Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides - Security

59 Articles
article-image-10-types-dos-attacks-you-need-to-know
Savia Lobo
05 Jun 2018
11 min read
Save for later

The 10 most common types of DoS attacks you need to know

Savia Lobo
05 Jun 2018
11 min read
There are businesses that are highly dependent on their services hosted online. It's important that their servers are up and running smoothly during their business hours. Stock markets and casinos are examples of such institutions. They are businesses that deal with a huge sum of money and they expect their servers to work properly during their core business hours. Hackers may extort money by threatening to take down or block these servers during these hours. Denial of service (DoS) attack is the most common methodology used to carry out these kinds of attacks. In this post, we will get to know about  DoS attacks and their various types. This article is an excerpt taken from the book, 'Preventing Ransomware' written by Abhijit Mohanta, Mounir Hahad, and Kumaraguru Velmurugan. In this book, you will learn how to respond quickly to ransomware attacks to protect yourself. What are DoS attacks? DoS is one of the oldest forms of cyber extortion attack. As the term indicates, distributed denial of service (DDoS) means it denies its service to a legitimate user. If a railway website is brought down, it fails to serve the people who want to book tickets. Let's take a peek into some of the details. A DoS attack can happen in two ways: Specially crafted data: If specially crafted data is sent to the victim and if the victim is not set up to handle the data, there are chances that the victim may crash. This does not involve sending too much data but includes specially crafted data packets that the victim fails to handle. This can involve manipulating fields in the network protocol packets, exploiting servers, and so on. Ping of death and teardrop attacks are examples of such attacks. Flooding: Sending too much data to the victim can also slow it down. So it will spend resources on consuming the attackers' data and fail to serve the legitimate data. This can be a DDoS attack where packets are sent to the victim by the attacker from many computers. Attacks can also use a combination of both. For example, UDP flooding and SYN flooding are examples of such attacks. There is another form of DoS attack called a DDoS attack. A DoS attack uses a single computer to carry out the attack. A DDoS attack uses a series of computers to carry out the attack. Sometimes the target server is flooded with so much data that it can't handle it. Another way is to exploit the workings of internal protocols. A DDoS attack that deals with extortion is often termed a ransom DDoS. We will now talk about various types of the DoS attacks that might occur. Teardrop attacks or IP fragmentation attacks In this type of attack, the hacker sends a specially crafted packet to the victim. To understand this, one must have knowledge of the TCP/IP protocol. In order to transmit data across networks, IP packets are broken down into smaller packets. This is called fragmentation. When the packets finally reach their destination, they are re-assembled together to get the original data. In the process of fragmentation, some fields are added to the fragmented packets so that they can be tracked at the destination while reassembling. In a teardrop attack, the attacker crafts some packets that overlap with each other. Consequently, the operating system at the destination gets confused about how to reassemble the packets and hence it crashes. User Datagram Protocol flooding User Datagram Protocol (UDP) is an unreliable packet. This means the sender of the data does not care if the receiver has received it. In UDP flooding, many UDP packets are sent to the victim at random ports. When the victim gets a packet on a port, it looks out for an application that is listening to that port. When it does not find the packet, it replies back with an Internet Control Message Protocol (ICMP) packet. ICMP packets are used to send error messages. When a lot of UDP packets are received, the victim consumes a lot of resources in replying back with ICMP packets. This can prevent the victim from responding to legitimate requests. SYN flood TCP is a reliable connection. That means it makes sure that the data sent by the sender is completely received by the receiver. To start a communication between the sender and receiver, TCP follows a three-way handshake. SYN denotes the synchronization packet and ACK stands for acknowledgment: The sender starts by sending a SYN packet and the receiver replies with SYN-ACK. The sender sends back an ACK packet followed by the data. In SYN flooding, the sender is the attacker and the receiver is the victim. The attacker sends a SYN packet and the server responds with SYN-ACK. But the attacker does not reply with an ACK packet. The server expects an ACK packet from the attacker and waits for some time. The attacker sends a lot of SYN packets and the server waits for the final ACK until timeout. Hence, the server exhausts its resources waiting for ACK. This kind of attack is called SYN flooding. Ping of death While transmitting data over the internet, the data is broken into smaller chunks of packets. The receiving end reassembles these broken packets together in order to derive a conclusive meaning. In a ping of death attack, the attacker sends a packet larger than 65,536 bytes, the maximum size of a packet allowed by the IP protocol. The packets are split and sent across the internet. But when the packets are reassembled at the receiving end, the operating system is clueless about how to handle these bigger packets, so it crashes. Exploits Exploits for servers can also cause DDoS vulnerability. A lot of web applications are hosted on web servers, such as Apache and Tomcat. If there is a vulnerability in these web servers, the attacker can launch an exploit against the vulnerability. The exploit need not necessarily take control, but it can crash the web server software. This can cause a DoS attack. There are easy ways for hackers to find out the web server and its version if the server has default configurations. The attacker finds out the possible vulnerabilities and exploits for that web server. If the web server is not patched, the attacker can bring it down by sending an exploit. Botnets Botnets can be used to carry out DDoS attacks. A botnet herd is a collection of compromised computers. The compromised computers, called bots, act on commands from a C&C server. These bots, on the commands of the C&C server, can send a huge amount of data to the victim server, and as a result, the victim server is overloaded: Reflective DDoS attacks and amplification attacks In this kind of attack, the attacker uses a legitimate computer to launch an attack against the victim by hiding its own IP address. The usual way is the attacker sends a small packet to a legitimate machine after forging the sender of the packet to look as if it has been sent from the victim. The legitimate machine will, in turn, send the response to the victim. If the response data is large, the impact is amplified. We can call the legitimate computers reflectors and this kind of attack, where the attacker sends small data and the victim receives a larger amount of data, is called an amplification attack. Since the attacker does not directly use computers controlled by him and instead uses legitimate computers, it's called a reflective DDoS attack: The reflectors are not compromised machines, unlike botnets. Reflectors are machines that respond to a particular request. It can be a DNS request or a Networking Time Protocol (NTP) request, and so on. DNS amplification attacks, WordPress pingback attacks, and NTP attacks are amplification attacks. In a DNS amplification attack, the attacker sends a forged packet to the DNS server containing the IP address of the victim. The DNS server replies back to the victim instead with larger data. Other kinds of amplification attack include SMTP, SSDP, and so on. We will look at an example of such an attack in the next section. The computers that are used to send traffic to the victim are not the compromised ones and are called reflectors. There are several groups of cyber criminals responsible for carrying out ransom DDoS attacks, such as DD4BC, Armada Collective, Fancy Bear, XMR-Squad, and Lizard Squad. These groups target enterprises. They will first send out an extortion email, followed by an attack if the victim does not pay the ransom. DD4BC The DD4BC group was seen operating in 2014. It charged Bitcoins as the extortion fee. The group mainly targeted media, entertainment, and financial services. They would send a threatening email stating that a low-intensity DoS attack will be carried out first. They would claim that they will protect the organization against larger attacks. They also threatened that they will publish information about the attack in social media to bring down the reputation of the company: Usually, DD4DC are known to exploit a bug WordPress pingback vulnerability. We don't want to get into too much detail about this bug or vulnerability. Pingback is a feature provided by WordPress through which the original author of the WordPress site or blog gets notified where his site has been linked or referenced. We can call the site which refers to the original site as the referrer and the original site as the original. If the referrer uses the original, it sends a request called a pingback request to the original which contains the URL of itself. This is a kind of notification to the original site from the referrer informing that it is linking to the original site. Now the original site downloads the referrer site as a response to the pingback request as per the protocol designed by WordPress and this action is termed as a reflection. The WordPress sites used in the attack are called reflectors. So an attacker can misuse it by creating a forged pingback request with a URL of a victim site and send it to the WordPress sites. The attack uses these WordPress sites in the attack. As a result, the WordPress sites respond to the victim. Put simply, the attack notifies the WordPress sites that the victim has referred them on his/her site. So all the WordPress sites try to connect to the victim, which overloads the victim. If the victim's web page is large and the WordPress sites try to download it, then it chokes the bandwidth and this is called amplification: Armada Collective The Armada Collective group was first seen in 2015. They attacked various financial services and web hosting sites in Russia, Switzerland, Greece, and Thailand. They again re-emerged in Central Europe in October 2017. They used to carry out a demo-DDoS attack to threaten the victim. Here is an extortion letter from Armada Collective: This group is known to carry out reflective DDoS attacks through NTP. The NTP protocol is a protocol that is used to synchronize computer clock times in a protocol. The NTP protocol provides a support for a monlist command for administrative purpose. When an administrator sends the monlist command to an NTP server, the server responds with a list of 600 hosts that are connected to that NTP server. The attacker can exploit this by creating a forged NTP packet which has a monlist command containing the IP address of the victim and then sending multiple copies to the NTP server. The NTP server thinks that the monlist request has come from the victim address and sends a response which contains a list of 600 computers connected to that server. Thus the victim receives too much data from the NTP response and it can crash: Fancy Bear Fancy Bear is one of the hacker groups we have known about since 2010. Fancy Bear threatened to use Mirai Botnet in the attack. Mirai Botnet was known to target Linux operating systems used in IoT devices. It was mostly known to infect CCTV cameras. Here is a letter from Fancy Bear: We have talked about a few groups that were infamous for carrying out DoS extortion and some of the techniques used by them. We explored different types of DoS attacks and how they can occur. If you've enjoyed this excerpt, check out 'Preventing Ransomware' to know in detail about the latest ransomware attacks involving WannaCry, Petya, and BadRabbit. Anatomy of a Crypto Ransomware Barracuda announces Cloud-Delivered Web Application Firewall service Top 5 penetration testing tools for ethical hackers
Read more
  • 0
  • 0
  • 97782

article-image-penetration-testing-rules-of-engagement
Fatema Patrawala
14 May 2018
7 min read
Save for later

5 pen testing rules of engagement: What to consider while performing Penetration testing

