Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides - Data

281 Articles
article-image-teaching-ai-ethics-trick-or-treat
Natasha Mathur
31 Oct 2018
5 min read
Save for later

Teaching AI ethics - Trick or Treat?

Natasha Mathur
31 Oct 2018
5 min read
The Public Voice Coalition announced Universal Guidelines for Artificial Intelligence (UGAI) at ICDPPC 2018, last week. “The rise of AI decision-making also implicates fundamental rights of fairness, accountability, and transparency. Modern data analysis produces significant outcomes that have real-life consequences for people in employment, housing, credit, commerce, and criminal sentencing. Many of these techniques are entirely opaque, leaving individuals unaware whether the decisions were accurate, fair, or even about them. We propose these Universal Guidelines to inform and improve the design and use of AI”, reads the EPIC’s guideline page. Artificial Intelligence ethics aim to improve the design and use of AI, as well as to minimize the risk for society, as well as ensures the protection of human rights. AI ethics focuses on values such as transparency, fairness, reliability, validity, accountability, accuracy, and public safety. Why teach AI ethics? Without AI ethics, the wonders of AI can convert into the dangers of AI, posing strong threats to society and even human lives. One such example is when earlier this year, an autonomous Uber car, a 2017 Volvo SUV traveling at roughly 40 miles an hour, killed a woman in the street in Arizona. This incident brings out the challenges and nuances of building an AI system with the right set of values embedded in them. As different factors are considered for an algorithm to reach the required set of outcomes, it is more than possible that these criteria are not always shared transparently with the users and authorities. Other non-life threatening but still dangerous examples include the time when Google Allo, responded with a turban emoji on being asked to suggest three emoji responses to a gun emoji, and when Microsoft’s Twitter bot Tay, who tweeted racist and sexist comments. AI scientists should be taught at the early stages itself that they these values are meant to be at the forefront when deciding on factors such as the design, logic, techniques, and outcome of an AI project. Universities and organizations promoting learning about AI ethics What’s encouraging is that organizations and universities are taking steps (slowly but surely) to promote the importance of teaching ethics to students and employees working with AI or machine learning systems. For instance, The World Economic Forum Global Future Councils on Artificial Intelligence and Robotics has come out with “Teaching AI ethics” project that includes creating a repository of actionable and useful materials for faculties wishing to add social inquiry and discourse into their AI coursework. This is a great opportunity as the project connects professors from around the world and offers them a platform to share, learn and customize their curriculum to include a focus on AI ethics. Cornell, Harvard, MIT, Stanford, and the University of Texas are some of the universities that recently introduced courses on ethics when designing autonomous and intelligent systems. These courses put an emphasis on the AI’s ethical, legal, and policy implications along with teaching them about dealing with challenges such as biased data sets in AI. Mozilla has taken initiative to make people more aware of the social implications of AI in our society through its Mozilla’s Creative Media Awards. “We’re seeking projects that explore artificial intelligence and machine learning. In a world where biased algorithms, skewed data sets, and broken recommendation engines can radicalize YouTube users, promote racism, and spread fake news, it’s more important than ever to support artwork and advocacy work that educates and engages internet users”, reads the Mozilla awards page. Moreover, Mozilla also announced a $3.5 million award for ‘Responsible Computer Science Challenge’ to encourage teaching ethical coding to CS graduates. Other examples include Google’s AI ethics principles announced back in June, to abide by when developing AI projects, and SAP’s AI ethics guidelines and an advisory panel created last month. SAP says that they have designed these guidelines as it “considers the ethical use of data a core value. We want to create software that enables intelligent enterprise and actually improves people’s lives. Such principles will serve as the basis to make AI a technology that augments human talent”. Other organizations, like Drivendata have come out with tools like Deon, a handy tool that helps data scientists add an ethics checklist to your data science projects, making sure that all projects are designed keeping ethics at the center. Some, however, feel that having to explain how an AI system reached a particular outcome (in the name of transparency) can put a damper on its capabilities. For instance, according to David Weinberger, a senior researcher at the Harvard Berkman Klein Center for Internet & society, “demanding explicability sounds fine, but achieving it may require making artificial intelligence artificially stupid”. Teaching AI ethics- trick or treat? AI has transformed the world as we know it. It has taken over different spheres of our lives and made things much simpler for us. However, to make sure that AI continues to deliver its transformative and evolutionary benefits effectively, we need ethics. From governments to tech organizations to young data scientists, everyone must use this tech responsibly. Having AI ethics in place is an integral part of the AI development process and will shape a healthy future of robotics and artificial intelligence. That is why teaching AI ethics is a sure-shot treat. It is a TREAT that will boost the productivity of humans in AI, and help build a better tomorrow.
Read more
  • 0
  • 0
  • 23474

article-image-ai-deserve-to-be-so-overhyped
Aaron Lazar
28 May 2018
6 min read
Save for later

Does AI deserve to be so Overhyped?

Aaron Lazar
28 May 2018
6 min read
The short answer is yes, and no. The long answer is, well, read on to find out. Several have been asking the question, including myself, wondering whether Artificial Intelligence is just another passing fad like maybe the Google Glass or nano technology. The hype for AI began over the past few years, although if you actually look back at the 60’s it seems to have started way back then. In the early 90s and all the way down to the early 2000’s, a lot of media and television shows were talking about AI quite a bit. Going 25 centuries even further back, Aristotle speaks of not just thinking machines but goes on to talk of autonomous ones in his book, Politics: for if every instrument, at command, or from a preconception of its master's will, could accomplish its work (as the story goes of the statues of Daedalus; or what the poet tells us of the tripods of Vulcan, "that they moved of their own accord into the assembly of the gods "), the shuttle would then weave, and the lyre play of itself; nor would the architect want servants, or the [1254a] master slaves. Aristotle, Politics: A treatise on Government, Book 1, Chapter 4 This imagery of AI has managed to sink into our subconscious minds over the centuries propelling creative work, academic research and industrial revolutions toward that goal. The thought of giving machines a mind of their own, existed quite long ago, but recent advancements in technology have made it much clearer and realistic. The Rise of the Machines The year is 2018. The 4th Industrial Revolution is happening and intelligent automation has taken over. This is the point where I say no, AI is not overhyped. General Electric, for example, is a billion dollar manufacturing company that has already invested in AI. GE Digital has AI systems running through several automated systems. They even have their own IIoT platform called Predix. Similarly, in the field of healthcare, the implementation of AI is growing in leaps and bounds. The Google Deepmind project is able to process millions of medical records within minutes. Although this kind of research is in its early phase, Google is working closely with the Moorfields Eye Hospital NHS Foundation Trust to implement AI and improve eye treatment. AI startups focused on healthcare and other allied areas such as genetic engineering are some of the highly invested and venture capital supported ones in recent times. Computer Vision or image recognition is one field where AI has really proven its power. Analysing datasets like iris has never been easier, paving way for more advanced use cases like automated quality checks in manufacturing units. Another interesting field is Healthcare, where AI has helped sift through tonnes of data, helping doctors diagnose illnesses quicker, manufacture more effective and responsive drugs, and in patient monitoring. The list is endless, clearly showing that AI has made its mark in several industries. Back (up) to the Future Now, if you talk about the commercial implementations of AI, they’re still quite far fetched at the moment. Take the same Computer Vision application for example. Its implementation will be a huge breakthrough in autonomous vehicles. But if researchers have managed to obtain an 80% accuracy for object recognition on roads, the battle is not close to being won! Even if they do improve, do you think driverless vehicles are ready to drive in the snow, through the rain or even storms? I remember a few years ago, Business Process Outsourcing was one industry, at least in India, that was quite fearful of the entry of AI and autonomous systems that might take over their jobs. Machines are only capable of performing 60-70% of the BPO processes in Insurance, and with changing customer requirements and simultaneously falling patience levels, these numbers are terrible! It looks like the end of Moore’s law is here, for AI I mean. Well, you can’t really expect AI to have the same exponential growth that computers did, decades ago. There are a lot of unmet expectations in several fields, which has a considerable number of people thinking that AI isn’t going to solve their problems now, and they’re right. It is probably going to take a few more years to mature, making it a thing of the future, not of the present. Is AI overhyped now? Yeah, maybe? What I think Someone once said, hype is a double-edged sword. If it’s not enough, innovation may become obscure and if it’s too much, expectations will become unreasonable. It’s true that AI has several beneficial use cases, but what about fairness of such systems? Will machines continue to think the way they’re supposed to or will they start finding their own missions that don’t involve benefits to the human race? At the same time, there’s also a question of security and data privacy. GDPR will come into effect in a few days, but what about the prevailing issues of internet security? I had an interesting discussion with a colleague yesterday. We were talking about what the impact of AI could be for us as end-customers, in a developing and young country like India. Do we really need to fear losing our jobs, will we be able to reap the benefits of AI directly or would it be an indirect impact? The answer is, probably yes, but not so soon. If we drew up the hierarchy of needs pyramid for AI, it would look something like the above. For each field to fully leverage AI, it’s going to involve several stages like collecting data, storing it effectively, exploring it, then aggregating it, optimising it with the help of algorithms and then finally achieving AI. That’s bound to take a LOT of time! Honestly speaking, a country like India lacks as much implementation of AI in several fields. The major customers of AI, apart from some industrial giants, will obviously be the government. Although, that is sure to take at least a decade or so, keeping in mind the several aspects to be accomplished first. In the meantime, buddying AI developers and engineers are scurrying to skill themselves up in the race to be in the cream of the crowd! Similarly, what about the rest of the world? Well, I can’t speak for everyone, but if you ask me, AI is a really promising technology and I think we need to give it some time; allow the industries and organisations investing in it to take enough time to let it evolve and ultimately benefit us customers, one way or another. You can now make music with AI thanks to Magenta.js Splunk leverages AI in its monitoring tools    
Read more
  • 0
  • 0
  • 23370

article-image-unity-machine-learning-agents-transforming-games-with-artificial-intelligence
Amey Varangaonkar
30 Mar 2018
4 min read
Save for later

Unity Machine Learning Agents: Transforming Games with Artificial Intelligence

Amey Varangaonkar
30 Mar 2018
4 min read
Unity has undoubtedly been one of the leaders when it comes to developing cross-platform products - going from strengths to strengths in developing visually stimulating 2D as well as 3D games and simulations.With Artificial Intelligence revolutionizing the way games are being developed these days, Unity have identified the power of Machine Learning and introduced Unity Machine Learning Agents. With this, they plan on empowering the game developers and researchers in their quest to develop intelligent games, robotics and simulations. What are Unity Machine Learning Agents? Traditionally, game developers have been hard-coding the behaviour of the game agents. Although effective, this is a tedious task and it also limits the intelligence of the agents. Simply put, the agents are not smart enough. To overcome this obstacle, Unity have simplified the training process for the game developers and researchers by introducing Unity Machine Learning Agents (ML-Agents, in short). Through just a simple Python API, the game agents can be now trained to use deep reinforcement learning, an advanced form of machine learning, to learn from their actions and modify their behaviour accordingly. These agents can then be used to dynamically modify the difficulty of the game. How do they work? As mentioned earlier, the Unity ML-Agents are designed to work based on the concept of deep reinforcement learning, a branch of machine learning where the agents are trained to learn from their own actions. Here is a simple flowchart to demonstrate how reinforcement learning works: The reinforcement learning training cycle The learning environment to be configured for the ML-agents consists of 3 primary objects: Agent: Every agent has a unique set of states, observations and actions within the environment, and is assigned rewards for particular events. Brain: A brain decides what action any agent is supposed to take in a particular scenario. Think of it as a regular human brain, which basically controls the bodily functions. Academy: This object contains all the brains within the environment To train the agents, a variety of scenarios are made possible by varying the connection of different components (explained above) of the environment. Some are single agents, some simultaneous single agents, and others could be co-operative and competitive multi-agents and more. You can read more about these possibilities on the official Unity blog. Apart from the way these agents are trained, Unity are also adding some cool new features in these ML-agents. Some of these are: Monitoring the agents’ decision-making to make it more accurate Incorporating curriculum learning, by which the complexity of the tasks can eventually be increased to aid more effective learning Imitation learning is a newly-introduced feature wherein the agents simply mimic the actions we want them to perform, rather than they learning on their own. What next for Unity Machine Learning Agents? Unity recently announced the release of v0.3 beta SDK of the ML-agents, and have been making significant progress in this domain to develop smarter, more intelligent game agents which can be used with the Unity game engine. Still very much in the research phase, these agents can also be used as an example by academic researchers to study the complex behaviour of trained models in different environments and scenarios where the variables associated with the in-game physics and visual appearance can be altered. Going forward, these agents can also be used by enterprises for large scale simulations, in robotics and also in the development of autonomous vehicles. These are interesting times for game developers, and Unity in particular, in their quest for developing smarter, cutting-edge games. Inclusion of machine learning in their game development strategy is a terrific move, although it will take some time for this to be perfected and incorporated seamlessly. Nonetheless, all the research and innovation being put into this direction certainly seems well worth it!
Read more
  • 0
  • 0
  • 23272

article-image-admiring-many-faces-facial-recognition-deep-learning
Sugandha Lahoti
07 Dec 2017
7 min read
Save for later

Admiring the many faces of Facial Recognition with Deep Learning

Sugandha Lahoti
07 Dec 2017
7 min read
Facial recognition technology is not new. In fact, it has been around for more than a decade. However, with the recent rise in artificial intelligence and deep learning, facial technology has achieved new heights. In addition to facial detection, modern day facial recognition technology also recognizes faces with high accuracy and in unfavorable conditions. It can also recognize expressions and analyze faces to generate insights about an individual. Deep learning has enabled a power-packed face recognition system, all geared up to achieve widespread adoption. How has deep learning modernised facial recognition Traditional facial recognition algorithms would recognize images and people using distinct facial features (placement of eye, eye color, nose shape etc.) However, they failed in correct identification in cases of different lighting or slight change in the appearance ( beard growth, aging, or pose). In order to develop facial recognition techniques for a dynamic and ever-changing face, deep learning is proving to be a game changer. Deep Neural nets go beyond the approach of manual extraction. These AI based Neural Networks rely on image pixels to analyze features of a particular face. So they scan faces irrespective of the lighting, ageing, pose, or emotions. Deep learning algorithms remember each time they recognize or fail to recognize a problem. Thus, avoiding repeat mistakes and getting better at each attempt. Deep learning algorithms can also be helpful in converting 2D images to 3D. Facial recognition in practice: Facial Recognition Technology in Multimedia Deep learning enabled facial recognition technologies can be used to track audience reaction and measure different levels of emotions. Essentially it can predict how a member of the audience will react to the remaining film. Not only this, it also helps determine what percentage of users will be interested in a particular movie genre. For example, Microsoft’s Azure Emotion,  an emotion API detects emotions by analysing the facial expressions on an image or video content over time. Caltech and Disney have collaborated to develop a neural network which can track facial expressions. Their deep learning based Factorised Variational Autoencoders (FVAEs) analyze facial expressions of audience for about 10 minutes and then predict how their reaction will be for the rest of the film. These techniques help in estimating whether the viewers are giving the expected reactions at the right place. For example, the viewer is not expected to yawn on a comical scene. With this, Disney can also predict the earning potential of a particular movie. It can generate insights that may help producers create compelling movie trailers to maximize the number of footfalls. Smart TVs are also equipped with sophisticated cameras and deep learning algos for facial recognition ability. They can recognize the face of the person watching and automatically show channels and web applications programmed as their favorites. The British broadcasting corporation uses the facial recognition technology, built by CrowdEmotion. By tracking faces of almost 4,500 audience members watching show trailers, they gauge exact customer emotions about a particular programme. This in turn helps them generate insights to showcase successful commercials. Biometrics in Smartphones A large number of smartphones nowadays are instilled with biometric capabilities. Facial recognition in smartphones are not only used as a means of unlocking and authorizing, but also for making secure transactions and payments. In present times, there has been a rise in chips with built-in deep learning ability. These chips are embedded into smartphones. By having a neural net embedded inside the device, crucial face biometric data never leaves the device or sent to the cloud. This in turn improves privacy and reduces latency. Some of the real-world examples include Intel’s Nervana Neural Network Processor, Google’s TPU, Microsoft’s FPGA, and Nvidia’s Tesla V100. Deep learning models, embedded in a smartphone, can construct a mathematical model of the face which is then stored in the database. Using this mathematical face model, smartphones can easily recognize users even as their face ages or when it is obstructed by wearable accessories. Apple has recently launched the iPhone X facial recognition system termed as FaceID. It maps thousands of points on a user’s face using a projector and an infrared camera (which can operate under varied lighting conditions). This map is then passed to a bionic chip embedded in the smart phone. The chip has a neural network which constructs a mathematical model of the user’s face, used for biometric face verification and recognition. Windows Hello is also a facial recognition technology to unlock Windows smart devices equipped with infrared cameras. Qualcomm, a mobile technology organization, is working on a new depth-perception technology. It will include an image signal processor and high-resolution 3D depth-sensing cameras for facial recognition. Face recognition for Travel Facial recognition technologies can smoothen the departure process for a customer by eliminating the need for a boarding pass. A traveller is scanned by cameras installed at various check points, so they don’t have to produce a boarding pass at every step. Emirates is collaborating with Dubai Customs, Police and Airports to use a facial recognition technology solution integrated with the UAE Wallet app. The project is known as Together Initiative, it allows travellers to register and store their biometric facial data at several kiosks placed at the check-in area. This facility helps passengers to avoid presenting their physical documents at every touchpoint. Face recognition can also be used for determining illegal immigration. The technology compares the photos of passengers taken immediately before boarding, with the photos provided in their visa application. Biometric Exit, is an initiative by US government, which uses facial recognition to identify individuals leaving the country. Facial recognition technology can also be used at train stations to reduce the waiting time for  buying a train ticket or going through other security barriers. Bristol Robotics Laboratory has developed a software which uses infrared cameras to identify passengers as they walk onto the train platform. They do not need to carry tickets. Retail and shopping In the area of retail, smart facial recognition technologies can be helpful in fast checkout by keeping a track of each customer as they shop across a store. This smart technology, can also use machine learning and analytics to find trends in the shopper’s purchasing behavior over time and devise personalized recommendations. Facial video analytics and deep learning algorithms can also identify loyal and VIP shoppers from the moving crowd, giving them a privileged VIP experience. Thus, enabling them with more reasons to come back and make repeat purchases. Facial biometrics can also accumulate rich statistics about demographics(age, gender, shopping history) of an individual. Analyzing these statistics can generate insights, which helps organizations develop their products and marketing strategies. FindFace is one such platform that uses sophisticated deep learning technologies to generate meaningful data about the shopper. Its e-facial recognition system can verify faces with almost 99% accuracy. It can also help route the shopper data to a salesperson’s notice for personalized assistance. Facial recognition technology can also be used to make secure payment transactions simply by analysing a person’s face. AliBaba has set up a Smile to Pay face recognition system in KFC's. This system allows customers to make secure payments by merely scanning their face. Facial recognition has emerged as a hot topic of interest and is poised to grow. On the flip side, organizations deploying such technology should incorporate privacy policies as a standard measure. Data collected from such facial recognition software can also be used wrongly for targeting customers with ads, or for other illegal purposes. They should implement a methodical and systematic approach for using facial recognition for the benefit of their customers. This will not only help businesses generate a new source of revenue, but will also usher in a new era of judicial automation.  
Read more
  • 0
  • 0
  • 23263

article-image-amazon-patents-2018-machine-learning-ar-robotics
Natasha Mathur
06 Aug 2018
7 min read
Save for later

Four interesting Amazon patents in 2018 that use machine learning, AR, and robotics

Natasha Mathur
06 Aug 2018
7 min read
"There are two kinds of companies, those that work to try to charge more and those that work to charge less. We will be the second."-- Jeff Bezos, CEO Amazon When Jeff Bezos launched Amazon.com in 1994, it was an online bookselling site. This was during a time when bookstores such as Barnes & Noble, Waldenbooks and Crown Books were the leading front runners in the bookstore industry in the American shopping malls. Today, Amazon’s name has become almost synonymous with online retail for most people and has now spread its wings to cloud computing, electronics, tech gadgets and the entertainment world. With market capitalization worth $897.47B as of August 3rd 2018, it’s hard to believe that there was a time when Amazon sold only books. Amazon is constantly pushing to innovate and as new inventions come to shape, there are “patents” made that helps the company have a competitive advantage over technologies and products in order to attract more customers. [box type="shadow" align="" class="" width=""]According to United States Patent and Trademark Office (USPTO), Patent is an exclusive right to invention and “the right to exclude others from making, using, offering for sale, or selling the invention in the United States or “importing” the invention into the United States”.[/box] As of March 20, 2018, Amazon owned 7,717 US patents filed under two business entities, Amazon Technologies, Inc. (7,679), and Amazon.com, Inc (38). Looking at the chart below, you can tell that Amazon Technologies, Inc., was one among the top 15 companies in terms of number of patents granted in 2017. Top 15 companies, by number of patents granted by USPTO, 2017 Amazon competes closely with the world’s leading tech giants in terms of patenting technologies. The below table only considers US patents. Here, Amazon holds only few US patents than IBM, Microsoft, Google, and Apple.  Number of US Patents Containing Emerging-Technology Keywords in Patent Description Some successfully patented Amazon innovations in 2018 There are thousands of inventions that Amazon is tied up with and for which they have filed for patents. These include employee surveillance AR goggles, a real-time accent translator, robotic arms tossing warehouse items,  one-click buying, drones,etc. Let’s have a look at these remarkable innovations by Amazon. AR goggles for improving human-driven fulfillment (or is it to track employees?) Date of Patent: August 2, 2018 Filed: March 20, 2017 Assignee: Amazon Technologies, Inc.   AR Goggles                                                          Features: Amazon has recently patented a pair of augmented reality goggles that could be used to keep track of its employees.The patent is titled “Augmented Reality User interface facilitating fulfillment.” As per the patent application, the application is a wearable computing device such as augmented reality glasses that are worn on user’s head. The user interface is rendered upon one or more lenses of the augmented reality glasses and it helps to show the workers where to place objects in Amazon's fulfillment centers. There’s also a feature in the AR glasses which provides workers with turn-by-turn directions to the destination within the fulfillment centre. This helps them easily locate the destination as all the related information gets rendered on the lenses.    AR Goggles  steps The patent has received criticism over concerns that this application might hamper the privacy of employees within the warehouses, tracking employees’ every single move. However, Amazon has defended the application by saying that it has got nothing to do with “employee surveillance”. As this is a patent, there’s no guarantee if it will actually hit the market. Robotic arms that toss warehouse items Date of Patent: July 17, 2018 Filed: September 29, 2015 Assignee: Amazon Technologies, Inc. Features: Amazon won a patent titled “Robotic tossing of items in inventory system” last month. As per the patent application, “Robotic arms or manipulators can be used to toss inventory items within an inventory system. Tossing strategies for the robotic arms may include information about how a grasped item is to be moved and released by a robotic arm to achieve a trajectory for moving the item to a receiving location”.  Robotic Arms Utilizing a robotic arm to toss an item to a receiving location can help improve throughput through the inventory system. This is possible as the robotic arms will help with reducing the amount of time that may otherwise be spent on placing a grasped item directly onto a surface for receiving the item. “The tossing strategy may be based at least in part upon a database containing information about the item, characteristics of the item, and/or similar items, such as information indicating tossing strategies that have been successful or unsuccessful for such items in the past,” the patent reads.  Robotic Arms Steps Amazon’s aim with this is to eliminate the challenges faced by modern inventory systems like supply chain distribution centers, airport luggage systems, etc, while responding to requests for inventory items. The patent received criticism over the concern that one of the examples in the application was a dwarf figurine and could possibly mock people of short stature. But, according to Amazon, “The intention was simply to illustrate a robotic arm moving products, and it should not be taken out of context.” Real-time accent translator Date of Patent: June 21, 2018 Filed: December 21, 2016 Assignee: Amazon Technologies, Inc. Features: Amazon won a patent for an audio system application, titled “Accent translation” back in June this year, which will help with translating the accent of the speaker to the listener’s accent. The aim with this app is to get rid of the possible communication barriers which may arise due to different accents as they can be difficult to understand at times. Accent translation system The accent translation system collects a number of audio samples from different sources such as phone call, television, movies, broadcasts, etc. Each audio sample will have its association with at least one of the accent sample sets present in its database.  For instance, german accent will be associated with the german accent sample set.   Accent translation system steps In a two-party dialog, acquired audio is analyzed and if it associates with one among a wide range of saved accents then the audio from both the sides is outputted based on the accent of the opposite party. The possibilities with this application are endless. One major use case is the customer care industry where people have to constantly talk to different people with different accents. Drone that uses Human gestures and voice commands Date of Patent: March 20, 2018 Filed: July 18, 2016 Assignee: Amazon Technologies, Inc. Features: Amazon patented for a drone, titled “Human interaction with unmanned aerial vehicles”, earlier this year, that would use human gestures and voice commands for package delivery. Amazon Drone makes use of propulsion technology which will help with managing the speed, trajectory, and direction of the drone.   Drones As per the patent application, “an unmanned aerial vehicle is provided which includes propulsion device, sensor device and a management system. The management system is configured to receive human gestures via the sensor device and in response, instruct the propulsion device to affect and adjustment to the behavior of the unnamed aerial vehicle. Human gestures include-- visible gestures, audible gestures, and other gestures capable of recognition by the unmanned vehicle”. Working structure of drones The concept for drones started when Amazon CEO, Jeff Bezos, promised, back in 2013, that the company aims to make 30-minute deliveries, of packages up to 2.25 kgs or 5 pounds. Amazon’s patents are a clear indication of its efforts and determination for inventing cutting-edge technologies for optimizing its operations so that it can pass on the benefits to its customers in the form of competitively priced product offerings. As Amazon has been putting its focus on machine learning, the drones and robotic arms will make the day-to-day tasks of the facility workers easier and more efficient. In fact, Amazon has stepped up its game big time and is incorporating Augmented reality, with its AR glasses to further scale efficiencies. The real-time accent translators help eliminate the communication barriers, making Amazon cover a wide range of areas and perhaps provide a seamless customer care experience in the coming days. Amazon Echo vs Google Home: Next-gen IoT war Amazon is selling facial recognition technology to police  
Read more
  • 0
  • 3
  • 23011

article-image-julia-for-machine-learning-will-the-new-language-pick-up-pace
Prasad Ramesh
20 Oct 2018
4 min read
Save for later

Julia for machine learning. Will the new language pick up pace?

Prasad Ramesh
20 Oct 2018
4 min read
Machine learning can be done using many languages, with Python and R being the most popular. But one language has been overlooked for some time—Julia. Why isn’t Julia machine learning a thing? Julia isn't an obvious choice for machine learning simply because it's a new language that has only recently hit version 1.0. While Python is well-established, with a large community and many libraries, Julia simply doesn't have the community to shout about it. And that's a shame. Right now Julia is used in various fields. From optimizing milk production in dairy farms to parallel supercomputing for astronomy, Julia has a wide range of applications. A common theme here is that these actions all require numerical, scientific, and sometimes parallel computation. Julia is well-suited to the sort of tasks where intensive computation is essential. Viral Shah, CEO of Julia Computing said to Forbes “Amazon, Apple, Disney, Facebook, Ford, Google, Grindr, IBM, Microsoft, NASA, Oracle and Uber are other Julia users, partners and organizations hiring Julia programmers.” Clearly, Julia is powering the analytical nous of some of the most high profile organizations on the planet. Perhaps it just needs more cheerleading to go truly mainstream. Why Julia is a great language for machine learning Julia was originally designed for high-performance numerical analysis. This means that everything that has gone into its design is built for the very things you need to do to build effective machine learning systems. Speed and functionality Julia combines the functionality from various popular languages like Python, R, Matlab, SAS and Stata with the speed of C++ and Java. A lot of the standard LaTeX symbols can be used in Julia, with the syntax usually being the same as LaTeX. This mathematical syntax makes it easy for implementing mathematical formulae in code and make Julia machine learning possible. It also has in-built support for parallelism which allows utilization of multiple cores at once making it fast at computations. Julia’s loops and functions features are pretty fast, fast enough that you would probably notice significant performance differences against other languages. The performance can be almost comparable to C with very little code actually used. With packages like ArrayFire, generic code can be run on GPUs. In Julia, the multiple dispatch feature is very useful for defining number and array-like datatypes. Matrices, data tables work with good compatibility and performance. Julia has automatic garbage collection, a collection of libraries for mathematical calculations, linear algebra, random number generation, and regular expression matching. Libraries and scalability Julia machine learning can be done with powerful tools like MLBase.jl, Flux.jl, Knet.jl, that can be used for machine learning and artificial intelligence systems. It also has a scikit-learn implementation called ScikitLearn.jl. Although ScikitLearn.jl is not an official port, it is a useful additional tool for building machine learning systems with Julia. As if all those weren’t enough, Julia also has TensorFlow.jl and MXNet.jl. So, if you already have experience with these tools, in other implementations, the transition is a little easier than learning everything from scratch. Julia is also incredibly scalable. It can be deployed on large clusters quickly, which is vital if you’re working with big data across a distributed system. Should you consider Julia machine learning? Because it’s fast and possesses a great range of features, Julia could potentially overtake both Python and R to be the choice of language for machine learning in the future. Okay, maybe we shouldn’t get ahead of ourselves. But with Julia reaching the 1.0 milestone, and the language rising on the TIOBE index, you certainly shouldn’t rule out Julia when it comes to machine learning. Julia is also available to use in the popular tool Jupyter Notebook, paving a path for wider adoption. A note of caution, however, is important. Rather than simply dropping everything for Julia, it will be worth monitoring the growth of the language. Over the next 12 to 24 months we’ll likely see new projects and libraries, and the Julia machine learning community expanding. If you start hearing more noise about the language, it becomes a much safer option to invest your time and energy in learning it. If you are just starting off with machine learning, then you should stick to other popular languages. An experienced engineer, however, who already has a good grip on other languages shouldn’t be scared of experimenting with Julia - it gives you another option, and might just help you to uncover new ways of working and solving problems. Julia 1.0 has just been released What makes functional programming a viable choice for artificial intelligence projects? Best Machine Learning Datasets for beginners
Read more
  • 0
  • 0
  • 22960
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-beyond-the-bitcoin
Packt
09 Oct 2017
2 min read
Save for later

Beyond the Bitcoin: How cryptocurrency can make a difference in hurricane disaster relief

Packt
09 Oct 2017
2 min read
More than $350 worth of cryptocurrency guides offered in support of globalgiving.com During Cybersecurity Month, Packt is partnering with Humble Bundle and three other technology publishers – Apress, John Wiley & Sons, No Starch Press - for the Humble Book Bundle: Bitcoin & Cryptocurrency, a starter eBook library of blockchain programming guides offered for as little as $1, with each purchase supporting hurricane disaster relief efforts through the nonprofit, GlobalGiving.org. Packed with over $350 worth of valuable developer information, the bundle offers coding instruction and business insights at every level – from beginner to advanced. Readers can learn how to code with Ethereum while at the same time learning about the latest developments in cryptocurrency and emerging business uses of blockchain programming. As with all Humble Bundles, customers can choose how their purchase dollars are allocated, between the publishers and charity, and can even “gift” a bundle purchase to others as their donation. Donations for as little as $1USD can support hurricane relief. The online magazine retailer, Zinio, will be offering a limited time promotion of some of their best tech magazines as well. You can find the special cryptocurrency package here. "It's very unusual for tech publishers who normally would compete to come together to do good work for a good cause," said Kelley Allen, Director of Books at Humble Bundle. "Humble Books is really pleased to be able to support their efforts by offering this collection of eBooks about such a timely and cutting-edge subject of Cryptocurrency". The package of 15 eBooks includes recent titles Bitcoin for Dummies, The Bitcoin Big Bang, BlockChain Basics, Bitcoin for the Befuddled, Mastering Blockchain, and the eBook bestseller, Introducing Ethereum and Solidity. The promotional bundles are being released globally in English, and are available in PDF, .ePub and .Mobi formats. The offer runs October 9 through October 23, 2017.
Read more
  • 0
  • 0
  • 22678

article-image-nlp-deep-learning
Savia Lobo
10 Nov 2017
7 min read
Save for later

Facelifting NLP with Deep Learning

Savia Lobo
10 Nov 2017
7 min read
Over the recent years, the world has witnessed a global move towards digitization. Massive improvements in computational capabilities have been made; thanks to the boom in the AI chip market as well as computation farms. These have resulted in data abundance and fast data processing ecosystems which are accessible to everyone - important pillars for the growth of AI and allied fields. Terms such as ‘Machine learning’ and ‘Deep learning’ in particular have gained a lot of traction in the data science community, mainly because of the multitude of domains they lend themselves to. Along with image processing, computer vision and games, one key area transformed by machine learning, and more recently by deep learning, is Natural Language Processing, simply known as NLP. Human language is a heady concoction of otherwise incoherent words and phrases with more exceptions than rules, full of jargons and words with different meanings. Making machines comprehend a human language in all its glory, not to mention its users’ idiosyncrasies, can be quite a challenge. Then there is the matter of there being thousands of languages, dialects, accents, slangs and what not. Yet, it is a challenge worth taking up - mainly because language finds its application in almost everything humans do - from web search to e-mails to content curation, and more. According to Tractica, a market intelligence firm, “Natural Language Processing market will reach $22.3 Billion by 2025.” NLP Evolution - From Machine Learning to Deep Learning Before deep learning embraced NLP into a smarter version of a conversational machine, machine learning based NLP systems were utilized to process natural language. Machine learning based NLP systems were trained on models which were shallow in nature as they were often based on incomplete and time-consuming custom-made features. They included algorithms such as support vector machines (SVM) and logistic regression. These models found their applications in tasks such as spam detection in emails, grouping together similar words in a document, spin articles, and much more. ML-based NLP systems relied heavily on the quality of the training data. Because of the limited nature of the capabilities offered by machine learning, when it came to understanding high-level texts and speech outputs from humans, the classical NLP model fell short. This led to the conclusion that machine learning algorithms can handle only narrow features and as such cannot perform high-level reasoning, which human conversations often comprise of. Also, as the scale of the data grew, machine learning couldn’t be an effective tool to tackle the different NLP problems related to efficiently training the models and their optimization. Here’s where deep learning proves to be a stepping stone. Deep learning includes Artificial Neural Networks (ANNs) that function similar to neural nerves in a human brain, a reason why they are considered to emulate human thinking remarkably. Deep learning models perform significantly better as the quantity of data fed to them increases. For instance, Google’s Smart Reply can generate relevant responses to the emails received by the user. This system uses a pair of  RNNs, one to encode the incoming mail and the other to predict relevant responses. With the incorporation of DL in NLP, the need for feature engineering is highly reduced, saving time - a major asset. This means machines can be trained to understand languages other than English without complex and custom feature engineering by applying deep neural network models. In spite of the constant upgrades happening to language, the quest to get machines more and more friendly to humans is made possible using deep learning.      Key Deep Learning techniques used for NLP NLP-based deep learning models make use of word-embeddings, pre-trained using a large corpus or collection of unlabeled data. With advancements in word embedding techniques, the ability of the machines to derive deeper insights from languages has increased. To do so, NLP uses a technique called Word2vec that converts a given word into a vector for the better understanding of the machines. Continuous-bag-of words and skip-gram models - models used for learning word vectors, help in capturing the sequential patterns within sentences. The latter predicts the outside words using the center word as an input and is used in large datasets whereas the former does the vice versa. Similarly, GloVe also computes vector representations but using a technique called matrix factorization. A disadvantage of the word embedding approach is that it cannot understand phrases and sentences. As mentioned earlier, the bag-of-words model converts each word into a corresponding vector. This can simplify many problems but it can also change the context of the text. For instance, it may not collectively understand the use of idioms or sub-phrases such as “Break a leg”. Also, recognizing indicative or negative words such as ‘not’, ‘but’, that attaches a semantical meaning to a word is difficult for the model to understand. A solution to this would be using ‘negative sampling’, i.e., a frequency-based sampling of negative terms while training the word2vec model. This is where neural networks can come into play. CNNs (Convolutional Neural Networks)  and RNNs (Recurrent Neural Networks) are the two widely used neural network models in NLP. CNNs are good performers for text classification. However, the downside is that they are poor in learning the sequential information from the text. Expresso, built on Caffe, is one of the many tools used to develop CNNs. RNNs are preferred over CNNs for NLP as they allow sequential processing. For example, an RNN can differentiate between the words ‘fan’ and ‘fan-following’. This means RNNs are better equipped to handle complex dependencies and unbounded texts. Also, unlike CNNs, RNNs can handle input context of arbitrary length because of its flexible computational steps. All the above highlight why RNNs have better modeling potential than CNNs as far NLP is concerned. Although RNNs are the preferred choice, they have a limitation: The vanishing gradient problem. This problem can be solved using LSTM (Long-short term memory), which helps in understanding the association of words within a text, and back-propagates an error through unlimited steps. LSTM includes a forget gate, which forgets the learned weights if carrying it forward is negligible. Thus, long-term dependencies are reduced. Other than LSTM, GRU (Gated Recurrent Units) is also widely opted to solve the vanishing gradient problem. Current Implementations Deep Learning is good at identifying patterns within unstructured data. Social Media is a major dump of unstructured media content - a goldmine for human sentiment analysis. Facebook uses DeepText, a Deep Learning based text understanding engine, which can understand the textual content of thousands of posts with near-human accuracy. CRM systems strive to maximize customer lifetime value by understanding what customers want and then taking appropriate measures. TalkIQ, uses neural-network based text analysis and deep learning models to extract meaning from the conversations that organizations have with their customers in order to gain deeper insights in real-time. Google’s Cloud Speech API helps convert audio to texts; it can also recognize audio in 110 languages. Other implementations include Automated Text Summarization for summarizing the concept within a huge document, Speech Processing for converting voice requests into search recommendations, and much more. Many other areas such as fraud detection tools, UI/UX, IoT devices, and more, that make use of speech and text analytics can perform explicitly well by imbibing deep learning neural network models. The future of NLP with Deep Learning With the advancements in deep learning, machines will be able to understand human communication in a much more comprehensive way. They will be able to extract complex patterns and relationships and decipher the variations and ambiguities in various languages. This will find some interesting use-cases - smarter chatbots being a very important one. Understanding complex and longer customer queries and giving out accurate answers are what we can expect from these chatbots in the near future. The advancements in NLP and deep learning could also lead to the development of expert systems which perform smarter searches, allowing the applications to search for content using informal, conversational language. Understanding and interpreting unindexed unstructured information, which is currently a challenge for NLP, is something that is possible as well. The possibilities are definitely there - how NLP evolves by blending itself with the innovations in Artificial Intelligence is all that remains to be seen.
Read more
  • 0
  • 0
  • 22574

article-image-4-ways-enable-continual-learning-neural-networks
Sugandha Lahoti
28 Nov 2017
6 min read
Save for later

4 ways to enable Continual learning into Neural Networks

Sugandha Lahoti
28 Nov 2017
6 min read
Of late, Deep Learning has been one of the working forces behind most technological breakthroughs happening around the globe. Whether it is easy machine translation, automatic recognition and sorting of images, smartphone interaction, automated medicine and healthcare, deep learning is the power source for all. Neural networks, the building blocks of deep learning models, are now set on the path to achieve complete human brain imitation.  But, to achieve this, it faces a roadblock, the ability to perform sequential task learning without forgetting. This particular shortcoming is known as catastrophic forgetting. Humans too have a tendency of forgetting old information at a gradual rate. However, with neural networks this phenomenon occurs at a catastrophic rate and hence the name. In order to enable continual learning in neural networks, there are several powerful architectures and algorithms. Few of them are discussed in the article below: Long Short-Term Memory Networks Long Short-Term Memory network is a type of Recurrent Neural Network, generally used to solve the problem of vanishing gradient. It consists of an explicit memory unit called a cell, embedded into the network. As the name implies, LSTMs can remember information for longer duration. LSTM follows RNN architecture but unlike RNN they have 4 neural network layers. The cell runs straight down the entire architecture to store values. These stored values remain untouched as further learning happens. It can add new information to the cell state or eliminate old ones, regulated by three gates. These gates work on 1s(pass everything) and 0s(pass nothing). Further, the gates are responsible for protection and control of the cell state. If this sounds complex, here’s a simple connotation—The gates are the decision-makers in LSTM. They decide what information to eliminate and what to store. Based on the gate filter of the cell state, LSTM generates the output. LSTM is being used as a fundamental component by top multinational firms (Google, Amazon, Microsoft) for applications such as speech recognition, smart assistant, or for feature enhancement. Elastic Weight Consolidation Algorithm Synaptic consolidation is the human brain’s approach for long term learning. Elastic Weight consolidation algorithm has taken inspiration from this mechanism to solve the issue of catastrophic interference. The neural network, like the brain, is made up of several connections among the neurons. The EWC evaluates how important a task is to a connection. By evaluation we mean, assigning weights to a connection. These weights are decided based on the importance of the older tasks. In an EWC, the weight attached to each connection in a new task is linked to the old value by an elastic spring. The stiffness of the spring is in relation to the connection’s importance, hence the name, Elastic Weight Consolidation. In the play of weights and connections, EWC algorithm helps in making a neural network learn new tasks without overriding information of the prior task, reducing significant amount of computational cost. The EWC algorithm was used in Atari games to learn multiple games sequentially. Using an EWC, the game agent was able to learn to play one game and then transfer what it had learnt to play a new game. It was also able to play multiple games successively. Differentiable Neural Computer DeepMind’s Differentiable neural computer (DNC) is a memory augmented neural network (MANN) which is a combination of neural networks and memory system. DNCs can essentially store complex data as computers do, all the while learning from examples like neural networks. They are not only used to parse complex data structures such as trees and graphs but also learn to form their own data structure. When a DNC was shown a graph data structure for example, the map of the London Underground, it learnt to write a description of the graph and answered questions on the graph. Surprisingly, a DNC can also answer questions about your family tree! The DNC has a controller, one may think of it as a computer processor. But, the controller is responsible for three simple tasks: taking an input reading to and fro memory producing an interpretable output Memory here is referred to places where a vector of information is stored. A controller can fidget with read/write operations on the memory. With every new information it can either: choose to write to a completely new, unused location write to a used location based on the information the controller is searching for not perform the write operation at all It can also decide to free locations no longer needed. As far as reading is concerned, the controller can read from multiple memory locations. Memory can also be searched basis multiple parameters such as the content or the temporal links. The information read, can be further produced in the form of answers in context to the questions asked. Simply put, memory enables the DNCs to make decisions about how they allocate, store, and retrieve memory to produce relevant and interpretable answers. Progressive Neural Networks The ability to transfer knowledge across domains has limited applicability in case of neural networks. Progressive neural networks act as training wheels towards developing continual learning systems. It functions at each layer of the network to incorporate prior knowledge and to decide whether to reuse old computations or learn new ones, making itself immune to catastrophic forgetting. Progressive networks essentially operate in the form of an adapter to make connections between columns. A column here is a group of layers i.e. the training given to a neural network for a particular task. When a neural network has to learn a new task, an extra column is added and the weights of the first column are frozen, eliminating catastrophic forgetting. Output of the layers of the original column becomes additional input to layer in the new column. As more tasks are added, simultaneously the columns increase in number. The adapter then has to deal with the dimensionality explosion that may happen due to increasing number of columns. A progressively enhanced neural network was successful in playing the Labyrinth 3D maze game. The neural network progressively learnt new mazes by using information it received from previous mazes. Conclusion The memory augmented neural networks have wider application in the field of robotic process automation, self-driving cars, natural language understanding, chatbots, next word predictions etc. Neural networks are also being utilized for time series prediction essentially for AR and VR technologies, video analytics and to study financial markets. With the advancements happening in the field of Continual learning, a deep learning neural network that emulates the human brain entirely is nigh.  
Read more
  • 0
  • 1
  • 22535

article-image-top-automl-libraries-for-building-ml-pipelines
Sunith Shetty
01 Aug 2018
9 min read
Save for later

Top AutoML libraries for building your ML pipelines

Sunith Shetty
01 Aug 2018
9 min read
What is AutoML? When talking about AutoML we mostly refer to automated data preparation (namely feature preprocessing, generation, and selection) and model training (model selection and hyperparameter optimization). The number of possible options for each step of this process can vary vastly depending on the problem type. AutoML allows researchers and practitioners to automatically build ML pipelines out of the possible options for every step to find high-performing ML models for a given problem. AutoML libraries carefully set up experiments for various ML pipelines, which covers all the steps from data ingestion, data processing, modeling, and scoring. In this article we deal with understanding what AutoML is and cover popular AutoML libraries with practical examples. This article is an excerpt from a book written by Sibanjan Das, Umit Mert Cakmak titled Hands-On Automated Machine Learning. Overview of AutoML libraries There are many popular AutoML libraries, and in this section you will get an overview of commonly used ones in the data science community. Featuretools Featuretools is a good library for automatically engineering features from relational and transactional data. The library introduces the concept called Deep Feature Synthesis (DFS). If you have multiple datasets with relationships defined among them such as parent-child based on columns that you use as unique identifiers for examples, DFS will create new features based on certain calculations, such as summation, count, mean, mode, standard deviation, and so on. Let's go through a small example where you will have two tables, one showing the database information and the other showing the database transactions for each database: import pandas as pd # First dataset contains the basic information for databases. databases_df = pd.DataFrame({"database_id": [2234, 1765, 8796, 2237, 3398], "creation_date": ["2018-02-01", "2017-03-02", "2017-05-03", "2013-05-12", "2012-05-09"]}) databases_df.head() You get the following output: The following is the code for the database transaction: # Second dataset contains the information of transaction for each database id db_transactions_df = pd.DataFrame({"transaction_id": [26482746, 19384752, 48571125, 78546789, 19998765, 26482646, 12484752, 42471125, 75346789, 16498765, 65487547, 23453847, 56756771, 45645667, 23423498, 12335268, 76435357, 34534711, 45656746, 12312987], "database_id": [2234, 1765, 2234, 2237, 1765, 8796, 2237, 8796, 3398, 2237, 3398, 2237, 2234, 8796, 1765, 2234, 2237, 1765, 8796, 2237], "transaction_size": [10, 20, 30, 50, 100, 40, 60, 60, 10, 20, 60, 50, 40, 40, 30, 90, 130, 40, 50, 30], "transaction_date": ["2018-02-02", "2018-03-02", "2018-03-02", "2018-04-02", "2018-04-02", "2018-05-02", "2018-06-02", "2018-06-02", "2018-07-02", "2018-07-02", "2018-01-03", "2018-02-03", "2018-03-03", "2018-04-03", "2018-04-03", "2018-07-03", "2018-07-03", "2018-07-03", "2018-08-03", "2018-08-03"]}) db_transactions_df.head() You get the following output: The code for the entities is as follows: # Entities for each of datasets should be defined entities = { "databases" : (databases_df, "database_id"), "transactions" : (db_transactions_df, "transaction_id") } # Relationships between tables should also be defined as below relationships = [("databases", "database_id", "transactions", "database_id")] print(entities) You get the following output for the preceding code: The following code snippet will create feature matrix and feature definitions: # There are 2 entities called ‘databases’ and ‘transactions’ # All the pieces that are necessary to engineer features are in place, you can create your feature matrix as below import featuretools as ft feature_matrix_db_transactions, feature_defs = ft.dfs(entities=entities, relationships=relationships, target_entity="databases") The following output shows some of the features that are generated: You can see all feature definitions by looking at the following features_defs: feature_defs The output is as follows: This is how you can easily generate features based on relational and transactional datasets. Auto-sklearn Scikit-learn has a great API for developing ML models and pipelines. Scikit-learn's API is very consistent and mature; if you are used to working with it, auto-sklearn will be just as easy to use since it's really a drop-in replacement for scikit-learn estimators. Let's see a little example: # Necessary imports import autosklearn.classification import sklearn.model_selection import sklearn.datasets import sklearn.metrics from sklearn.model_selection import train_test_split # Digits dataset is one of the most popular datasets in machine learning community. # Every example in this datasets represents a 8x8 image of a digit. X, y = sklearn.datasets.load_digits(return_X_y=True) # Let's see the first image. Image is reshaped to 8x8, otherwise it's a vector of size 64. X[0].reshape(8,8) The output is as follows: You can plot a couple of images to see how they look: import matplotlib.pyplot as plt number_of_images = 10 images_and_labels = list(zip(X, y)) for i, (image, label) in enumerate(images_and_labels[:number_of_images]): plt.subplot(2, number_of_images, i + 1) plt.axis('off') plt.imshow(image.reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') plt.title('%i' % label) plt.show() Running the preceding snippet will give you the following plot: Splitting the dataset to train and test data: # We split our dataset to train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) # Similarly to creating an estimator in Scikit-learn, we create AutoSklearnClassifier automl = autosklearn.classification.AutoSklearnClassifier() # All you need to do is to invoke fit method to start experiment with different feature engineering methods and machine learning models automl.fit(X_train, y_train) # Generating predictions is same as Scikit-learn, you need to invoke predict method. y_hat = automl.predict(X_test) print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat)) # Accuracy score 0.98 That was easy, wasn't it? MLBox MLBox is another AutoML library that supports distributed data processing, cleaning, formatting, and state-of-the-art algorithms such as LightGBM and XGBoost. It also supports model stacking, which allows you to combine an information ensemble of models to generate a new model aiming to have better performance than the individual models. Here's an example of its usage: # Necessary Imports from mlbox.preprocessing import * from mlbox.optimisation import * from mlbox.prediction import * import wget file_link = 'https://apsportal.ibm.com/exchange-api/v1/entries/8044492073eb964f46597b4be06ff5ea/data?accessKey=9561295fa407698694b1e254d0099600' file_name = wget.download(file_link) print(file_name) # GoSales_Tx_NaiveBayes.csv The GoSales dataset contains information for customers and their product preferences: import pandas as pd df = pd.read_csv('GoSales_Tx_NaiveBayes.csv') df.head() You get the following output from the preceding code: Let's create a test set from the same dataset by dropping a target column: test_df = df.drop(['PRODUCT_LINE'], axis = 1) # First 300 records saved as test dataset test_df[:300].to_csv('test_data.csv') paths = ["GoSales_Tx_NaiveBayes.csv", "test_data.csv"] target_name = "PRODUCT_LINE" rd = Reader(sep = ',') df = rd.train_test_split(paths, target_name) The output will be similar to the following: Drift_thresholder will help you to drop IDs and drifting variables between train and test datasets: dft = Drift_thresholder() df = dft.fit_transform(df) You get the following output: Optimiser will optimize the hyperparameters: opt = Optimiser(scoring = 'accuracy', n_folds = 3) opt.evaluate(None, df) You get the following output by running the preceding code: The following code defines the parameters of the ML pipeline: space = { 'ne__numerical_strategy':{"search":"choice", "space":[0]}, 'ce__strategy':{"search":"choice", "space":["label_encoding","random_projection", "entity_embedding"]}, 'fs__threshold':{"search":"uniform", "space":[0.01,0.3]}, 'est__max_depth':{"search":"choice", "space":[3,4,5,6,7]} } best = opt.optimise(space, df,15) The following output shows you the selected methods that are being tested by being given the ML algorithms, which is LightGBM in this output: You can also see various measures such as accuracy, variance, and CPU time: Using Predictor, you can use the best model to make predictions: predictor = Predictor() predictor.fit_predict(best, df) You get the following output: TPOT Tree-Based Pipeline Optimization Tool (TPOT) uses genetic programming to find the best performing ML pipelines, built on top of scikit-learn. Once your dataset is cleaned and ready to be used, TPOT will help you with the following steps of your ML pipeline: Feature preprocessing Feature construction and selection Model selection Hyperparameter optimization Once TPOT is done with its experimentation, it will provide you with the best performing pipeline. TPOT is very user-friendly as it's similar to using scikit-learn's API: from tpot import TPOTClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split # Digits dataset that you have used in Auto-sklearn example digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, train_size=0.75, test_size=0.25) # You will create your TPOT classifier with commonly used arguments tpot = TPOTClassifier(generations=10, population_size=30, verbosity=2) # When you invoke fit method, TPOT will create generations of populations, seeking best set of parameters. Arguments you have used to create TPOTClassifier such as generations and population_size will affect the search space and resulting pipeline. tpot.fit(X_train, y_train) print(tpot.score(X_test, y_test)) # 0.9834 tpot.export('my_pipeline.py') Once you have exported your pipeline in the Python my_pipeline.py file, you will see the selected pipeline components: import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = train_test_split(features, tpot_data['target'].values, random_state=42) exported_pipeline = KNeighborsClassifier(n_neighbors=6, weights="distance") exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features) To summarize, you learnt about Automated ML and practiced your skills using popular AutoML libraries. This is definitely not the whole list, and AutoML is an active area of research. You should check out other libraries such as Auto-WEKA, which also uses the latest innovations in Bayesian optimization, and Xcessive, which is a user-friendly tool for creating stacked ensembles. To know how AutoML can be further used to automate parts of Machine Learning, check out the book Hands-On Automated Machine Learning. Read more Anatomy of an automated machine learning algorithm (AutoML) AutoML: Developments and where is it heading to AmoebaNets: Google’s new evolutionary AutoML
Read more
  • 0
  • 0
  • 22414
article-image-brief-history-blockchain
Packt Editorial Staff
09 Apr 2018
6 min read
Save for later

A brief history of Blockchain

Packt Editorial Staff
09 Apr 2018
6 min read
History - where do we start? Blockchain was introduced with the invention of Bitcoin in 2008. Its practical implementation then occurred in 2009. Of course, both Blockchain and Bitcoin are very different, but you can't tell the full story behind the history of Blockchain without starting with Bitcoin. Electronic cash before Blockchain The concept of electronic cash or digital currency is not new. Since the 1980s, e-cash protocols have existed based on a model proposed by David Chaum. This is an extract from the new edition of Mastering Blockchain. Just as you need to understand the concept of distributed systems is to properly understand Blockchain, you also need to understand electronic cash. This concept pre-dates Blockchain and Bitcoin, but without it, we would certainly not be where we are today. Two fundamental e-cash system issues need to be addressed: accountability and anonymity. Accountability is required to ensure that cash is spendable only once (double-spend problem) and that it can only be spent by its rightful owner. Double spend problem arises when same money can be spent twice. As it is quite easy to make copies of digital data, this becomes a big issue in digital currencies as you can make many copies of same digital cash. Anonymity is required to protect users' privacy. As with physical cash, it is almost impossible to trace back spending to the individual who actually paid the money. David Chaum solved both of these problems during his work in the 1980s by using two cryptographic operations, namely blind signatures and secret sharing. Blind signatures allow for signing a document without actually seeing it, and secret sharing is a concept that enables the detection of double spending, that is using the same e-cash token twice (double spending). In 2009, the first practical implementation of an electronic cash (e-cash) system named Bitcoin appeared. The term cryptocurrency emerged later. For the very first time, it solved the problem of distributed consensus in a trustless network. It used public key cryptography with a Proof of Work (PoW) mechanism to provide a secure, controlled, and decentralized method of minting digital currency. The key innovation was the idea of an ordered list of blocks composed of transactions and cryptographically secured by the PoW mechanism. Other technologies that used something like a precursor to Bitcoin, include Merkle trees, hash functions, and hash chains. Looking at all the technologies mentioned earlier and their relevant history, it is easy to see how concepts from electronic cash schemes and distributed systems were combined to create Bitcoin and what now is known as Blockchain. This concept can also be visualized with the help of the following diagram: Blockchain and Sakoshi Nakamoto In 2008, a groundbreaking paper entitled Bitcoin: A Peer-to-Peer Electronic Cash System was written on the topic of peer-to-peer electronic cash under the pseudonym Satoshi Nakamoto. It introduced the term chain of blocks. No one knows the actual identity of Satoshi Nakamoto. After introducing Bitcoin in 2009, he remained active in the Bitcoin developer community until 2011. He then handed over Bitcoin development to its core developers and simply disappeared. Since then, there has been no communication from him whatsoever, and his existence and identity are shrouded in mystery. The term chain of blocks evolved over the years into the word Blockchain. Since that point, the history of Blockchain is really the history of its application in different industries. The most notable area is unsurprisingly within finance. Blockchain has been shown to improve the speed and security of financial transactions. While it hasn't yet become embedded in the mainstream of the financial sector, it surely only remains a matter of time before it begins to take hold. How it has evolved in recent years In Blockchain: Blueprint for a New Economy, Melanie Swann identifies three different tiers of Blockchain. These three tiers all showcase how Blockchain is currently evolving. It's worth noting that these various tiers or versions aren't simple chronological points in the history of Blockchain. The lines between each are blurred, and it ultimately depends on how Blockchain technology is being applied that different features and capabilities will be appear. Blockchain 1.0: This tier was introduced with the invention of Bitcoin, and it is primarily used for cryptocurrencies. Also, as Bitcoin was the first implementation of cryptocurrencies, it makes sense to categorize this first generation of Blockchain technology to include only cryptographic currencies. All alternative cryptocurrencies, as well as Bitcoin, fall into this category. It includes core applications such as payments and applications. This generation started in 2009 when Bitcoin was released and ended in early 2010. Blockchain 2.0: This second Blockchain generation is used by financial services and smart contracts. This tier includes various financial assets, such as derivatives, options, swaps, and bonds. Applications that go beyond currency, finance, and markets are incorporated at this tier. Ethereum, Hyperledger, and other newer Blockchain platforms are considered part of Blockchain 2.0. This generation started when ideas related to using blockchain for other purposes started to emerge in 2010. Blockchain 3.0: This third Blockchain generation is used to implement applications beyond the financial services industry and is used in government, health, media, the arts, and justice. Again, as in Blockchain 2.0, Ethereum, Hyperledger, and newer blockchains with the ability to code smart contracts are considered part of this blockchain technology tier. This generation of Blockchain emerged around 2012 when multiple applications of Blockchain technology in different industries were researched. Blockchain X.0: This generation represents a vision of Blockchain singularity where one day there will be a public Blockchain service available that anyone can use just like the Google search engine. It will provide services for all realms of society. It will be a public and open distributed ledger with general-purpose rational agents (Machina economicus) running on a Blockchain, making decisions, and interacting with other intelligent autonomous agents on behalf of people, and regulated by code instead of law or paper contracts. This does not mean that law and contracts will disappear, instead, law and contracts will be implementable in code. Like any history, this history of Blockchain isn't exhaustive. But it does hopefully give you an idea of how it has developed to where we are today. Check out this tutorial to write your first Blockchain program.
Read more
  • 0
  • 0
  • 22402

article-image-facebooks-wit-ai-why-we-need-yet-another-chatbot-development-framework
Sunith Shetty
21 May 2018
4 min read
Save for later

Facebook’s Wit.ai: Why we need yet another chatbot development framework?

