Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
The Machine Learning Solutions Architect Handbook - Second Edition

You're reading from  The Machine Learning Solutions Architect Handbook - Second Edition

Product type Book
Published in Apr 2024
Publisher Packt
ISBN-13 9781805122500
Pages 602 pages
Edition 2nd Edition
Languages
Author (1):
David Ping David Ping
Profile icon David Ping

Table of Contents (19) Chapters

Preface Navigating the ML Lifecycle with ML Solutions Architecture Exploring ML Business Use Cases Exploring ML Algorithms Data Management for ML Exploring Open-Source ML Libraries Kubernetes Container Orchestration Infrastructure Management Open-Source ML Platforms Building a Data Science Environment Using AWS ML Services Designing an Enterprise ML Architecture with AWS ML Services Advanced ML Engineering Building ML Solutions with AWS AI Services AI Risk Management Bias, Explainability, Privacy, and Adversarial Attacks Charting the Course of Your ML Journey Navigating the Generative AI Project Lifecycle Designing Generative AI Platforms and Solutions Other Books You May Enjoy
Index

Understanding bias

Detecting and mitigating bias is a crucial focus area for AI risk management. The presence of bias in ML models can expose an organization to potential legal risks but also lead to negative publicity, causing reputational damage and public relations issues. Specific laws and regulations, such as the Equal Credit Opportunity Act, also prohibit discrimination in business transactions, like credit transactions, based on race, skin color, religion, sex, nationality origin, marital status, and age. Some other examples of laws against discrimination include the Civil Rights Act of 1964 and Age Discrimination in Employment Act of 1967.

ML bias can result from the underlying prejudice in data. Since ML models are trained using data, if the data has a bias, then the trained model will also exhibit bias behaviors. For example, if you build an ML model to predict the loan default rate as part of the loan application review process, and you use race as one of the features...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}