Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Machine Learning Infrastructure and Best Practices for Software Engineers

You're reading from  Machine Learning Infrastructure and Best Practices for Software Engineers

Product type Book
Published in Jan 2024
Publisher Packt
ISBN-13 9781837634064
Pages 346 pages
Edition 1st Edition
Languages
Author (1):
Miroslaw Staron Miroslaw Staron
Profile icon Miroslaw Staron

Table of Contents (24) Chapters

Preface 1. Part 1:Machine Learning Landscape in Software Engineering
2. Machine Learning Compared to Traditional Software 3. Elements of a Machine Learning System 4. Data in Software Systems – Text, Images, Code, and Their Annotations 5. Data Acquisition, Data Quality, and Noise 6. Quantifying and Improving Data Properties 7. Part 2: Data Acquisition and Management
8. Processing Data in Machine Learning Systems 9. Feature Engineering for Numerical and Image Data 10. Feature Engineering for Natural Language Data 11. Part 3: Design and Development of ML Systems
12. Types of Machine Learning Systems – Feature-Based and Raw Data-Based (Deep Learning) 13. Training and Evaluating Classical Machine Learning Systems and Neural Networks 14. Training and Evaluation of Advanced ML Algorithms – GPT and Autoencoders 15. Designing Machine Learning Pipelines (MLOps) and Their Testing 16. Designing and Implementing Large-Scale, Robust ML Software 17. Part 4: Ethical Aspects of Data Management and ML System Development
18. Ethics in Data Acquisition and Management 19. Ethics in Machine Learning Systems 20. Integrating ML Systems in Ecosystems 21. Summary and Where to Go Next 22. Index 23. Other Books You May Enjoy

Every data has its purpose – annotations and tasks

Data in raw format is important, but only the first step in the development and operations of ML software. The most important part, and the costliest one, is the annotation of the data. To train an ML model and then use it to make inferences, we need to define a task. Defining a task is both conceptual and operational. The conceptual definition is to define what we want the software to do, but the operational definition is how we want to achieve that goal. The operational definition boils down to a definition of what we see in the data and what we want the ML model to identify/replicate.

Annotations are the mechanisms by which we direct the ML algorithms. Every piece of data that we use requires some sort of label to denote what it is. In the raw format of the data, this annotation can be a label of what the data point contains. For example, such a label can be that the image contains the number 1 (from the MNIST dataset...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}