Sunith Shetty
21 May 2018
4 min read
Chatbots are remarkably changing the way customer service is provided in a variety of industries. For every organization, customer satisfaction plays a very important role, thus they expect business to be reachable any time and respond to their queries 24*7. With growing artificial intelligence advances in smart devices and IoT, chatbots are becoming a necessity for communicating with customers in real time. There are many existing vendors such as Google, Microsoft, Amazon, and IBM with the required models and services to build conversational interfaces for the applications and devices. But the chatbot industry is evolving and even minor improvements in the UI, or the algorithms that work behind the scenes or the data they use to get trained, can mean a major win. With complete backing by the Facebook team, we can expect Wit.ai creating new simplified ways to ease speech recognition and voice interface for developers.  Wit.ai has an excellent support for NLP making it one of the popular bot frameworks in the market. The key to chatbot success is to pursue continuous learning that enables them to leverage relevant data in order to connect with clearly defined customers, this what makes Wit.ai extra special. What is Wit.ai? Wit.ai is an open and extensible NLP engine for developers, acquired by Facebook, which allows you to build conversational applications and devices that you can talk or text to. It provides an easy interface and quick learning APIs to understand human communication from every interaction and helps to parse the complex message (which can be either voice or text) into structured data. It also helps you with predicting the forthcoming set of events based on the learning from the gathered data. Why Wit.ai It is one of the most powerful APIs used to understand natural language It is a free SaaS platform that provides services for developers to build a chatbot for their app or device. It has story support thus allowing you to visualize the user experience. A new built-in support NLP integration with the Page inbox allows the page admins to create a Wit app with ease. Further by using the anonymized samples from past messages, the bot provides automate responses to the most common requests asked. You can create efficient and powerful text or voice based conversational bots that humans can chat with. In addition to business bots, these APIs can be used to build hands-free voice interfaces for mobile phones, wearable devices, home automation products and more. It can be used in platforms that learn new commands semantically to those input by the developer. It provides a developer GUI which includes a visual representation of the conversation flows, business logic invocations, context variables, jumps, and branching logic. Programming language and integration support - Node.js client, Python client, Ruby client, and HTTP API. Challenges in Wit.ai Wit.ai doesn’t support third-party integration tools. Wit.ai has no required slot/parameter feature. Thus you will have to invoke business logic every time there is an interaction with the user in order to gather any missing information not spoken by the user. Training the engine can take some time based on the task performed. When the number of stories increases, Wit engine becomes slower. However, existing Wit.ai adoption looks very promising, with more than 160,000 members in the community contributing on GitHub. In order to have a  complete coverage of tutorials, documentation and client support APIs you can visit the Github page to see a list of repositories. My friend, the robot: Artificial Intelligence needs Emotional Intelligence Snips open sources Snips NLU, its Natural Language Understanding engine What can Google Duplex do for businesses?  
Read more
  • 0
  • 0
  • 22332

article-image-the-trouble-with-smart-contracts
Guest Contributor
03 Jul 2018
6 min read
Save for later

The trouble with Smart Contracts

Guest Contributor
03 Jul 2018
6 min read
The government of Tennessee now officially recognizes Smart Contracts. That’s great news if we speak in terms of the publicity blockchain will receive. By virtue of such events, the Blockchain technology and all that’s related to it are drawing closer to becoming a standard way of how things work. However, the practice shows that the deeper you delve into the nuances of Blockchain, the more you understand that we are at the very beginning of quite a long and so far uncertain path. Before we investigate Smart Contracts on the back of a Tennessee law, let’s look at the concept in lay terms. Traditional Contract vs Smart Contract A traditional contract is simply a notarized piece of paper that details actions that are to be performed under certain conditions. It doesn’t control the actions fulfillment, but only assures it. Smart Contract is just like a paper contract; it specifies the conditions. Along with that, since a smart contract is basically a program code, it can carry out actions (which is impossible when we deal with the paper one). Most typically, smart contracts are executed in a decentralized environment, where: Anyone can become a validator and verify the authenticity of correct smart contract execution and the state of the database. Distributed and independent validators supremely minimize the third-party reliance and give confidence concerning unchangeability of what is to be done. That’s why, before putting a smart contract into action you should accurately check it for bugs. Because you won’t be able to make changes once it’s launched. All assets should be digitized. And all the data that may serve as a trigger for smart contract execution must be located within one database (system). What are oracles? There’s a popular myth that smart contracts in Ethereum can take external data from the web and use it in their environment (for example, smart contract transfers money to someone who won the bet on a football match results). You can not do that, because a smart contract only relies on the data that’s on the Ethereum blockchain. Still, there is a workaround. The database (Ethereum’s, in our case) can contain so-called oracles — ‘trusted’ parties that collect data from ‘exterior world’ and deliver it to smart contracts. For more precision, it is necessary to choose a wide range of independent oracles that provide smart contract with information. This way, you minimize the risk of their collusion. Smart Contract itself is only a piece of code For a better understanding, take a look at what Pavel Kravchenko — Founder of Distributed Lab has written about Smart Contracts on his Medium post: “A smart contract itself is a piece of code. The result of this code should be the agreement of all participants of the system regarding account balances (mutual settlements). From here indirectly it follows that a smart contract cannot manage money that hasn’t been digitized. Without a payment system that provides such opportunity (for example, Bitcoin, Ethereum or central bank currency), smart contracts are absolutely helpless!” Smart Contracts under the Tennessee law Storing data on the blockchain is now a legit thing to do in Tennessee. Here are some of the primary conditions stipulated by the law: Records or contracts secured through the blockchain are acknowledged as electronic records. Ownership rights of certain information stored on blockchain must be protected. Smart Contract is considered as an event-driven computer program, that’s executed on an electronic, distributed, decentralized, shared, and replicated ledger that is used to automate transactions. Electronic signatures and contracts secured through the blockchain technologies now have equal legal standing with traditional types of contracts and signatures. It is worth noting that the definition of a smart contract is pretty clear and comprehensive here. But, unfortunately, it doesn’t let the matter rest and there are some questions that were not covered: How can smart contracts and the traditional ones have equal legal standings if the functionality of a smart contract is much broader? Namely, it performs actions, while traditional contract only assures them. How will asset digitization be carried out? Do they provide any requirements for the Smart Contract source code or some normative audit that is to be performed in order to minimize bugs risk? The problem is not with smart contracts, but with creating the ecosystem around them. Unfortunately, it is impossible to build uniform smart-contract-based relationships in our society simply because the regulator has officially recognized the technology. For example, you won’t be able to sell your apartment via Smart Contract functionality if there won’t be a regulatory base that considers: The specified blockchain platform on which smart contract functionality is good enough to sustain a broad use. The way assets are digitized. And it’s not only for digital money transactions that you will be using smart contracts. You can use smart contracts to store any valuable information, for example, proprietary rights on your apartment. Who can be the authorized party/oracle that collects the exterior data and delivers it to the Smart Contract (Speaking of apartments, it is basically the notary, who should verify such parameters as ownership of the apartment, its state, even your existence, etc) So, it’s true. A smart contract itself is a piece of code and objectively is not a problem at all. What is a problem, however, is preparing a sound basis for the successful implementation of Smart Contracts in our everyday life. Create and launch a mechanism that would allow the connection of two entirely different gear wheels: smart contracts in its digital, decentralized and trustless environment the real world, where we mostly deal with the top-down approach and have regulators, lawyers, courts, etc. FAE (Fast Adaptation Engine): iOlite’s tool to write Smart Contracts using machine translation Blockchain can solve tech’s trust issues – Imran Bashir A brief history of Blockchain About the Expert, Dr. Pavel Kravchenko Dr. Pavel Kravchenko is the Founder of Distributed Lab, blogger, cryptographer and Ph.D. in Information Security. Pavel is working in blockchain industry since early 2014 (Stellar). Pavel's expertise is mostly focused on cryptography, security & technological risks, tokenization. About Distributed Lab Distributed Lab is a blockchain expertise center, with a core mission to develop cutting-edge enterprise tokenization solutions, laying the groundwork for the coming “Financial Internet”. Distributed Lab organizes dozens of events every year for the Crypto community – ranging from intensive small-format meetups and hackathons to large-scale international conferences which draw 1000+ attendees.  
Read more
  • 0
  • 0
  • 22244
article-image-tech-workers-coalition-volunteers-talk-unionization-and-solidarity-in-silicon-valley
Natasha Mathur
03 Dec 2018
9 min read
Save for later

Tech Workers Coalition volunteers talk unionization and solidarity in Silicon Valley

