Handling null values with Apache Spark
Handling null values is an essential part of data processing in Apache Spark. Null values are missing or unknown values in a dataset that can affect the analysis and modeling process. Apache Spark provides multiple ways to handle null values to ensure data quality and data integrity. In this recipe, we will discuss how to handle null values in Apache Spark using Python.
How to do it...
- Import the libraries: Import the required libraries and create a SparkSessionobject:from pyspark.sql import SparkSession from pyspark.sql.functions import explode, col, when spark = (SparkSession.builder     .appName("handle-nulls")    .master("spark://spark-master:7077")    .config("spark.executor.memory", "512m")    .getOrCreate()) spark.sparkContext.setLogLevel("ERROR")
- Read file: Read the nobel_prizes.jsonfile using the...
 
                                             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
     
         
                 
                 
                 
                 
                 
                 
                 
                 
                