Fatema Patrawala
14 May 2018
7 min read
Penetration testing and ethical hacking are proactive ways of testing web applications by performing attacks that are similar to a real attack that could occur on any given day. They are executed in a controlled way with the objective of finding as many security flaws as possible and to provide feedback on how to mitigate the risks posed by such flaws. Security-conscious corporations have implemented integrated penetration testing, vulnerability assessments, and source code reviews in their software development cycle. Thus, when they release a new application, it has already been through various stages of testing and remediation. When planning to execute a penetration testing project, be it for a client as a professional penetration tester or as part of a company's internal security team, there are aspects that always need to be considered before starting the engagement. [box type="shadow" align="" class="" width=""]This article is an excerpt from the book Web Penetration testing with Kali Linux - Third Edition, written by Gilberto Najera-Gutierrez, Juned Ahmed Ansari.[/box] Rules of Engagement for Pen testing Rules of Engagement (RoE) is a document that deals with the manner in which the penetration test is to be conducted. Some of the directives that should be clearly spelled out in RoE before you start the penetration test are as follows: The type and scope of testing Client contact details Client IT team notifications Sensitive data handling Status meeting and reports Type and scope of Penetration testing The type of testing can be black box, white box, or an intermediate gray box, depending on how the engagement is performed and the amount of information shared with the testing team. There are things that can and cannot be done in each type of testing. With black box testing, the testing team works from the view of an attacker who is external to the organization, as the penetration tester starts from scratch and tries to identify the network map, the defense mechanisms implemented, the internet-facing websites and services, and so on. Even though this approach may be more realistic in simulating an external attacker, you need to consider that such information may be easily gathered from public sources or that the attacker may be a disgruntled employee or ex-employee who already possess it. Thus, it may be a waste of time and money to take a black box approach if, for example, the target is an internal application meant to be used by employees only. White box testing is where the testing team is provided with all of the available information about the targets, sometimes even including the source code of the applications, so that little or no time is spent on reconnaissance and scanning. A gray box test then would be when partial information, such as URLs of applications, user-level documentation, and/or user accounts are provided to the testing team. Gray box testing is especially useful when testing web applications, as the main objective is to find vulnerabilities within the application itself, not in the hosting server or network. Penetration testers can work with user accounts to adopt the point of view of a malicious user or an attacker that gained access through social engineering. [box type="note" align="" class="" width=""]When deciding on the scope of testing, the client along with the testing team need to evaluate what information is valuable and necessary to be protected, and based on that, determine which applications/networks need to be tested and with what degree of access to the information.[/box] Client contact details We can agree that even when we take all of the necessary precautions when conducting tests, at times the testing can go wrong because it involves making computers do nasty stuff. Having the right contact information on the client-side really helps. A penetration test is often seen turning into a Denial-of-Service (DoS) attack. The technical team on the client side should be available 24/7 in case a computer goes down and a hard reset is needed to bring it back online. [box type="note" align="" class="" width=""]Penetration testing web applications has the advantage that it can be done in an environment that has been specially built for that purpose, allowing the testers to reduce the risk of negatively affecting the client's productive assets.[/box] Client IT team notifications Penetration tests are also used as a means to check the readiness of the support staff in responding to incidents and intrusion attempts. You should discuss this with the client whether it is an announced or unannounced test. If it's an announced test, make sure that you inform the client of the time and date, as well as the source IP addresses from where the testing (attack) will be done, in order to avoid any real intrusion attempts being missed by their IT security team. If it's an unannounced test, discuss with the client what will happen if the test is blocked by an automated system or network administrator. Does the test end there, or do you continue testing? It all depends on the aim of the test, whether it's conducted to test the security of the infrastructure or to check the response of the network security and incident handling team. Even if you are conducting an unannounced test, make sure that someone in the escalation matrix knows about the time and date of the test. Web application penetration tests are usually announced. Sensitive data handling During test preparation and execution, the testing team will be provided with and may also find sensitive information about the company, the system, and/or its users. Sensitive data handling needs special attention in the RoE and proper storage and communication measures should be taken (for example, full disk encryption on the testers' computers, encrypting reports if they are sent by email, and so on). If your client is covered under the various regulatory laws such as the Health Insurance Portability and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA), or the European data privacy laws, only authorized personnel should be able to view personal user data. Status meeting and reports Communication is key for a successful penetration test. Regular meetings should be scheduled between the testing team and the client organization and routine status reports issued by the testing team. The testing team should present how far they have reached and what vulnerabilities have been found up to that point. The client organization should also confirm whether their detection systems have triggered any alerts resulting from the penetration attempt. If a web server is being tested and a WAF was deployed, it should have logged and blocked attack attempts. As a best practice, the testing team should also document the time when the test was conducted. This will help the security team in correlating the logs with the penetration tests. [box type="note" align="" class="" width=""]WAFs work by analyzing the HTTP/HTTPS traffic between clients and servers, and they are capable of detecting and blocking the most common attacks on web applications.[/box] To build defense against web attacks with Kali Linux and understand the concepts of hacking and penetration testing, check out this book Web Penetration Testing with Kali Linux - Third Edition. Top 5 penetration testing tools for ethical hackers Essential skills required for penetration testing Approaching a Penetration Test Using Metasploit
Read more
  • 0
  • 2
  • 87981

article-image-pentest-tool-in-focus-metasploit
Savia Lobo
30 May 2018
5 min read
Save for later

Pentest tool in focus: Metasploit

Savia Lobo
30 May 2018
5 min read
Security over the web is of the highest priority these days as most of our transactions and storage takes place on the web. Our systems are ripe for cracking by hackers. Don’t believe me? check out the below video. How can we improve our security belts around our system? Metasploit is one solution cybersecurity professionals look at to tight-lock their security with no risk of intruders. Metasploit, an open source project, allows individuals or organizations to identify security vulnerabilities and develop a code using which network administrators can break into their own code and identify potential risks. They can then prioritize which vulnerabilities need to be addressed. The Metasploit project offers Penetration (pen) testing software Tools for automating the comparison of a program's vulnerability Anti-forensic and advanced evasion tools Some tools are also built-in the Metasploit framework. The Metasploit Framework  is a collection of tools, libraries, modules and so on. It is popular among cybersecurity professionals and ethical hackers to carry out penetration testing or hacking. They can use it to exploit vulnerabilities on a network and also make Trojans, backdoors, botnets, phishing and so on. You can check out our article on 12 common malware types you should know, to know about the different malware types. The Metasploit Framework is supported by various operating systems including, Linux, MAC-OS, Windows, Android and so on. One can use metasploit in both free and paid versions, where the free version(Metasploit Framework and Metasploit community)can be used to find out basic exploits. However, a full paid version(Metasploit Pro) is preferred as it allows one to carry out deep pen-tests and other advanced features. A paid version offers: Collects integrations via remote APIs Automate several tasks, which include smart exploitation, penetration testing reports, and much more. Infiltrates dynamic payloads to evade the top antivirus solutions Also, in order to use this hacking tool, one can make use of the different interfaces it offers. Metasploit Interfaces Msfconsole Msfconsole is one of the highly popular interfaces in the metasploit framework. Once you have a hang of this interface and its syntax, it will provide a coherent access to all the options within the Metasploit Framework. Some advantages of msfconsole include: With the msfconsole, one can access all the features in the MSF Most stable and provides a console-based interface With msfconsole executing external commands is possible One can experience a full readline support, tabbing, and command completion Msfcli Msfcli enables a powerful command-line interface to the framework. Some features of this interface include: Support for the launch of exploits and auxiliary modules. Great for use in scripts and basic automation. However, one should be careful while using msfcli as variables are case-sensitive, and are assigned using an equal to (=) sign. MsfGUI Msfgui is the GUI of the framework and a tool to carry out demonstrations to clients and management. The msfgui: provides a point-and-click interface for exploitation a GTK wizard-based interface for using the metasploit framework Armitage Developed by Raphael Mudge, Armitage, is an open source Java-based frontend GUI for the metasploit framework. Its primary aim is to assist security professionals to understand hacking, by getting to know the true potential of Metasploit. Advantages of using Metasploit One can automate each phase of penetration testing Metasploit allows pentesters and cyber professionals to automate all phases within the penetration test. This is because, the amount of time required to carry out a complete and thorough pen-test is huge. Metasploit automates tasks; right from selecting the appropriate exploit to streamline the evidence collection and reporting of the attack. Credentials can be gathered and reused Credentials are the keys to any network, and the biggest prize for a penetration tester. With metasploit, one can catalog and track user credentials for reporting. Professionals and hackers can also make use of these credentials across every system in the network using a simple credential domino wizard. Become a next-Level Pen Tester If one has already worked with Metasploit framework for years together, its pro version is definitely the next step to head for. With Metasploit Pro, the expert can easily move through a network using the pivoting and antivirus evasion capabilities. They can also create instant reports on the progress and evidence. The best part is, one can seamlessly use custom scripts by going into the command line framework. Metasploit in competition with other pentesting tools Metasploit is not the only tool that offers penetration testing but it is one of the preferred ones. There are a number of other tools in the market that can give Metasploit a tough competition. Some of them include Wireshark, Nessus, Nmap, and so on. Wireshark is a famous network protocol analyzer. It can read captured information from other applications and is multiplatform. The only con it has is, it has a steep learning curve. Nessus is a vulnerability scanner and a popular tool among the professionals in security. It has a huge library of vulnerabilities and respective tests to identify them. It relies on the response from the target host to identify a breach. Here, metasploit is used as an exploitation tool to identify if the detected breach could be exploitable. Nmap (Network mapper) is a highly competent pen testing tool used for network mapping or discovery. On comparing with metasploit, it has a rudimentary GUI as compared to Metasploit. Metasploit is moving into web application security with its 3.5.0 release. The community has also added native PHP and Java payloads, which makes it easy to acquire advanced functionality through web application and Java server vulnerabilities. The community plans to port more exploits and modules to the metasploit platform. Additional modules that target embedded devices, hardware devices, etc.and BUS systems, such as K-Line could be added in the near future. 5 pen testing rules of engagement: What to consider while performing Penetration testing How to secure a private cloud using IAM Top 5 penetration testing tools for ethical hackers
Read more
  • 0
  • 0
  • 83719

article-image-essential-skills-penetration-testing
Hari Vignesh
11 Jun 2017
6 min read
Save for later

