Search icon
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Practical Deep Learning at Scale with MLflow

You're reading from  Practical Deep Learning at Scale with MLflow

Product type Book
Published in Jul 2022
Publisher Packt
ISBN-13 9781803241333
Pages 288 pages
Edition 1st Edition
Languages
Author (1):
Yong Liu Yong Liu
Profile icon Yong Liu

Table of Contents (17) Chapters

Preface 1. Section 1 - Deep Learning Challenges and MLflow Prime
2. Chapter 1: Deep Learning Life Cycle and MLOps Challenges 3. Chapter 2: Getting Started with MLflow for Deep Learning 4. Section 2 –
Tracking a Deep Learning Pipeline at Scale
5. Chapter 3: Tracking Models, Parameters, and Metrics 6. Chapter 4: Tracking Code and Data Versioning 7. Section 3 –
Running Deep Learning Pipelines at Scale
8. Chapter 5: Running DL Pipelines in Different Environments 9. Chapter 6: Running Hyperparameter Tuning at Scale 10. Section 4 –
Deploying a Deep Learning Pipeline at Scale
11. Chapter 7: Multi-Step Deep Learning Inference Pipeline 12. Chapter 8: Deploying a DL Inference Pipeline at Scale 13. Section 5 – Deep Learning Model Explainability at Scale
14. Chapter 9: Fundamentals of Deep Learning Explainability 15. Chapter 10: Implementing DL Explainability with MLflow 16. Other Books You May Enjoy

Tracking notebook and pipeline versioning

Data scientists usually start by experimenting with Python notebooks offline, where interactive execution is a key benefit. Python notebooks have come a long way since the days of Jupyter notebooks (https://jupyter-notebook.readthedocs.io/en/stable/). The success and popularity of Jupyter notebooks are undeniable. However, there are limitations when it comes to using version control for Jupyter notebooks since Jupyter notebooks are stored as JSON data with mixed output and code. This is especially difficult if we trying to track code using MLflow as we're only using Jupyter's native format, whose file extension is .ipynb. You may not be able to see the exact Git hash in the MLflow tracking server for each run using a Jupyter notebook either. There are a lot of interesting debates on whether or when a Jupyter notebook should be used, especially in a production environment (see a discussion here: https://medium.com/mlops-community/jupyter...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}