Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Last Updated in Feb 2025
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
 Kamath Kamath
Author Profile Icon Kamath
Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Machine Learning Review FREE CHAPTER 2. Practical Approach to Real-World Supervised Learning 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier A. Linear Algebra B. Probability Index

Feature analysis and dimensionality reduction

Among the first tools to master are the different feature analysis and dimensionality reduction techniques. As in supervised learning, the need for reducing dimensionality arises from numerous reasons similar to those discussed earlier for feature selection and reduction.

A smaller number of discriminating dimensions makes visualization of data and clusters much easier. In many applications, unsupervised dimensionality reduction techniques are used for compression, which can then be used for transmission or storage of data. This is particularly useful when the larger data has an overhead. Moreover, applying dimensionality reduction techniques can improve the scalability in terms of memory and computation speeds of many algorithms.

Notation

We will use similar notation to what was used in the chapter on supervised learning. The examples are in d dimensions and are represented as vector:

x = (x1,x2,…xd )T

The entire dataset containing n examples...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Java Machine Learning
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon