Search icon
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Simplifying Data Engineering and Analytics with Delta

You're reading from  Simplifying Data Engineering and Analytics with Delta

Product type Book
Published in Jul 2022
Publisher Packt
ISBN-13 9781801814867
Pages 334 pages
Edition 1st Edition
Languages
Concepts
Author (1):
Anindita Mahapatra Anindita Mahapatra
Profile icon Anindita Mahapatra

Table of Contents (18) Chapters

Preface 1. Section 1 – Introduction to Delta Lake and Data Engineering Principles
2. Chapter 1: Introduction to Data Engineering 3. Chapter 2: Data Modeling and ETL 4. Chapter 3: Delta – The Foundation Block for Big Data 5. Section 2 – End-to-End Process of Building Delta Pipelines
6. Chapter 4: Unifying Batch and Streaming with Delta 7. Chapter 5: Data Consolidation in Delta Lake 8. Chapter 6: Solving Common Data Pattern Scenarios with Delta 9. Chapter 7: Delta for Data Warehouse Use Cases 10. Chapter 8: Handling Atypical Data Scenarios with Delta 11. Chapter 9: Delta for Reproducible Machine Learning Pipelines 12. Chapter 10: Delta for Data Products and Services 13. Section 3 – Operationalizing and Productionalizing Delta Pipelines
14. Chapter 11: Operationalizing Data and ML Pipelines 15. Chapter 12: Optimizing Cost and Performance with Delta 16. Chapter 13: Managing Your Data Journey 17. Other Books You May Enjoy

Moving and transforming data using ETL

A data pipeline is an artifact of a data engineering process. It transforms raw data into data ready for analytics. These in turn help solve problems, aid support decisions, and make our lives more convenient. In some ways, it can be thought of as the stitch between the OLTP and OLAP systems. Data pipelines are sometimes referred to as ETL, which stands for extract, transform, load, and it has a variation called extract, load, transform (ELT). The main difference between the two is whether the incoming data is first saved to disk and then transformed (data wrangling) or vice versa. The processing is loosely referred to as ETL. Although, it is fair to say ELT is relevant in the context of Data Lakes and unstructured data, whereas ETL is used for Data Warehouses. The following diagram shows how ETL bridges the gap between the OLTP and OLAP systems:

Figure 2.9 – ETL stitches OLTP and OLAP systems

Data pipelines include...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}