Essential skills for penetration testing

Hari Vignesh
11 Jun 2017
6 min read
Cybercriminals are continally developing new and more sophisticated ways to exploit software vulnerabilities, making it increasingly difficult to defend our systems. Today, then, we need to be proactive in how we protect our digital properties. That's why penetration testers are so in demand. Although risk analysis can easily be done by internal security teams, support from skilled penetration testers can be the difference between security and vulnerability. These highly trained professionals can “think like the enemy” and employ creative ways to identify problems before they occur, going beyond the use of automated tools. Pentesters can perform technological offensives, but also simulate spear phishing campaigns to identify weak links in the security posture of the companies and pinpoint training needs. The human element is essential to simulate a realistic attack and uncover all of the infrastructure’s critical weaknesses. Being a pen tester can be financially rewarding because trained and skilled ones can normally secure good wages. Employers are willing to pay top dollar to attract and retain talent. Most pen testers enjoy sizable salaries depending on where they live and their level of experience and training. According to a PayScale salary survey, the average salary is approximately $78K annually, ranging from $44K to $124K on the higher end. To be a better pen tester, you need to upgrade or master your art in certain aspects. The following skills will make you stand out in the crowd and will make you a better and more effective pen tester. I know what you’re thinking. This seems like an awful lot of work learning penetration testing, right? Wrong. You can still learn how to penetration test and become a penetration tester without these things, but learning all of these things will make it easier and help you understand both how and why things are done a certain way. Bad pen testers know that things are vulnerable. Good pen testers know how things are vulnerable. Great pen testers know why things are vulnerable. Mastering command-line If you notice that even in modern hacker films and series, the hackers always have a little black box on the screen with text going everywhere. It’s a cliché but it’s based in reality. Hackers and penetration testers alike use the command line a lot. Most of the tools are normally command line based. It’s not showing off, it’s just the most efficient way to do our jobs. If you want to become a penetration tester you need to be at the very least, comfortable with a DOS or PowerShell prompt or terminal. The best way to develop this sort of skillset is to learn how to write DOS Batch or PowerShell scripts. There are various command line tools that make the life of a pen-tester easy. So learning to use those tools and mastering them will enable you to pen-test your environment efficiently. Mastering OS concepts If you look at penetration testing or hacking sites and tutorials, there’s a strong tendency to use Linux. If you start with something like Ubuntu, Mint or Fedora or Kali as a main OS and try to spend some time tinkering under the hood, it’ll help you become more familiar with the environment. Setting up a VM to install and break into a Linux server is a great way to learn. You wouldn’t expect to be able to comfortably find and exploit file permission weaknesses if you don’t understand how Linux file permissions work, nor should you expect to be able to exploit the latest vulnerabilities comfortably and effectively without understanding how they affect a system. A basic understanding of Unix file permissions, processes, shell scripting, and sockets will go a long way. Mastering networking and protocols to the packet level TCP/IP seems really scary at first, but the basics can be learned in a day or two. While breaking in you can use a packet sniffing tool called Wireshark to see what’s really going on when they send traffic to a target instead of blindly accepting documented behavior without understanding what’s happening. You’ll also need to know not only how HTTP works over the wire, but also you’ll need to understand the Document Object Model (DOM) and enough knowledge about how backends work to then, further understand how web-based vulnerabilities occur. You can become a penetration tester without learning a huge volume of things, but you’ll struggle and it’ll be a much less rewarding career. Mastering programming If you can’t program then you’re at risk of losing out to candidates who can. At best, you’re possibly going to lose money from that starting salary. Why? You would require sufficient knowledge in a programming language to understand the source code and find a vulnerability in it. For instance, only if you know PHP and how it interacts with a database, will you be able to exploit SQL injection. Your prospective employer is going to need to give you time to learn these things if they’re going to get the most out of you. So don’t steal money from your own career, learn to program. It’s not hard. Being able to program means you can write tools, automate activities, and be far more efficient. Aside from basic scripting you should ideally become at least semi-comfortable with one programming languageand cover the basics in another. Web people like Ruby. Python is popular amongst reverse engineers. Perl is particularly popular amongst hardcore Unix users. You don’t need to be a great programmer, but being able to program is worth its weight in goldand most languages have online tutorials to get you started. Final thoughts Employers will hire a bad junior tester if they have to, and a good junior tester if there’s no one better, but they’ll usually hire a potentially great junior pen tester in a heartbeat. If you don’t spend time learning the basics to make yourself a great pen tester, you’re stealing from your own potential salary. If you’re missing some or all of the things above, don’t be upset. You can still work towards getting a job in penetration testing and you don’t need to be an expert in any of these things. They’re simply technical qualities that make you a much better candidate for being (and probably better paid) hired from a hiring manager and supporting interviewer’s perspective. About the author Hari Vignesh Jayapalan is a Google Certified Android app developer, IDF Certified UI & UX Professional, street magician, fitness freak, technology enthusiast, and wannabe entrepreneur. He can be found on Twitter @HariofSpades.
Read more
  • 0
  • 0
  • 59587

article-image-6-artificial-intelligence-cybersecurity-tools-you-need-to-know
Savia Lobo
25 Aug 2018
7 min read
Save for later

6 artificial intelligence cybersecurity tools you need to know

Savia Lobo
25 Aug 2018
7 min read
Recently, most of the organizations experienced severe downfall due to an undetected malware, Deeplocker, which secretly evaded even the stringent cyber security mechanisms. Deeplocker leverages the AI model to attack the target host by using indicators such as facial recognition, geolocation and voice recognition. This incidence speaks volumes about the big role AI plays in the cybersecurity domain. In fact, some may even go on to say that AI for cybersecurity is no longer a nice to have tech rather a necessity. Large and small organizations and even startups are hugely investing in building AI systems to analyze the huge data trove and in turn, help their cybersecurity professionals to identify possible threats and take precautions or immediate actions to solve it. If AI can be used in getting the systems protected, it can also harm it. How? The hackers and intruders can also use it to launch an attack--this would be a much smarter attack--which would be difficult to combat. Phishing, one of the most common and simple social engineering cyber attack is now easy for attackers to master. There are a plethora of tools on the dark web that can help anyone to get their hands on phishing. In such trying conditions, it is only imperative that organizations take necessary precautions to guard their information castles. What better than AI? How 6 tools are using artificial intelligence for cybersecurity Symantec’s Targeted attack analytics (TAA) tool This tool was developed by Symantec and is used to uncover stealthy and targeted attacks. It applies AI and machine learning on the processes, knowledge, and capabilities of the Symantec’s security experts and researchers. The TAA tool was used by Symantec to counter the Dragonfly 2.0 attack last year. This attack targeted multiple energy companies and tried to gain access to operational networks. Eric Chein, Technical Director of Symantec Security says, “ With TAA, we’re taking the intelligence generated from our leading research teams and uniting it with the power of advanced machine learning to help customers automatically identify these dangerous threats and take action.” The TAA tools analyze incidents within the network against the incidents found in their Symantec threat data lake. TAA unveils suspicious activity in individual endpoints and collates that information to determine whether each action indicate hidden malicious activity. The TAA tools are now available for Symantec Advanced Threat Protection (ATP) customers. Sophos’ Intercept X tool Sophos is a British security software and hardware company. Its tool, Intercept X, uses a deep learning neural network that works similar to a human brain. In 2010, the US Defense Advanced Research Projects Agency (DARPA) created their first Cyber Genome Program to uncover the ‘DNA’ of malware and other cyber threats, which led to the creation of algorithm present in the Intercept X. Before a file executes, the Intercept X is able to extract millions of features from a file, conduct a deep analysis, and determine if a file is benign or malicious in 20 milliseconds. The model is trained on real-world feedback and bi-directional sharing of threat intelligence via an access to millions of samples provided by the data scientists. This results in high accuracy rate for both existing and zero-day malware, and a lower false positive rate. Intercept X utilizes behavioral analysis to restrict new ransomware and boot-record attacks.  The Intercept X has been tested on several third parties such as NSS labs and received high-scores. It is also proven on VirusTotal since August of 2016. Maik Morgenstern, CTO, AV-TEST said, “One of the best performance scores we have ever seen in our tests.” Darktrace Antigena Darktrace Antigena is Darktrace’s active self-defense product. Antigena expands Darktrace’s core capabilities to detect and replicate the function of digital antibodies that identify and neutralize threats and viruses. Antigena makes use of Darktrace’s Enterprise Immune System to identify suspicious activity and responds to them in real-time, depending on the severity of the threat. With the help of underlying machine learning technology, Darktrace Antigena identifies and protects against unknown threats as they develop. It does this without the need for human intervention, prior knowledge of attacks, rules or signatures. With such automated response capability, organizations can respond to threats quickly, without disrupting the normal pattern of business activity. Darktrace Antigena modules help to regulate user and machine access to the internet, message protocols and machine and network connectivity via various products such as Antigena Internet, Antigena Communication, and Antigena network. IBM QRadar Advisor IBM’s QRadar Advisor uses the IBM Watson technology to fight against cyber attacks. It uses AI to auto-investigate indicators of any compromise or exploit. QRadar Advisor uses cognitive reasoning to give critical insights and further accelerates the response cycle. With the help of IBM’s QRadar Advisor, security analysts can assess threat incidents and reduce the risk of missing them. Features of the IBM QRadar Advisor Automatic investigations of incidents QRadar Advisor with Watson investigates threat incidents by mining local data using observables in the incident to gather broader local context. It later quickly assesses the threats regarding whether they have bypassed layered defenses or were blocked. Provides Intelligent reasoning QRadar identifies the likely threat by applying cognitive reasoning. It connects threat entities related to the original incident such as malicious files, suspicious IP addresses, and rogue entities to draw relationships among these entities. Identifies high priority risks With this tool, one can get critical insights on an incident, such as whether or not a malware has executed, with supporting evidence to focus your time on the higher risk threats. Then make a decision quickly on the best response method for your business. Key insights on users and critical assets IBM’s QRadar can detect suspicious behavior from insiders through integration with the User Behavior Analytics (UBA) App and understands how certain activities or profiles impact systems. Vectra’s Cognito Vectra’s Cognito platform uses AI to detect attackers in real-time. It automates threat detection and hunts for covert attackers. Cognito uses behavioral detection algorithms to collect network metadata, logs and cloud events. It further analyzes these events and stores them to reveal hidden attackers in workloads and user/IoT devices. Cognito platform consists of Cognito Detect and Cognito Recall. Cognito Detect reveals hidden attackers in real time using machine learning, data science, and behavioral analytics. It automatically triggers responses from existing security enforcement points by driving dynamic incident response rules. Cognito Recall determines exploits that exist in historical data. It further speeds up detection of incident investigations with actionable context about compromised devices and workloads over time. It’s a quick and easy fix to find all devices or workloads accessed by compromised accounts and identify files involved in exfiltration. Just as diamond cuts diamond, AI cuts AI. By using AI to attack and to prevent on either side, AI systems will learn different and newer patterns and also identify unique deviations to security analysts. This provides organizations to resolve an attack on the way much before it reaches to the core. Given the rate at which AI and machine learning are expanding, the days when AI will redefine the entire cybersecurity ecosystem are not that far. DeepMind AI can spot over 50 sight-threatening eye diseases with expert accuracy IBM’s DeepLocker: The Artificial Intelligence powered sneaky new breed of Malware 7 Black Hat USA 2018 conference cybersecurity training highlights Top 5 cybersecurity trends you should be aware of in 2018  
Read more
  • 0
  • 0
  • 57828

article-image-how-artificial-intelligence-can-improve-pentesting
Melisha Dsouza
21 Oct 2018
8 min read
Save for later

How artificial intelligence can improve pentesting

Melisha Dsouza
21 Oct 2018
8 min read
686 cybersecurity breaches were reported in the first three months of 2018 alone, with unauthorized intrusion accounting for 38.9% of incidents. And with high-profile data breaches dominating headlines, it’s clear that while modern, complex software architecture might be more adaptable and data-intensive than ever, securing that software is proving a real challenge. Penetration testing (or pentesting) is a vital component within the cybersecurity toolkit. In theory, it should be at the forefront of any robust security strategy. But it isn’t as simple as just rolling something out with a few emails and new software - it demands people with great skills, as well a culture where stress testing and hacking your own system is viewed as a necessity, not an optional extra. This is where artificial intelligence comes in - the automation that you can achieve through artificial intelligence could well help make pentesting much easier to do consistently and at scale. In turn, this would help organizations tackle both issues of skills and culture, and get serious about their cybersecurity strategies. But before we dive deeper into artificial intelligence and pentesting, let’s take a look at where we are now, and the shortcomings of established pentesting methods. The shortcomings of established methods of pentesting Typically, pentesting is carried out in 5 stages: Source: Incapsula Every one of these stages, when carried out by humans, opens up the chance of error. Yes, software is important, but contextual awareness and decisions are required.. This process, then, provides plenty of opportunities for error. From misinterpreting data - like thinking a system is secure, when actually it isn’t - to taking care of evidence and thoroughly and clearly recording the results of pentests, even the most experienced pentester will get things wrong. But even if you don’t make any mistakes, this whole process is hard to do well at scale. It requires a significant amount of time and energy to test a piece of software, which, given the pace of change created by modern processes, makes it much harder to maintain the levels of rigor you ultimately want from pentesting. This is where artificial intelligence comes in. The pentesting areas that artificial intelligence can impact Let’s dive into the different stages of pentesting that AI can impact. #1 Reconnaissance Stage The most important stage in pentesting is the Reconnaissance or information gathering stage. As rightly said by many in cybersecurity, "The more information gathered, the higher the likelihood of success." Therefore, a significant amount of time should be spent obtaining as much information as possible about the target. Using AI to automate this stage would provide accurate results as well as save a lot of time invested. Using a combination of Natural Language Processing, Computer Vision, and Artificial Intelligence, experts can identify a wide variety of details that can be used to build a profile of the company, its employees, the security posture, and even the software/hardware components of the network and computers. #2 Scanning Stage Comprehensive coverage is needed In the scanning phase. Manually scanning through thousands if systems in an organization is not ideal. NNor is it ideal to interpret the results returned by scanning tools. AI can be used to tweak the code of the scanning tools to scan systems as well as interpret the results of the scan. It can help save pentesters time and help in the overall efficiency of the pentesting process. AI can focus on test management and the creation of test cases automatically that will check if a particular program can be tagged having security flaw. They can also be used to check how a target system responds to an intrusion. #3 Gaining and Maintaining access stage Gaining access phase involves taking control of one or more network devices in order to either extract data from the target, or to use that device to then launch attacks on other targets. Once a system is scanned for vulnerabilities, the pentesters need to ensure that the system does not have any loopholes that attackers can exploit to get into the network devices. They need to check that the network devices are safely protected with strong passwords and other necessary credentials. AI-based algorithms can try out different combinations of passwords to check if the system is susceptible for a break-in. The algorithms can be trained to observe user data, look for trends or patterns to make inferences about possible passwords used. Maintaining access focuses on establishing other entry points to the target. This phase is expected to trigger mechanisms, to ensure that the penetration tester’s security when accessing the network. AI-based algorithms should be run at equal intervals to time to guarantee that the primary path to the device is closed. The algorithms should be able to discover backdoors, new administrator accounts, encrypted channels, new network access channels, and so on. #4 Covering Tracks And Reporting The last stage tests whether an attacker can actually remove all traces of his attack on the system. Evidence is most often stored in user logs, existing access channels, and in error messages caused by the infiltration process. AI-powered tools can assist in the discovery of hidden backdoors and multiple access points that haven't been left open on the target network; All of these findings should be automatically stored in a report with a proper timeline associated with every attack done. A great example of a tool that efficiently performs all these stages of pentesting is CloudSEK’s X-Vigil. This tool leverages AI to extract data, derive analysis and discover vulnerabilities in time to protect an organization from data breach. Manual vs automated vs AI-enabled pentesting Now that you have gone through the shortcomings of manual pen testing and the advantages of AI-based pentesting, let’s do a quick side-by-side comparison to understand the difference between the two.   Manual Testing Automated Testing AI enabled pentesting Manual testing is not accurate at all times due to human error This is more likely to return false positives AI enabled pentesting is accurate as compared to automated testing Manual testing is time-consuming and takes up human resources.   Automated testing is executed by software tools, so it is significantly faster than a manual approach.   AI enabled testing does not consume much time. The algorithms can be deployed for thousands of systems at a single instance. Investment is required for human resources.   Investment is required for testing tools. AI will save the investment for human resources in pentesting. Rather, the same employees can be used to perform less repetitive and more efficient tasks Manual testing is only practical when the test cases are run once or twice, and frequent repetition is not required..   Automated testing is practical when tools find test vulnerabilities out of programmable bounds AI-based pentesting is practical in organizations with thousands of systems that need to be tested at once to save time and resources.   AI-based pentesting tools Pentoma is an AI-powered penetration testing solution that allows software developers to conduct smart hacking attacks and efficiently pinpoint security vulnerabilities in web apps and servers. It identifies holes in web application security before hackers do, helping prevent any potential security damages. Pentoma analyzes web-based applications and servers to find unknown security risks.In Pentoma, with each hacking attempt, machine learning algorithms incorporate new vulnerability discoveries, thus continuously improving and expanding threat detection capability. Wallarm Security Testing is another AI based testing tool that discovers network assets, scans for common vulnerabilities, and monitors application responses for abnormal patterns. It discovers application-specific vulnerabilities via Automated Threat Verification. The content of a blocked malicious request is used to create a sanitized test with the same attack vector to see how the application or its copy in a sandbox would respond. With such AI based pentesting tools, pentesters can focus on the development process itself, confident that applications are secured against the latest hacking and reverse engineering attempts, thereby helping to streamline a product’s time to market. Perhaps it is the increase in the number of costly data breaches or the continually expanding attack and proliferation of sensitive data and the attempt to secure them with increasingly complex security technologies that businesses lack in-house expertise to properly manage. Whatever be the reason, more organizations are waking up to the fact that if vulnerabilities are not caught in time can be catastrophic for the business. These weaknesses, which can range from poorly coded web applications, to unpatched databases to exploitable passwords to an uneducated user population, can enable sophisticated adversaries to run amok across your business.  It would be interesting to see the growth of AI in this field to overcome all the aforementioned shortcomings. 5 ways artificial intelligence is upgrading software engineering Intelligent Edge Analytics: 7 ways machine learning is driving edge computing adoption in 2018 8 ways Artificial Intelligence can improve DevOps
Read more
  • 0
  • 0
  • 49897
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-mobile-forensics-data-on-the-move
Julian Ursell
31 Oct 2014
5 min read
Save for later

Data on the Move: The Growing Frontier of Mobile Forensics

Julian Ursell
31 Oct 2014
5 min read
"The autopsy report details that the victim was wearing a Google Glass at the time of death." "So it looks like we're through the looking glass on this one!" "Be respectful detective, a man just died." CSI: Miami-esque exchange aside, the continual advancements made in wearable smart technologies, such as the Google Glass, smart watches, and other peripherals mean the expertise and versatility of professional analysts working in the digital forensics space will face ever greater challenges in the future. The original innovation of smartphones steepened the learning curve for forensic investigators and analysts, who have been required to adapt to the rapid development of mobile systems approaching the computing power and intelligence of desktop computers. Since then, this difficulty has only escalated with the constant iteration of new mobile hardware capabilities and updates to mobile operating systems. The velocity at which mobile technology updates makes it a nightmare for analysts to keep up to speed with system architectures (whether Android, iOS, Windows, or Blackberry) so they have the ability to forensically examine devices in a range of critical, sometimes criminal, investigations. That’s even before considering knock-off phones and those that may have been on the wrong end of a baseball bat. For forensic experts, the art of data extraction is an imperative one to master, as crucial evidence lies in the artefacts stored on devices, and encompasses common system files such as texts, emails, call logs, pictures, videos, web histories, passwords, PINs, and unlock patterns, but also less typical objects stored on third-party applications. Geolocation data, timestamps, and user accounts can all provide key evidence to working out the what, where, when, how, why for an investigation. "Perishable" or anonymous messaging services such as Snapchat and Whisper add another dimension to the discoverability of data that is intended to be temporary or anonymous (although Whisper has come under fire recently for storing confidential data, contrary to the application’s anonymity promise). In cases where app data has been "destroyed" or anonymised, forensic technicians need to extract deleted data through manual decoding and even piece together the evidence, Columbo-style, to unravel the perpetrators and the crime. The sophistication of numerous third-party applications and the types of data they are capable of storing adds a considerable degree of complexity and demands a lot in terms of forensic method and data analysis. Mobile forensics is a developing discipline, and with the rise of smart wearables, there is yet another dimension for analysts to get to grips with in the future. The smartwatch is still in the infancy stage of sophistication and adoption among consumers, but the impending release of the Apple Watch, along with the already available Samsung Gear and Pebble Steel ranges indicate that the market is going to expand in the next few years, and this makes it likely that smartwatches will become another addition in the digital (mobile) forensics space. The interesting kink in smartwatch technology is the paired interface they must share with phones, as the devices must effectively be synced in order to function, so that the watch receives notifications (texts, calls) pushed from the phone. The event logs stored on both devices when phone and watch interact may prove to be an important forensic artefact should they ever be the cause of investigation, and while right now, native apps on smartwatches are on the limited side (contacts, calendar, media, weather), greater sophistication in the realm of smartwatch apps cannot be far away. A hugely intriguing layer for mobile forensics is brought by the Google Glass and its array of functionalities, as once it eventually becomes globally available it will become an important device for analysts to understand how to image and pull apart. The Glass can be used for typical smartphone activities, such as sending messages, making calls, taking pictures, and social media interaction, but it's the ability to enable on-the-fly navigation and translation out in the real world, along with voice commanded Google search and access to real-time information updates through Google Now that make it particularly fascinating from a forensics standpoint. Even considering the familiarity experts will have with Android systems, the unique properties of the Glass in its use of voice commands and the search and geospatial information it collects will potentially provide crucial artefacts in investigations. Examiners will need to know how to pull voice command event logs and parse timeline data, recover deleted visual data, analyse GPS usage and locations, and even determine when in time a Glass was on or off. A student in digital forensics has even begun attempting to forensically examine the Glass. At this point in time, Glass wearers are those select few chosen for the Explorer beta program, but we should fully expect—when the device becomes completely publically available—for it to become popular enough for it to make another significant addition to the field of smart device forensics. Apparently Google Glass carriers are split into two camps—‘Explorers’ and ‘Glassholes’. Whatever the persuasion, forensic investigators may be required to look through a glass, darkly, sooner than they think.
Read more
  • 0
  • 0
  • 45804

article-image-6-common-use-cases-of-reverse-proxy-scenarios
Guest Contributor
05 Oct 2018
6 min read
Save for later

6 common use cases of Reverse Proxy scenarios

Guest Contributor
05 Oct 2018
6 min read
Proxy servers are used as intermediaries between a client and a website or online service. By routing traffic through a proxy server, users can disguise their geographic location and their IP address. Reverse proxies, in particular, can be configured to provide a greater level of control and abstraction, thereby ensuring the flow of traffic between clients and servers remains smooth. This makes them a popular tool for individuals who want to stay hidden online, but they are also widely used in enterprise settings, where they can improve security, allow tasks to be carried out anonymously, and control the way employees are able to use the internet. What is a Reverse Proxy? A reverse proxy server is a type of proxy server that usually exists behind the firewall of a private network. It directs any client requests to the appropriate server on the backend. Reverse proxies are also used as a means of caching common content and compressing inbound and outbound data, resulting in a faster and smoother flow of traffic between clients and servers. Furthermore, the reverse proxy can handle other tasks, such as SSL encryption, further reducing the load on web servers. There is a multitude of scenarios and use cases in which having a reverse proxy can make all the difference to the speed and security of your corporate network. By providing you with a point at which you can inspect traffic and route it to the appropriate server, or even transform the request, a reverse proxy can be used to achieve a variety of different goals. Load Balancing to route incoming HTTP requests This is probably the most familiar use of reverse proxies for many users. Load balancing involves the proxy server being configured to route incoming HTTP requests to a set of identical servers. By spreading incoming requests across these servers, the reverse proxies are able to balance out the load, therefore sharing it amongst them equally. The most common scenario in which load balancing is employed is when you have a website that requires multiple servers. This happens due to the volume of requests, which are too much for one server to handle efficiently. By balancing the load across multiple servers, you can also move away from an architecture that features a single point of failure. Usually, the servers will all be hosting the same content, but there are also situations in which the reverse proxy will also be retrieving specific information from one of a number of different servers. Provide security by monitoring and logging traffic By acting as the mediator between clients and your system’s backend, a reverse proxy server can hide the overall structure of your backend servers. This is because the reverse proxy will capture any requests that would otherwise go to those servers and handle them securely. A reverse proxy can also improve security by providing businesses with a point at which they can monitor and log traffic flowing through their network. A common use case in which a reverse proxy is used to bolster the security of a network would be the use of a reverse proxy as an SSL gateway. This allows you to communicate using HTTP behind the firewall without compromising your security. It also saves you the trouble of having to configure security for each server behind the firewall individually. A rotating residential proxy, also known as a backconnect proxy, is a type of proxy that frequently changes the IP addresses and connections that the user uses. This allows users to hide their identity and generate a large number of requests without setting alarms off. A reverse rotating residential proxy can be used to improve the security of a corporate network or website. This is because the servers in question will display the information for the proxy server while keeping their own information hidden from potential attackers. No need to install certificates on your backend servers with SSL Termination SSL termination process occurs when an SSL connection server ends, or when the traffic shifts between encrypted and unencrypted requests. By using a reverse proxy to handle any incoming HTTPS connections, you can have the proxy server decrypt the request, and then pass on the unencrypted request to the appropriate server. Taking this approach offers practical benefits. For example, it eliminates the need to install certificates on your backend servers. It also provides you with a single configuration point for managing SSL/TLS. Removing the need for your web servers to undertake this decryption means that you are also reducing the processing load on the server. Serve static content on behalf of backend servers Some reverse proxy servers can be configured to also act as web servers. Websites contain a mixture of dynamic content, which changes over time, and static content, which always remains the same. If you can configure your reverse proxy server to serve up static content on behalf of backend servers, you can greatly reduce the load, freeing up more power for dynamic content rendering. Alternatively, a reverse proxy can be configured to behave like a cache. This allows it to store and serve content that is frequently requested, thereby further reducing the load on backend servers. URL Rewriting before they go on to the backend servers Anything that a business can do to easily to improve their SEO score is worth considering. Without an investment in your SEO, your business or website will remain invisible to search engine users. With URL rewriting, you can compensate for any legacy systems you use, which produce URLs that are less than ideal for SEO. With a reverse proxy server, the URLs can be automatically reformatted before they are passed on to the backend servers. Combine Different Websites into a Single URL Space It is often desirable for a business to adopt a distributed architecture whereby different functions are handled by different components. With a reverse proxy, it is easy to route a single URL to a multitude of components. To anyone who uses your URL, it will simply appear as if they are moving to another page on the website. In fact, each page within that URL might actually be connecting to a completely different backend service. This is an approach that is widely used for web service APIs. To sum up, the primary function of a reverse proxy is load balancing, ensuring that no individual backend server becomes inundated with more traffic or requests than it can handle. However, there are a number of other scenarios in which a reverse proxy can potentially offer enormous benefits. About the author Harold Kilpatrick is a cybersecurity consultant and a freelance blogger. He's currently working on a cybersecurity campaign to raise awareness around the threats that businesses can face online. Read Next HAProxy introduces stick tables for server persistence, threat detection, and collecting metrics How to Configure Squid Proxy Server Acting as a proxy (HttpProxyModule)
Read more
  • 0
  • 0
  • 44261

article-image-tools-to-stay-completely-anonymous-online
Guest Contributor
12 Jul 2018
8 min read
Save for later

10 great tools to stay completely anonymous online

Guest Contributor
12 Jul 2018
8 min read
Everybody is facing a battle these days. Though it may not be immediately apparent, it is already affecting a majority of the global population. This battle is not fought with bombs, planes, or tanks or with any physical weapons for that matter. This battle is for our online privacy. A survey made last year discovered 69% of data breaches were related to identity theft. Another survey shows the number of cases of data breaches related to identity theft has steadily risen over the last 4 years worldwide. And it is likely to increase as hackers are gaining easy access more advanced tools. The EU’s GDPR may curb this trend by imposing stricter data protection standards on data controllers and processors. These entities have been collecting and storing our data for years through ads that track our online habits-- another reason to protect our online anonymity. However, this new regulation has only been in force for over a month and only within the EU. So, it's going to take some time before we feel its long-term effects. The question is, what should we do when hackers out there try to steal and maliciously use our personal information? Simple: We defend ourselves with tools at our disposal to keep ourselves completely anonymous online. So, here’s a list you may find useful. 1. VPNs A VPN helps you maintain anonymity by hiding your real IP and internet activity from prying eyes. Normally, your browser sends a query tagged with your IP every time you make an online search. Your ISP takes this query and sends it to a DNS server which then points you to the correct website. Of course, your ISP (and all the servers your query had to go through) can, and will likely, view and monitor all the data you course through them-- including your personal information and IP address. This allows them to keep a tab on all your internet activity. A VPN protects your identity by assigning you an anonymous IP and encrypting your data. This means that any query you send to your ISP will be encrypted and no longer display your real IP. This is why using a VPN is one of the best ways to keeping anonymous online. However, not all VPNs are created equal. You have to choose the best one if you want airtight security. Also, beware of free VPNs. Most of them make money by selling your data to advertisers. You’ll want to compare and contrast several VPNs to find the best one for you. But, that’s sooner said than done with so many different VPNs out there. Look for reviews on trustworthy sites to find the best vpn for your needs. 2. TOR Browser The Onion Router (TOR) is a browser that strengthens your online anonymity even more by using different layers of encryption-- thereby protecting your internet activity which includes “visits to Web sites, online posts, instant messages, and other communication forms”. It works by first encasing your data in three layers of encryption. Your data is then bounced three times-- each bounce taking off one layer of encryption. Once your data gets to the right server, it “puts back on” each layer it has shed as it successively bounces back to your device. You can even improve TOR by using it in combination with a compatible VPN. It is important to note, though, that using TOR won’t hide the fact that you’re using it. Some sites may restrict allowances made through TOR. 3. Virtual machine A Virtual machine is basically a second computer within your computer. It lets you emulate another device through an application. This emulated computer can then be set according to your preferences. The best use for this tool, however, is for tasks that don’t involve an internet connection. It is best used for when you want to open a file and want to make sure no one is watching over your shoulder. After opening the file, you then simply delete the virtual machine. You can try VirtualBox which is available on Windows, Linux, and Mac. 4. Proxy servers A proxy server is an intermediary between your device and the internet. It’s basically another computer that you use to process internet requests. It’s similar to a virtual machine in concept but it’s an entirely separate physical machine. It protects your anonymity in a similar way a VPN does (by hiding your IP) but it can also send a different user agent to keep your browser unidentifiable and block or accept cookies but keep them from passing to your device. Most VPN companies also offer proxy servers so they’re a good place to look for a reliable one. 5. Fake emails A fake email is exactly what the name suggests: an email that isn’t linked to your real identity. Fake emails aid your online anonymity by not only hiding your real identity but by making sure to keep you safe from phishing emails or malware-- which can be easily sent to you via email. Making a fake email can be as easy as signing up for an email without using your real information or by using a fake email service. 6. Incognito mode “Going incognito” is the easiest anonymity tool to come by. Your device will not store any data at all while in this mode including: your browsing history, cookies, site data, and information entered in forms. Most browsers have a privacy mode that you can easily use to hide your online activity from other users of the same device. 7. Ad blockers Ads are everywhere these days. Advertising has and always will be a lucrative business. That said, there is a difference between good ads and bad ads. Good ads are those that target a population as a whole. Bad ads (interest-based advertising, as their companies like to call it) target each of us individually by tracking our online activity and location-- which compromises our online privacy. Tracking algorithms aren’t illegal, though, and have even been considered “clever”. But, the worst ads are those that contain malware that can infect your device and prevent you from using it. You can use ad blockers to combat these threats to your anonymity and security. Ad blockers usually come in the form of browser extensions which instantly work with no additional configuration needed. For Google Chrome, you can choose either Adblock Plus, uBlock Origin, or AdBlock. For Opera, you can choose either Opera Ad Blocker, Adblock Plus, or uBlock Origin. 8. Secure messaging apps If you need to use an online messaging app, you should know that the popular ones aren’t as secure as you’d like them to be. True, Facebook messenger does have a “secret conversation” feature but Facebook hasn’t exactly been the most secure social network to begin with. Instead, use tools like Signal or Telegram. These apps use end-to-end encryption and can even be used to make voice calls. 9. File shredder The right to be forgotten has surfaced in mainstream media with the onset of the EU’s General Data Protection Regulation. This right basically requires data collecting or processing entities to completely remove a data subject’s PII from their records. You can practice this same right on your own device by using a “file shredding” tool. But the the thing is: Completely removing sensitive files from your device is hard. Simply deleting it and emptying your device’s recycle bin doesn’t actually remove the file-- your device just treats the space it filled up as empty and available space. These “dead” files can still haunt you when they are found by someone who knows where to look. You can use software like Dr. Cleaner (for Mac) or Eraser (for Win) to “shred” your sensitive files by overwriting them several times with random patterns of random sets of data. 10. DuckDuckGo DuckDuckGo is a search engine that doesn’t track your behaviour (like Google and Bing that use behavioural trackers to target you with ads). It emphasizes your privacy and avoids the filter bubble of personalized search results. It offers useful features like region-specific searching, Safe Search (to protect against explicit content), and an instant answer feature which shows an answer across the top of the screen apart from the search results. To sum it up: Our online privacy is being attacked from all sides. Ads legally track our online activities and hackers steal our personal information. The GDPR may help in the long run but that remains to be seen. What's important is what we do now. These tools will set you on the path to a more secure and private internet experience today. About the Author Dana Jackson, an U.S. expat living in Germany and the founder of PrivacyHub. She loves all things related to security and privacy. She holds a degree in Political Science, and loves to call herself a scientist. Dana also loves morning coffee and her dog Paw.   [divider style="normal" top="20" bottom="20"] Top 5 cybersecurity trends you should be aware of in 2018 Twitter allegedly deleted 70 million fake accounts in an attempt to curb fake news Top 5 cybersecurity myths debunked  
Read more
  • 0
  • 4
  • 42434

article-image-top-5-cybersecurity-assessment-tools-for-networking-professionals
Savia Lobo
07 Jun 2018
6 min read
Save for later

Top 5 cybersecurity assessment tools for networking professionals

Savia Lobo
07 Jun 2018
6 min read
Security is one of the major concerns while setting up data centers in the cloud. Although firewalls and managed networking components are deployed by most of the organizations for their data centers, they still fear being attacked by intruders. As such, organizations constantly seek tools that can assist them in gauging how vulnerable their network is and how they can secure their applications therein. Many confuse security assessment with penetration testing and also use it interchangeably. However, there is a notable difference between the two. Security assessment is a process of finding out the different vulnerabilities within a system and prioritize them based on severity and business criticality. On the other hand, penetration testing simulates a real-life attack and maps out paths that a real attacker would take to fulfill the attack. You can check out our article, Top 5 penetration testing tools for ethical hackers to know about some of the pentesting tools. Plethora of tools in the market exist and every tool claims to be the best. Here is our top 5 list of tools to secure your organization over the network. Wireshark Wireshark is one of the popular tools for packet analysis. It is open source under GNU General Public License. Wireshark has a user-friendly GUI  and supports Command Line Input (CLI). It is a great debugging tool for developers who wish to develop a network application. It runs on multiple platforms including Windows, Linux, Solaris, NetBSD, and so on. WireShark community also hosts SharkFest, launched in 2008, for WireShark developers and the user communities. The main aim of this conference is to support Wireshark development and to educate current and future generations of computer science and IT professionals on how to use this tool to manage, troubleshoot, diagnose, and secure traditional and modern networks. Some benefits of using this tool include: Wireshark features live real-time traffic analysis and also supports offline analysis. Depending on the platform, one can read live data from Ethernet, PPP/HDLC, USB, IEEE 802.11, Token Ring, and many others. Decryption support for several protocols such as IPsec, ISAKMP, Kerberos, SNMPv3, SSL/TLS, WEP, and WPA/WPA2 Network captured by this tool can be browsed via a GUI, or via the TTY-mode TShark utility. Wireshark also has the most powerful display filters in whole industry It also provides users with Tshark, a network protocol analyzer, used to analyze packets from the hosts without a UI. Nmap Network Mapper, popularly known as Nmap is an open source licensed tool for conducting network discovery and security auditing.  It is also utilized for tasks such as network inventory management, monitoring host or service uptime, and much more. How Nmap works is, it uses raw IP packets in order to find out the available hosts on the network, the services they offer, the OS on which they are operating, the firewall that they are currently using and much more. Nmap is a quick essential to scan large networks and can also be used to scan single hosts. It runs on all major operating system. It also provides official binary packages for Windows, Linux, and Mac OS X. It also includes Zenmap - An advanced security scanner GUI and a results viewer Ncat - This is a tool used for data transfer, redirection, and debugging. Ndiff - A utility tool for comparing scan results Nping - A packet generation and response analysis tool Nmap is traditionally a command-line tool run from a Unix shell or Windows Command prompt. This makes Nmap easy for scripting and allows easy sharing of useful commands within the user community. With this, experts do not have to move through different configuration panels and scattered option fields. Nessus Nessus, a product of the Tenable.io, is one of the popular vulnerability scanners specifically for UNIX systems. This tool remains constantly updated with 70k+ plugins. Nessus is available in both free and paid versions. The paid version costs around  $2,190 per year, whereas the free version, ‘Nessus Home’ offers limited usage and is licensed only for home network usage. Customers choose Nessus because It includes simple steps for policy creation and needs just a few clicks for scanning an entire corporate network. It offers vulnerability scanning at a low total cost of ownership (TCO) product One can carry out a quick and accurate scanning with lower false positives. It also has an embedded scripting language for users to write their own plugins and to understand the existing ones. QualysGuard QualysGuard is a famous SaaS (Software-as-a-Service) vulnerability management tool. It has a comprehensive vulnerability knowledge base, using which it is able to provide continuous protection against the latest worms and security threats. It proactively monitors all the network access points, due to which security managers can invest less time to research, scan, and fix network vulnerabilities. This helps organizations in avoiding network vulnerabilities before they could be exploited. It provides a detailed technical analysis of the threats via powerful and easy-to-read reports. The detailed report includes the security threat, the consequences faced if the vulnerability is exploited, and also a solution that recommends how the vulnerability can be fixed. One can get a summary of the overall security with QualysGuard’s executive dashboard. The dashboard displays a number of new, active, and re-opened vulnerabilities. It also displays a graph which showcases vulnerabilities based on severity level. Get to know more about QualysGuard on its official website. Core Impact Core Impact is widely used as a comprehensive tool to assess and test security vulnerability within any organization. It includes a large database of professional exploits and is regularly updated. It assists in cleanly exploiting one machine and later creating an encrypted tunnel through it to exploit other machines. Core Impact provides a controlled environment to mimic bad attacks. This helps one to secure their network before the occurrence of an actual attack. One interesting feature of Core Impact is that one can fully test their network, irrespective of the length, quickly and efficiently. These are five popular tools network security professionals use for assessing their networks. However, there are many other tools such as Netsparker, OpenVAS, Nikto, and many more for assessing the security of their network. Every security assessment tool is unique in its own way. However, it all boils down to one’s own expertise and the experience they have, and also the kind of project environment it is used in. Top 5 penetration testing tools for ethical hackers Intel’s Spectre variant 4 patch impacts CPU performance Pentest tool in focus: Metasploit
Read more
  • 0
  • 0
  • 40689
article-image-the-state-of-the-cybersecurity-skills-gap-heading-into-2020
Guest Contributor
11 Nov 2019
6 min read
Save for later

The state of the Cybersecurity skills gap heading into 2020

Guest Contributor
11 Nov 2019
6 min read
Just this year, several high-profile cyber breaches exposed confidential information and resulted in millions of dollars in damages. Cybersecurity is more important than ever — a big problem for employers facing millions of unfilled cybersecurity positions and a shortage of talented workers. As for the exact number of openings, the estimates vary — but none of them look good. There may be as many as 3.5 million unfilled cybersecurity positions by 2021. As a result, cybersecurity professionals currently in the field are facing serious pressure and long working hours. At cybersecurity conferences, it's not uncommon to see entire tracks about managing mental health, addiction, and work stress. A kind of feedback loop may be forming — one where skilled professionals under major pressure burn out and leave the field, putting more strain on the workers that remain. The cycle continues, pushing talent out of cybersecurity and further widening the skills gap. Some experts go further and call the gap a crisis, though it's not clear we've hit that level yet. Employers are looking at different ways to handle this — by broadening the talent pool and by investing in tools that take the pressure off their cybersecurity workers. Cybersecurity skills gap is on the rise When asked about the skills their organization is most likely to be missing, cybersecurity nearly always tops the list. In a survey conducted by ESG this year, 53% of organizations reported they were facing a cybersecurity shortage. This is 10% more than in 2016. In every survey between this year and 2016, the number has only trended up. There are other ways to look at the gap — by worker hours or by the total number of positions unfilled — but there's only one real conclusion to draw from the data. There aren't enough cybersecurity workers, and every year the skills gap grows worse. Despite pushes for better education and the increasing importance of cybersecurity, there are no signs it's closing or will begin to close in 2020. The why of the skills gap is unclear. The number of graduates from cybersecurity programs is increasing. At the same time, the cost and frequency of cyberattacks are also rising. It may be that schools can't keep up with the growing levels of cybercrime and the needs of companies, especially in the wake of the past few years of high-profile breaches. Employers look for ways to broaden the Talent Pool One possible reason for the skills gap may be that employers are looking for very specific candidates. Cybersecurity can be a difficult field to break into if you don't have the resources to become credentialed. Even prospective candidates with ideal skill sets — experience with security and penetration testing, communication and teamwork skills, and the ability to train nontechnical staff — can be filtered out by automatic resume screening programs. These may be looking for specific job titles, certificates, and degrees. If a resume doesn't pass the keyword filter, the hiring team may never get a chance to read it at all. There are two possible solutions to this problem. The first is to build a better talent pipeline — one that starts at the university or high school level. Employers may join with universities to sponsor programs that encourage or incentivize students to pick up technical certificates or switch their major to cybersecurity or a related field. The high worth of cybersecurity professionals and the strong value of cybersecurity degrees may encourage schools to invest in these programs, taking some of the pressure off employers. This solution isn't universally popular. Some experts argue that cybersecurity training doesn't reflect the field — and that a classroom may never provide the right kind of experience. The second solution is to broaden the talent pool by making it easier for talented professionals to break into cybersecurity. Hiring teams may relax requirements for entry-level positions, and companies may develop training programs that are designed to help other security experts learn about the field. This doesn't mean companies will begin hiring nontechnical staff. Rather, they'll start looking for skilled individuals with unconventional skill sets and a technical background that they can be quickly brought up to speed — like veterans with security or technology training. It's not clear if employers will take the training approach, however. While business leaders find cybersecurity more important every year, companies can be resistant to spending more on employee training. These expenditures increased in 2017 but declined last year. AI tools may help cybersecurity workers Many new companies are developing AI antiviruses, anti-phishing tools and other cybersecurity platforms that may reduce the amount of labor needed from cybersecurity workers. While AI is quite effective at pattern-finding and could be useful for cybersecurity workers, the tech isn't guaranteed to be helpful. Some of these antiviruses are susceptible to adversarial attacks. One popular AI-powered antivirus was defeated with just a few lines of text appended to some of the most dangerous malware out there. Many cybersecurity experts are skeptical of AI tech in general and don't seem fully committed to the idea of a field where cybersecurity workers rely on these tools. Companies may continue to invest in AI cybersecurity technology because there doesn't seem to be many other short-term solutions to the widening skill gap. Depending on how effective these technologies are, they may help reduce the number of cybersecurity openings that need to be filled. Future of the Cybersecurity skills gap Employers and cybersecurity professionals are facing a major shortage of skilled workers. At the same time, both the public and private sectors are dealing with a new wave of cyberattacks that put confidential information and critical systems at risk. There are no signs yet that the cybersecurity skills gap will begin to close in 2020. Employers and training programs are looking for ways to bring new professionals into the field and expand the talent pipeline. At the same time, companies are investing in AI technology that may take some pressure off current cybersecurity workers. Not all cybersecurity experts place their full faith in this technology, but some solutions will be necessary to reduce the pressure of the growing skill gap. Author Bio Kayla Matthews writes about big data, cybersecurity, and technology. You can find her work on The Week, Information Age, KDnuggets and CloudTweaks, or over at ProductivityBytes.com. How will AI impact job roles in Cybersecurity 7 Black Hat USA 2018 conference cybersecurity training highlights: Hardware attacks, IO campaigns, Threat Hunting, Fuzzing, and more. UK’s NCSC report reveals significant ransomware, phishing, and supply chain threats to businesses
Read more
  • 0
  • 0
  • 37065

article-image-how-to-protect-your-vpn-from-data-leaks
Guest Contributor
26 Jan 2019
7 min read
Save for later

How to protect your VPN from Data Leaks

Guest Contributor
26 Jan 2019
7 min read
The following news story was reported by the Nine Network just a week after New Year's Day: an English teacher from Sydney was surprised when she found that her Facebook account was changing in strange ways. Jennifer Howell first noticed that her profile photo had changed, thus prompting her to change her password; however, she was abruptly logged out and locked out of her account upon attempting to do so. Later, she noticed that her profile had been hijacked by someone from the Middle East for the purpose of spreading radical propaganda. Nine Network journalists tracked down another Facebook user in Melbourne whose account had been similarly hijacked by hackers in the Middle East, and the goal was essentially the same. Even though both cases were reported to the Australian Cybercrime Online Reporting Network, nothing could be done about the hijacking, which may have been facilitated by password sniffing over unsecured connections. The Need for VPN Protection [Image courtesy of CNET.com] Seeing such worrisome reports about hacking is prompting many people to use virtual private networking (VPN) technology to secure their internet connections; however, these connections must be checked for potential leaks or they could be a waste of money. In essence, VPN connections protect online privacy by creating a secure tunnel between the client (who typically uses a personal computing device to connect to the internet) and the internet. A reliable VPN connection masks the user's geographical location by means of providing a different internet protocol (IP) address, which is the calling card of every online connection. Moreover, these connections encrypt data transmitted during sessions and provide a form of anonymous browsing. Like with almost all internet tools, VPN connections can also be subjected to certain vulnerabilities that weaken their reliability. Data leaks are a concern amongst information security researchers who focus on VPN technology, and they have identified the following issues: WebRTC Leaks Web Real-Time Communication (WebRTC) is an evolution of the Voice over Internet Protocol (VoIP) for online communications. VoIP is the technology that powers popular mobile apps such as Skype and WhatsApp; it has also replaced the legacy PBX telephone systems at many businesses. Let's say a company is looking to hire a new personnel. With WebRTC enabled on their end, they can direct applicants to a website they can access on their desktop, laptop, tablet, or smartphone to conduct job interviews without having to install Skype. The problem with WebRTC is that it can leak the IP address of users even when a VPN connection is established. DNS Hijacking The hijacking of domain name system (DNS) servers is an old malicious hacking strategy that has been appropriated by authoritarian regimes to enact internet censorship. The biggest DNS hijacking operation in the world is conducted by Chinese telecom regulators through the Great Firewall, which restricts access to certain websites and internet services. DNS hijacking is a broad name for a series of attacks on DNS servers, a common one involves taking over a router, server or even an internet connection for the purpose of redirecting traffic. In other words, hackers can impersonate websites, so that when you intend to check ABC News you will instead be directed to a page that resembles it, but in reality has been coded to steal passwords, compromise your identity or install malware. Some attacks are even more sophisticated than others. There is a connection between WebRTC and DNS hijacking: a malware attack known as DNS changer that can be injected into a system by means of JavaScript execution followed by a WebRTC call that you will not be aware of. This call can be used to determine your IP address even if you have connected through a VPN. This attack may be enhanced by a change of your DNS settings for the purpose of enlisting your computer or mobile device into a botnet to distribute spam, launch denial-of-service attacks or simply hijack your system without your knowledge. Testing for Leaks [Image courtesy of HowToGeek.com] In addition to WebRTC leaks and DNS queries, there are a few other ways your VPN can betray you: public IP address, torrents, and geolocation. The easiest way to assess if you’ve got a leakage is to visit IPLeak.net with your VPN turned off. Let this nifty site work its magic and make note of the information it offers. Leave the site, then turn your VPN on, and repeat the tests. Now compare the results. The torrents and geolocation tests are interesting but probably not as useful or as likely a culprit as the DNS. Your device navigates the internet by communicating with DNS servers that translate web URLs into numeric IP addresses. Most of the time, you’ll have defaulted through your ISP servers, which often leak like cheesecloth. The bad news is that, even with a VPN in place, leakage through your local servers can give up your physical location to spying eyes. To combat this, VPN services route their customers through servers separate from their ISP. Now that you’ve proven your data is leaking, what can you do about it? Preventing Leaks and Choosing the Right VPN Something you can do even before installing a VPN solution is to disable WebRTC in your browser. Some developers have already made this a default configuration, but many still ship with this option enabled. If you search for "WebRTC" within the help file of your browser, you may be able to find instructions on how to modify the flags or .config file. However, proceed with caution. Take the time to read and understand reliable guides such as this one from security researcher Paolo Stagno. Here are other preventative measures: When configuring your VPN, go with the servers it suggests, which will likely not be those of your ISP but rather servers maintained by the VPN company. Not all VPN companies have their own servers, so be aware of that when considering your options.  Be aware that the internet is transitioning its IP address naming system from IPv4 to IPv6. Without diving too deep into this topic, just be aware that if your VPN has not upgraded its protocols, then any site with a new IPv6 address will leak. Look for a VPN service compatible with the new format.  Make sure your VPN uses the newest version of the OpenVPN protocol.  Windows 10 has an almost impossible to change default setting that chooses the fastest DNS server, resulting in the chance it might ignore your VPN server and revert back to the ISP. The OpenVPN plugin is a good way to fight this. Final Thoughts In the end, using a leaky VPN defeats the security purpose of tunneled connections. It is certainly worth your while to evaluate VPN products, read their guides and learn to secure your system against accidental leaks. Keep in mind this is not a ‘set it and forget it’ problem. You should check for leakage periodically to make sure nothing has changed with your system. The winds of change blow constantly online and what worked yesterday might not work tomorrow. As a final suggestion, make sure the VPN you use has a kill-switch feature that breaks your connection in the event it detects a data leak. Author Bio Gary Stevens is a front-end developer. He’s a full-time blockchain geek and a volunteer working for the Ethereum foundation as well as an active Github contributor. Dark Web Phishing Kits: Cheap, plentiful and ready to trick you How to stop hackers from messing with your home network (IoT) Privacy Australia - can you be tracked if you use a VPN? What you need to know about VPNFilter Malware Attack
Read more
  • 0
  • 0
  • 36927

article-image-new-cybersecurity-threats-posed-by-artificial-intelligence
Savia Lobo
05 Sep 2018
6 min read
Save for later

New cybersecurity threats posed by artificial intelligence

Savia Lobo
05 Sep 2018
6 min read
In 2017, the cybersecurity firm Darktrace reported a novel attack that used machine learning to observe and learn normal user behavior patterns inside a network. The malignant software began to mimic normal behavior thus blending it into the background and become difficult for security tools to spot. Many organizations are exploring the use of AI and machine learning to secure their systems against malware or cyber attacks. However, given their nature for self-learning, these AI systems have now reached a level where they can be trained to be a threat to systems i.e., go on the offensive. This brings us to a point where we should be aware of different threats that AI poses on cybersecurity and how we should be careful while dealing with it. What cybersecurity threats does AI pose? Hackers use AI as an effective weapon to intrude into organizations AI not only helps in defending against cyber attacks but can also facilitate cyber attacks. These AI-powered attacks can even bypass traditional means of countering attacks. Steve Grobman, chief technology officer at McAfee said, “AI, unfortunately, gives attackers the tools to get a much greater return on their investment.” A simple example where hackers are using AI to launch an attack is via spear phishing. AI systems with the help of machine learning models can easily mimic humans by crafting convincing fake messages. Using this art, hackers can use them to carry out increased phish attacks. Attackers can also use AI to create a malware for fooling sandboxes or programs that try to spot rogue code before it is deployed in companies' systems Machine learning poisoning Attackers can learn how the machine learning workflow processes function and once they spot any vulnerability, they can try to confuse these ML models. This is known as Machine learning poisoning. This process is simple. The attacker just needs to poison the data pool from which the algorithm is learning. Till date, we have trusted CNNs in areas such as image recognition and classification. Autonomous vehicles too use CNNs to interpret the street designs. The CNNs depend on training resources (which can come from cloud or third parties) to effectively function. Attackers can poison these sources by setting up backdoor images or via a man-in-the-middle attack where the attacker intercepts the data sent to the Cloud GPU service. Such cyber attacks are difficult to detect and can evade into the standard validation testing. Bot cyber-criminals We enjoy talking to chatbots without even realizing how much we are sharing with them. Also, chatbots can be programmed to keep up conversations with users in a way to sway them into revealing their personal or financial info, attachments and so on. A Facebook bot, in 2016, represented itself as a friend and tricked 10,000 Facebook users into installing a malware. Once the malware was compromised, it hijacked the victims’ Facebook account. AI-enabled botnets can exhaust human resources via online portals and phone support. Most of us using AI conversational bots such as Google Assistant or Amazon’s Alexa do not realize how much they know about us. Being an IoT driven tech, they have the ability to always listen, even the private conversations happening around them. Moreover, some chatbots are ill-equipped for secure data transmissions such as HTTPS protocols or Transport Level Authentication (TLA) and can be easily used by cybercriminals. Cybersecurity in the age of AI attacks As machine driven cyber threats are ever evolving, policymakers should closely work with technical researchers to investigate, prevent, and mitigate potential malicious uses of AI. Conducting deliberate red team exercises in the AI/cybersecurity domain similar to the DARPA Cyber Grand Challenge but across a wider range of attacks (e.g. including social engineering, and vulnerability exploitation beyond memory attacks). This will help to better understand the skill levels required to carry out certain attacks and defenses and to understand how well they work in practice. Disclosing AI zero-day vulnerabilities: These software vulnerabilities are the ones that have not been made publicly known (and thus defenders have zero days to prepare for an attack making use of them). It is good to disclose these vulnerabilities to affected parties before publishing widely about them, in order to provide an opportunity for a patch to be developed. Testing security tools: Software development and deployment tools have evolved to include an increasing array of security-related capabilities (testing, fuzzing, anomaly detection, etc.). Researchers can envision tools to test and improve the security of AI components and systems integrated with AI components during development and deployment so that they are less amenable to attack. Use of central access licensing model: This model has been adopted in the industry for AI-based services such as sentiment analysis and image recognition. It can also place limits on the malicious use of the underlying AI technologies. For instance, it can impose limitations on the speed of use, and prevent some large-scale harmful applications. It also contains certain terms and conditions that can explicitly prohibit the malicious use, thus allowing clear legal recourse. Using Deep Machine learning systems to detect patterns of abnormal activity. By using these patterns, AI and Machine learning can be trained to track information and deliver predictive analysis. Self- learning AI systems or reinforcement learning systems can be used to learn the behavioral pattern of the opponent AI systems and adapt themselves in a way to combat malicious intrusion. Transfer learning can be applied to any new AI system which is to be trained to defend against AI. Here, the system can be used to detect novel cyber attacks by training it on the knowledge or data obtained from other labelled and unlabelled data sets, which contain different types of attacks and feed the representation to a supervised classifier. Conclusion AI is being used by hackers on a large scale and can soon turn unstoppable given its potential for finding patterns, a key to finding systemic vulnerabilities. Cybersecurity is such a domain where the availability of data is vast; be it personal, financial, or public data, all of which is easily accessible. Hackers find ways and means to obtain this information secretly. This threat can quickly escalate as an advanced AI can easily educate itself, learn the ways adopted by hackers and can, in turn, come back with a much devastating way of hacking. Skepticism welcomes Germany’s DARPA-like cybersecurity agency – The federal agency tasked with creating cutting-edge defense technology 6 artificial intelligence cybersecurity tools you need to know Defending Democracy Program: How Microsoft is taking steps to curb increasing cybersecurity threats to democracy  
Read more
  • 0
  • 0
  • 36379
article-image-top-5-cybersecurity-myths-debunked
Guest Contributor
11 Jul 2018
6 min read
Save for later

Top 5 cybersecurity myths debunked

Guest Contributor
11 Jul 2018
6 min read
Whether it’s for work or pleasure, we are all spending more time online than ever before. Given how advanced and user-friendly modern technology is, it is not surprising that the online world has come to dominate the offline. However, as our lives are increasingly digitized, the need to keep us and our information secure from criminals has become increasingly obvious. Recently, a virtually unknown marketing and data-aggregation company Exactis has fallen victim to a major data breach. According to statements, the company might’ve been responsible for exposing up to 340 million individual records on a publicly accessible server. In this time and age, data breaches are not a rare occurrence. Major corporations face cybersecurity problems on a daily basis. Clearly, there is a thriving criminal market for hackers. But how can the average internet user keep safe? Knowing these 5 myths will definitely help you get started! Myth 1: A Firewall keeps me safe As you would expect, hackers know a great deal about computers. The purpose of what they do is to gain access to systems that they should not have access to. According to a research conducted by Breach Investigation Reports, cybersecurity professionals only regard 17% of threats as being highly challenging. This implies that they view the vast majority of what they do as very easy. All businesses and organizations should maintain a firewall, but it should not lull you into a false sense of security. A determined hacker will use a variety of online and offline techniques to get into your systems. Just last month, Cisco, a well known tech company, has discovered 24 security vulnerabilities in their firewalls, switches, and security devices. On June 20, the company released the necessary updates, which counteract those vulnerabilities. While firewalls are a security measure, it is essential to understand that they are susceptible to something known as a zero-day attack. Zero-day attacks are unknown, or newly designed intrusions that target vulnerabilities before a security patch is released. Myth 2: HTTPS means I’m secure Sending information over an HTTPS connection means that the information will be encrypted and secured, preventing snooping from outside parties. HTTPS ensures that data is safe as it is transferred between a web server and a web browser. While HTTPS will keep your information from being decrypted and read by a third party, it remains vulnerable. Though the HTTPS protocol has been developed to ensure secure communication, the infamous DROWN attack proved everyone wrong. As a result of DROWN more than 11 million HTTPS websites’ had their virtual security compromised. Remember, from the perspective of a hacker, who’s looking for a way to exploit your website, the notion of unbreakable or unhackable does not exist. Myth 3: My host ensures security This is a statement that’s never true. Hosting service providers are responsible for thousands of websites, so it is absurd to think that they can manage security on each one individually. They might have some excellent general security policies in place, yet they can’t ensure total security for quite a few reasons. Just like any other company that collects and maintains data, hosting providers are just as susceptible to cyber attacks. Just last year, Deep Hosting, a Dark Web hosting provider, suffered a security breach, which led to some sites being exported. It’s best not to assume that your host has it covered when it comes to your security. If you haven’t set the protections up yourself, consider them non-existent until you’ve seen and configured them. Myth 4: No Internet connection means no virtual security threats This is a pervasive myth, but a myth nonetheless. Unless you are dealing with a machine that is literally never allowed to connect to a network, at some point, it will communicate with other computers. Whenever this happens, there is the potential for malware and viruses to spread. In some instances, malware can infect your operating system via physical data sharing devices like USB drives or CDs. Infecting your computer with malware could have detrimental outcomes. For instance, a ransomware application can easily encrypt vast quantities of data in just a few moments. Your best bet to maintain a secure system at all times is by running a reliable antimalware tool on your computer. Don’t assume that just because a computer has remained offline, it can’t be infected. In 2013 first reports came in that scientist have developed a prototype malware that might be able to use inaudible audio signals to communicate. As a result of that, a malicious piece of software could communicate and potentially spread to computers that are not connected to a network. Myth 5: A VPN ensures security VPNs can be an excellent way of improving your overall online security by hiding your identity and making you much more difficult to trace. However, you should always be very careful about the VPN services that you use, especially if they are free. There are many free VPNs which exist for nefarious purposes. They might be hiding your IP address (many are not), but their primary function is to siphon away your personal data, which they will then sell. The simplest way to avoid these types of thefts is to, first of all, ensure that you thoroughly research and vet any service before using it. Check this list to be sure that a VPN service of your choice does not log data. Often a VPNs selling point is security and privacy. However, that’s not the case at all times. Not too long ago, PureVPN, a service that stated in its policies that it maintains a strict no-log approach at all times, have been exposed to lying. As it turns out, the company handed over information to the FBI regarding the activity of a cyberbully, Ryan Lin, who used a number of security tools, including PureVPN, to conceal his identity. [dropcap]M[/dropcap]any users have fallen prey to virtual security myths and suffered detrimental consequences. Cybersecurity is something that we should all take more seriously, especially as we are putting more of our lives online than ever before. Knowing the above 5 cybersecurity myths is a useful first step in implementing better practices yourself. About the author   Harold Kilpatrick is a cybersecurity consultant and a freelance blogger. He's currently working on a cybersecurity campaign to raise awareness around the threats that businesses can face online.   Cryptojacking is a growing cybersecurity threat, report warns Top 5 cybersecurity assessment tools for networking professionals How can cybersecurity keep up with the rapid pace of technological change?
Read more
  • 0
  • 0
  • 35882

article-image-top-5-cybersecurity-trends-you-should-be-aware-of-in-2018
Vijin Boricha
11 Jul 2018
5 min read
Save for later

Top 5 cybersecurity trends you should be aware of in 2018

Vijin Boricha
11 Jul 2018
5 min read
Cybersecurity trends seem to be changing at an incredible rate. That poses new opportunities for criminals and new challenges for the professionals charged with securing our systems. High profile  attacks not only undermine trust in huge organizations, they also highlight a glaring gap in how we manage cybersecurity in a rapidly changing world. It also highlighted that attackers are adaptive and incredibly intelligent, evolving their techniques to adapt to new technologies and new behaviors. The big question is what the future will bring. What cybersecurity trends will impact the way cybersecurity experts work - and the way cybercriminals attack - for the rest of 2018 and beyond. Let’s explore some of the top cyber security trends and predictions of 2018: Artificial Intelligence and machine learning based cyber attacks and defenses AI and ML have started impacting major industries in various ways, but one of the most exciting applications is in cybersecurity. Basically, Artificial Intelligence and Machine Learning algorithms can learn from past events in order to help predict and identify vulnerabilities within a software system. They can also be used to detect anomalies in behavior within a network. A report from Webroot claims that more than 90% of cybersecurity professionals use AI to improve their security skills. However, while AI and machine learning can help security professionals, it is also being used by cybercriminals too. It seems obvious: if cyber security pros can use AI to identify vulnerabilities, so can people that seek to exploit them. Expect this back and forth to continue throughout 2018 and beyond. Ransomware is spreading like fire Storing data on the cloud has many benefits, but it can be an easy target for cyber criminals. Ransomware is one such technique - criminals target a certain area of data and hold it to ransom. It’s already a high profile cyber security concern. Just look at WannaCry, Petya, Meltdown, and Spectre, some of the biggest cyber security attacks in 2017. The bigger players (Google, AWS, and Azure) of the cloud market are trying to make it difficult for attackers, but smaller cloud service providers end up paying customers for data breaches. The only way these attacks can be reduced is by performing regular back-ups, updating security patches, and strengthening real-time defenses. Complying with GDPR GDPR (General Data Protection) is an EU regulation that tightens up data protection and privacy for individuals within the European Union. The ruling includes mandatory rules that all companies will have to follow when processing and storing personal data. From 25 May, 2018, General Data Protection (GDPR) will come into effect where important changes will be implemented to the current data protection directive. To mention a few it will include increased territorial scope,stricter consent laws, elevated rights and more. According to Forrester report 80% companies will fail to comply with GDPR out of which 50% would choose not to, considering the cost of compliance. Penalties for non-compliance would reach upto €20m or 4% of worldwide annual turnover, whichever is greater. The rise of Cyberwar Taking current cybersecurity scenario into consideration, there are high possibilities 2018 will be the year of international conflict in cyberspace. This may include cyber crimes on government and financial systems or their infrastructure and utilities. Chances are cyber-terrorism groups will target sensitive areas like banks, press, government, law-enforcement and more similar areas. The Ashley Madison attack – which involved attackers threatening to release personal information about users if the site was not shut down – shows that ideological motivated attacks are often very targeted and sophisticated with the goal of data theft and extortion. The attack on Ashley Madison is testament to the fact that companies need to be doing more as attackers become more motivated. You should not be surprised to see cyber-attacks going beyond financial benefits. The coming year can witness cyber crimes which are politically motivated that is designed to acquire intelligence to benefit a particular political entity. These methods can also be used to target electronic voting system in order to control public opinion. These kind of sophisticated attacks are usually well-funded and lead to public chaos. Governments will need to take extensive checks to ensure their network and ecosystem is well protected. Such instances might lead to loss of right to remain anonymous on the web. Like everything else, this move will also have two sides of the coin. Attacking cyber currencies and blockchain systems Since Bitcoin and Blockchain were booming in the year 2017, it becomes a crucial target area for hackers. Chances are attackers may target smaller blockchain systems who opt for weaker cryptographic algorithms to increase performance. On the other hand, the possibility of cryptographic attack against Bitcoin can be minimum. The major worry here would about attacking a block with minimum security practices, but eventually that block could lead to larger blockchain system. One of the major advantage for attackers here is they don’t really need to know who the opposite partner is, as only a verified participant is authorised to execute the trade. Here, trust or risk plays an important part and that is blockchain’s sweet spot. For example: Receiving payments in government issued currencies have higher possibilities of getting caught but there is a higher probability of succeeding in cryptocurrency payments. Well, this may be the end of this article but is not an end to the way things might turn out to be in 2018. We still stand midway through another year and the war of cyberthreats rages. Don’t be surprised to hear something different or new as malicious hackers keep trying newer techniques and methodologies to destroy a system. Related links WPA3: Next-generation Wi-Fi security is here The 10 most common types of DoS attacks you need to know 12 common malware types you should know
Read more
  • 0
  • 0
  • 35020
Modal Close icon
Modal Close icon