Search icon
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Predictive Analytics with Python

You're reading from  Mastering Predictive Analytics with Python

Product type Book
Published in Aug 2016
Publisher
ISBN-13 9781785882715
Pages 334 pages
Edition 1st Edition
Languages
Author (1):
Joseph Babcock Joseph Babcock
Profile icon Joseph Babcock

Table of Contents (16) Chapters

Mastering Predictive Analytics with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
1. From Data to Decisions – Getting Started with Analytic Applications 2. Exploratory Data Analysis and Visualization in Python 3. Finding Patterns in the Noise – Clustering and Unsupervised Learning 4. Connecting the Dots with Models – Regression Methods 5. Putting Data in its Place – Classification Methods and Analysis 6. Words and Pixels – Working with Unstructured Data 7. Learning from the Bottom Up – Deep Networks and Unsupervised Features 8. Sharing Models with Prediction Services 9. Reporting and Testing – Iterating on Analytic Systems Index

Logistic regression


We will start our exploration of classifier algorithms with one of the most commonly used classification models: logistic regression. Logistic regression is similar to the linear regression method discussed in Chapter 4, Connecting the Dots with Models – Regression Methods, with the major difference being that instead of directly computing a linear combination of the inputs, it compresses the output of a linear model through a function that constrains outputs to be in the range [0,1]. As we will see, this is in fact a kind of "generalized linear model that we discussed in the last Chapter 4, Connecting the Dots with Models – Regression Methods, recall that in linear regression, the predicted output is given by:

where Y is the response variable for all n members of a dataset, X is an n by m matrix of m features for each of the n rows of data, and βT is a column vector of m coefficients (Recall that the T operator represents the transpose of a vector or matrix. Here we transpose...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}