Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Unsupervised Learning with Python

You're reading from   Hands-On Unsupervised Learning with Python Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

Arrow left icon
Product type Paperback
Published in Feb 2019
Last Updated in Feb 2025
Publisher Packt
ISBN-13 9781789348279
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Bonaccorso Bonaccorso
Author Profile Icon Bonaccorso
Bonaccorso
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Unsupervised Learning 2. Clustering Fundamentals FREE CHAPTER 3. Advanced Clustering 4. Hierarchical Clustering in Action 5. Soft Clustering and Gaussian Mixture Models 6. Anomaly Detection 7. Dimensionality Reduction and Component Analysis 8. Unsupervised Neural Network Models 9. Generative Adversarial Networks and SOMs 10. Assessments 11. Other Books You May Enjoy

Connectivity constraints

An important feature of agglomerative hierarchical clustering is the possibility to include connectivity constraints to force the merging of specific samples. This kind of prior knowledge is very common in contexts where there are strong relationships between neighbors or when we know that some samples must belong to the same cluster because of their intrinsic properties. To achieve this goal, we need to use a connectivity matrix, A ∈ {0, 1}n × n:

In general, A is the adjacency matrix induced by a graph of the dataset; however, the only important requirement is the absence of isolated samples (without connections), because they cannot be merged in any way. The connectivity matrix is applied during the initial merging stages and forces the algorithm to aggregate the specified samples. As the following agglomerations don't impact on connectivity...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Unsupervised Learning with Python
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon