categorized into two, namely raw and cleansed data. Data that is taken in as it is, without much cleansing or filtering, is called raw data. Data that is taken in with a lot of cleansing and filtering, catering to a particular analysis by business users, is called cleansed data.

All the other data, which doesn’t fall in the category of structured, can be called unstructured data. Data collected in the form of videos, images, and so on are examples of unstructured data.

There is a third category called semi-structured data, which has come into existence because of the Internet and is becoming more and more predominant with the evolution of social sites. The Wikipedia definition of semi-structured data is as follows:

Semi-structured data is a form of structured data that does not conform with the formal structure of data models associated with relational databases or other forms of data tables, but nonetheless contains tags or other markers to separate semantic elements and enforce hierarchies of records and fields within the data. Therefore, it is also known as self-describing structure.

Some of the examples of semi-structured data are the well-known data formats, namely JavaScript Object Notation (JSON) and Extensible Markup Language (XML).

The following figure (Figure 01) covers whatever we discussed on different types of data, in a pictorial fashion. Please don't get confused by seeing spreadsheets and text files in the structured section. This is because the data presented in the following figure is in the form of a record, which, indeed, qualifies it to be structured data:

Figure 01: Types of Data

 

What is Enterprise Data?


Enterprise data refers to data shared by employees and their partners in an organization, across various departments and different locations, spread across different continents. This is data that is valuable to the enterprise, such as financial data, business data, employee personal data, and so on, and the enterprise spends considerable time and money to keep this data secure and clean in all aspects.

During all this, this so-called enterprise data passes the current state and becomes stale, or rather dead, and lives in some form of storage, which is hard to analyze and retrieve. This is where the significance of this data and having a single place to analyze it in order to discover various future business opportunities leads to the implementation of a Data lake.

Enterprise data falls into three major high-level categories, as detailed next:

  • Master data refers to the data that details the main entities within an enterprise. Looking at the master data, one can, in fact, find the business that the enterprise is involved in. This data is usually managed and owned by different departments. The other categories of data, as follows, need the master data to make meaningful values of them.
  • Transaction data refers to the data that various applications (internal and external) produce while transacting various business processes within an enterprise. This also includes people-related data, which, in a way, doesn’t categorize itself as business data but is significant. This data, when analyzed, can give businesses many optimization techniques to be employed. This data also depends and often refers to the master data.
  • Analytic data refers to data that is actually derived from the preceding two kinds of enterprise data. This data gives enough insight into various entities (master data) in the enterprise and can also combine with transaction data to make positive recommendations, which can be implemented by the enterprise, after performing the necessary due diligence.

The previously explained different types of enterprise data are very significant to the enterprise, because of which most enterprises have a process for the management of these types of data, commonly known as enterprise data management. This aspect is explained in more detail in the following section.

The following diagram shows the various enterprise data types available and how they interact with each other:

Figure 02: Different types of Enterprise Data

The preceding figure shows that master data is being utilized by both transaction and analytic data. Analytic data also depends on transaction data for deriving meaningful insights as needed by users who use these data for various clients.

                 
About the Authors
  • Vivek Mishra

    Vivek Mishra is an IT professional with more than nine years of experience in various technologies like Java, J2ee, Hibernate, SCA4J, Mule, Spring, Cassandra, HBase, MongoDB, REDIS, Hive, Hadoop. He has been a contributor for open source like Apache Cassandra and lead committer for Kundera(JPA 2.0 compliant Object-Datastore Mapping Library for NoSQL Datastores like Cassandra, HBase, MongoDB and REDIS). Mr Mishra in his previous experience has enjoyed long lasting partnership with most recognizable names in SCM, Banking and finance industries, employing industry standard full software life cycle methodologies Agile and SCRUM. He is currently employed with Impetus infotech pvt. ltd. He has undertaken speaking engagements in cloud camp and Nasscom Big data seminar and is an active blogger and can be followed at mevivs.wordpress.com

    Browse publications by this author
  • Tomcy John

    Tomcy John lives in Dubai (United Arab Emirates), hailing from Kerala (India), and is an enterprise Java specialist with a degree in Engineering (B Tech) and over 14 years of experience in several industries. He's currently working as principal architect at Emirates Group IT, in their core architecture team. Prior to this, he worked with Oracle Corporation and Ernst & Young. His main specialization is in building enterprise-grade applications and he acts as chief mentor and evangelist to facilitate incorporating new technologies as corporate standards in the organization. Outside of his work, Tomcy works very closely with young developers and engineers as mentors and speaks at various forums as a technical evangelist on many topics ranging from web and middleware all the way to various persistence stores.

    Browse publications by this author
  • Pankaj Misra

    Pankaj Misra has been a technology evangelist, holding a bachelor’s degree in engineering, with over 16 years of experience across multiple business domains and technologies. He has been working with Emirates Group IT since 2015, and has worked with various other organizations in the past. He specializes in architecting and building multi-stack solutions and implementations. He has also been a speaker at technology forums in India and has built products with scale-out architecture that support high-volume, near-real-time data processing and near-real-time analytics.

    Browse publications by this author
Latest Reviews (2 reviews total)
Até onde li atendeu minha expectativa.
The book is filled with grammatical errors and lacks any editorial oversight. The first two chapters lack cohesion and do a poor job of describing concepts.
Data Lake for Enterprises
Unlock this book and the full library FREE for 7 days
Start now