Natasha Mathur
03 Dec 2018
9 min read
In the latest podcast episode of Delete your account, Roqayah Chamseddine and Kumars Salehi talked to Ares and Kristen, volunteers with the Tech Workers Coalition (TWC), about how they function and organize to bring social justice and solidarity to the tech industry. What is the Tech Workers Coalition? The Tech Workers Coalition is a democratically structured, all-volunteer, and worker-led organization of tech and tech adjacent workers across the US who organize and offer support for activist, civic engagement and education projects. They primarily do work in the Bay Area Seattle, but they are also supporting and working on initiatives across the United States. While they work largely to defend the rights of tech workers, the organization argues for wider solidarity with existing social and economic justice movements. Key Takeaways The podcast discusses the evolution of TWC (from facilitating Google employees in their protest against Google’s Pentagon contract to helping Google employees in “walkout for real change”), pushback received, TWC’s unionizing goal, and their journey going forward. A brief history of the Tech Workers Coalition Tech Workers Coalition started with a friendship between Rachel Melendes, a former cafeteria worker and Matt Schaefer, an engineer. The first meetings, in 2014 and 2015, comprised a few full-time employees at tech companies. These meetings were occasions for discussing and sharing experiences of working in the tech industry in Silicon Valley. It’s worth noting that those involved didn’t just include engineers - subcontracted workers, cafeteria workers, security guards, and janitors were all involved too. So, TWC began life as a forum for discussing workplace issues, such as pay disparity, harassment, and discrimination. However, this forum evolved, with those attending becoming more and more aware that formal worker organization could be a way of achieving a more tangible defense of worker rights in the tech industry. Kristen points out in the podcast how 2016 presidential elections in the US were “mobilizing” and laid a foundation for TWC in terms of determining where their interests lay. She also described how ideological optimism of Silicon Valley companies - evidenced in brand values like “connecting people” and “don’t be evil”, encourages many people to join the tech industry for “naive but well-intentioned reasons.” One example presented by Kristen is of the 14th December Trump tower meeting in 2016, where Donald Trump invited top tech leaders including Tim Cook ( CEO, Apple), Jeff Bezos ( CEO, Amazon), Larry Page (CEO, Alphabet), and Sheryl Sandberg ( COO, Facebook) for a “technology roundup”. Kristen highlights that the meeting, seen by some as an opportunity to put forward the Silicon Valley ethos of openness and freedom, didn’t actually fulfill what it might have done. The acquiescence of these tech leaders to a President widely viewed negatively by many tech workers forced employees to look critically at their treatment in the workplace. It’s almost as if it was the moment, for many workers, when the fact those at the top of the tech industry weren’t on their side. From this point, the TWC has gone from strength to strength. There are now more than 500 people in the Tech Workers Coalition group on Slack that discuss and organize activities to bring more solidarity in the tech industry. Ideological splits within the tech left Ares also talks about ideological splits within the community of left-wing activists in the tech industry. For example, when Kristen joined TWC in 2016, many of the conversations focused on questions like are tech workers actually workers? and aren’t they at fault for gentrification? The fact that the debate has largely moved on from these issues says much about how thinking has changed in activist communities. While in the past activists may have taken a fairly self-flagellating view of, say, gentrification - a view that is arguably unproductive and offers little opportunity for practical action - today, activists focus on what tech workers have in common with those doing traditional working-class jobs. Kristen explains: “tech workers aren’t the ones benefiting from spending 3 grand a month on a 1 bedroom apartment, even if that’s possible for them in a way that is not for many other working people. You can really easily see the people that are really profiting from that are landlords and real estate developers”. As Salehi also points out in the episode, solidarity should ultimately move beyond distinctions and qualifiers like income. TWC’s recent efforts in unionizing tech Google’s walkout for Real Change A recent example of TWC’s efforts to encourage solidarity across the tech industry is its support of Google’s Walkout for Real Change. Earlier this month, 20,000 Google employees along with Vendors, and Contractors walked out of their respective Google offices to protest discrimination and sexual harassment in the workplace. As part of the walkout, Google employees laid out five demands urging Google to bring about structural changes within the workplace. To facilitate the walkout, TWC organized a retaliation hotline that allowed employees to call in if they faced any retribution for participating in the walkout. If an employee contacted the hotline, TWC would then support them in taking their complaints to the labor bureau. TWC also provided resources based on their existing networks and contacts with the National Labour Relations Board (NLRB). Read Also: Recode Decode #GoogleWalkout interview shows why data and evidence don’t always lead to right decisions in even the world’s most data-driven company Ares called the walkout “an escalation in tactic” that would force tech execs to concede to employee demands. He also described how the walkout caused a “ripple effect” -  since seeing Google end its forced arbitration policy, Facebook soon followed too. Protest against AI drones It was back in October when Google announced that it will not be competing for the Pentagon’s cloud-computing contract worth $10 billion, saying the project may conflict with its principles for the ethical use of AI. Google employees had learned about Google’s decision to provide and develop artificial intelligence to a controversial military pilot program known as Project Maven, earlier this year. Project Maven aimed to speed up analysis of drone footage by automatically labeling images of objects and people. Many employees had protested against this move by Google by resigning from the company.  TWC supported Google employees by launching a petition in April in addition to the one that was already in circulation, demanding that Google abandon its work on Maven. The petition also demanded that other major tech companies, such as IBM and Amazon, refuse to work with the U.S. Defense Department. TWC’s Unionizing goal and major obstacles faced in the tech industry On the podcast, Kristen highlights that union density across the tech industry is quite low. While unionization across the industry is one of the TWC’s goals, it’s not their immediate goal. “It depends on the workplace, and what the workers there want to do. We’re starting at a place that is comparable to a lot of industries in the 19th century in terms of what shape it could take, it's very nascent. It will take a lot of experimentation”, she says. The larger goal of TWC is to challenge established tech power structures and practices in order to better serve the communities that have been impacted negatively by them. “We are stronger when we act together, and there’s more power when we come together,” says Kristen. “We’re the people who keep the system going. Without us, companies won't be able to function”. TWC encourages people to think about their role within a workplace, and how they can develop themselves as leaders within the workplace. She adds that unionizing is about working together to change things within the workplace, and if it's done on a large enough scale, “we can see some amount of change”. Issues within the tech industry Kristen also discusses how issues such as meritocracy, racism, and sexism are still major obstacles for the tech industry. Meritocracy is particularly damaging as it prevents change - while in principle it might make sense, it has become an insidious way of maintaining exclusivity for those with access and experience. Kristen argues that people have been told all their lives that if you try hard you’ll succeed and if you don’t then that’s because you didn't try hard enough. “People are taught to be okay with their alienation in society,” she says. If meritocracy is the system through which exclusivity is maintained, sexism, sexual harassment, misogyny, and racism are all symptoms of an industry that, for its optimism and language of change, is actually deeply conservative. Depressingly, there are too many examples to list in full, but one particularly shocking report by The New York Times highlighted sexual misconduct perpetrated by those in senior management. While racism may, at the moment, be slightly less visible in the tech industry - not least because of an astonishing lack of diversity - the internal memo by Mark Luckie, formerly of Facebook, highlighted the ways in which Facebook was “failing its black employees and its black users”. What’s important from a TWC perspective is that none of these issues can be treated in isolation and as individual problems. By organizing workers and providing people with a space in which to share their experiences, the organization can encourage forms of solidarity that break down the barriers that exist across the industry. What’s next for TWC? Kristen mentions how the future for TWC depends on what happens next as there are lots of things that could change rather quickly. Looking at the immediate scope of TWC’s future work, there are projects that they're working on. Ares also mentions how he is blown away by how things have chalked out in the past couple of years and are optimistic about pushing the tendency of rebellion within the tech industry with TWC. “I've been very positively surprised with how things are going but it hasn't been without lots of hard work with lots of folks within the coalition and beyond. In that sense it is rewarding, to see the coalition grow where it is now”, says Kristen. Sally Hubbard on why tech monopolies are bad for everyone: Amazon, Google, and Facebook in focus OK Google, why are you ok with mut(at)ing your ethos for Project DragonFly?
Read more
  • 0
  • 0
  • 22185

article-image-amazon-sagemaker-machine-learning-cloud-easy
Amey Varangaonkar
12 Apr 2018
5 min read
Save for later

Amazon Sagemaker makes machine learning on the cloud easy

Amey Varangaonkar
12 Apr 2018
5 min read
Amazon Sagemaker was launched by Amazon back in November 2017. It was built with the promise of simplifying machine learning on the cloud. The software was a response not only to the increasing importance of machine learning, but also the fact that there is a demand to perform machine learning in the cloud. Amazon Sagemaker is clearly a smart move by Amazon that will consolidate the dominance of AWS in the cloud market. What is Amazon Sagemaker? Amazon Sagemaker is Amazon’s premium cloud-based service which serves as a platform for machine learning developers and data scientists to build, train and deploy machine learning models on the cloud. One of the features that makes Sagemaker stand out from the rest is that it is business-ready. This means machine learning models can be optimized for high performance and deployed at scale to work on data with varying sizes and complexity. The basic intention of Sagemaker, as Vogels mentioned in his keynote, is to remove any barriers that slow down the machine learning process for developers. In a standard machine learning process, a developer spends most of the time doing the following standard tasks: Collecting, cleaning and preparing the training data set. Selecting the most appropriate algorithm for the machine learning problem Training the model for accurate prediction Optimizing the model’s performance Integrating the model with the application Deploying the application to production Most of these tasks require a lot of expertise, and more importantly, time and efforts. Not to mention the computational resources such as storage space and processing memory. The larger the dataset, the bigger this problem becomes. Amazon Sagemaker removes these complexities by providing a solid platform with built-in modules that can be used together or individually to complete each of the above tasks with relative ease. How Amazon Sagemaker Works Amazon Sagemaker offers a lot of options for machine learning developers to train and optimize their machine learning models to work at scale. For starters, Sagemaker comes integrated with hosted Jupyter notebooks to allow developers to visually explore and analyze their dataset. You can also move your data directly from popular Amazon databases such as RDS, DynamoDB and Redshift into S3 and conduct your analysis there. The simple block diagram below demonstrates the core working of Amazon Sagemaker: Amazon Sagemaker includes 12 high performance, production-ready algorithms which can be used to build and deploy models at scale. Some of the popular ones include k-means clustering, Principal Component Analysis (PCA), neural topic modeling, and more. It comes pre-configured with popular machine learning and deep learning frameworks such as Tensorflow, PyTorch, Apache MXNet and more, but you can also use your own framework without any hassle. Once your model is trained, Sagemaker makes use of the AWS’ auto-scaled clusters to deploy the model, making sure the model doesn’t lack in performance and is highly available at all times. Not just that, Sagemaker also includes built-in testing capabilities for you to test and check your model for any issues, before it can be deployed for production. Benefits of using Amazon Sagemaker Business are likely to adopt Amazon Sagemaker, mainly because of the fact that it makes the whole machine learning process so effortless. With Sagemaker, it becomes very easy to build and deploy smarter applications that give accurate predictions, and thereby help increase the business profitability. Significantly reduces time: With built-in modules, Sagemaker significantly reduces the time required to do a variety of machine learning tasks, and the models can be deployed to production in very little time. This is important for businesses, as near-real time insights obtained from smart applications help them optimize their processes quickly, and effectively get an edge over their competition. Effortless and more productive machine learning: By virtue of the one-click training and deployment feature offered by Sagemaker, machine learning engineers and developers can now focus on asking the right questions of the data, and focus on the results rather than the process. They can also devote more time to optimizing the model rather than focusing on collecting and cleaning the data, which takes up most of their time. Flexibility in using the algorithms and frameworks: With Sagemaker, developers have the freedom to choose the best-possible algorithm and tool for performing machine learning effectively. Easy integration, access and optimization: The models trained using Sagemaker can be integrated into an existing business application seamlessly, and are optimized for speed and high performance. Backed by the computational power of AWS, business can rest assured their applications will continue to perform optimally without any risk of failure. Sagemaker - Amazon’s answer to Cloud Auto ML In a 3-way cloud war between Google, Microsoft and Amazon, it is clear Google and Amazon are trying to go head to head in order to establish their supremacy in the market, especially in the AI space. Sagemaker is Amazon’s answer to Google’s Cloud Auto ML, which was made publicly available in January, and delivers a similar promise - making machine learning easier than ever for developers. With Amazon serving a large customer-base, a platform like Sagemaker helps them to create a system that runs at scale and handles vast amounts of data quite effortlessly.  Amazon is yet to release any technical paper on how Sagemaker’s streaming algorithms work, but that will certainly be something to look out for in the near future. Considering Amazon identifies AI as key to their future product development, to think of Sagemaker as a better, more complete cloud service which also has deep learning capabilities is definitely not far-fetched.
Read more
  • 0
  • 0
  • 22064
Modal Close icon
Modal Close icon