Search icon
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Data-Centric Machine Learning with Python

You're reading from  Data-Centric Machine Learning with Python

Product type Book
Published in Feb 2024
Publisher Packt
ISBN-13 9781804618127
Pages 378 pages
Edition 1st Edition
Languages
Authors (3):
Jonas Christensen Jonas Christensen
Profile icon Jonas Christensen
Nakul Bajaj Nakul Bajaj
Profile icon Nakul Bajaj
Manmohan Gosada Manmohan Gosada
Profile icon Manmohan Gosada
View More author details

Table of Contents (17) Chapters

Preface 1. Part 1: What Data-Centric Machine Learning Is and Why We Need It
2. Chapter 1: Exploring Data-Centric Machine Learning 3. Chapter 2: From Model-Centric to Data-Centric – ML’s Evolution 4. Part 2: The Building Blocks of Data-Centric ML
5. Chapter 3: Principles of Data-Centric ML 6. Chapter 4: Data Labeling Is a Collaborative Process 7. Part 3: Technical Approaches to Better Data
8. Chapter 5: Techniques for Data Cleaning 9. Chapter 6: Techniques for Programmatic Labeling in Machine Learning 10. Chapter 7: Using Synthetic Data in Data-Centric Machine Learning 11. Chapter 8: Techniques for Identifying and Removing Bias 12. Chapter 9: Dealing with Edge Cases and Rare Events in Machine Learning 13. Part 4: Getting Started with Data-Centric ML
14. Chapter 10: Kick-Starting Your Journey in Data-Centric Machine Learning 15. Index 16. Other Books You May Enjoy

Ensuring that the data is valid

So far, we have ensured that our data is consistent, unique, and complete. But do we know if the data we have is valid? Do the data labels conform to the rules? For example, what if the property area in the dataset didn’t conform to the rules and semi_urban is invalid? What if one or a couple of annotators believed some suburbs are neither urban nor rural, and they violated the rules and entered semi_urban? To measure validity, we may need to look at business rules and check the percentage of data that conforms to these business rules. Let’s assume that semi_urban is an invalid value. In Python, we could check the percentage of invalid labels and then reach out to annotators to correct the data. We could also achieve this by using the data that was used to generate the label. If we had the suburb_name to property_area data mapping, and suburb_name was available in the dataset, then we could leverage the mapping and catch invalid values...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}