Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Applied Deep Learning and Computer Vision for Self-Driving Cars

You're reading from  Applied Deep Learning and Computer Vision for Self-Driving Cars

Product type Book
Published in Aug 2020
Publisher Packt
ISBN-13 9781838646301
Pages 332 pages
Edition 1st Edition
Languages
Authors (2):
Sumit Ranjan Sumit Ranjan
Profile icon Sumit Ranjan
Dr. S. Senthamilarasu Dr. S. Senthamilarasu
Profile icon Dr. S. Senthamilarasu
View More author details

Table of Contents (18) Chapters

Preface 1. Section 1: Deep Learning Foundation and SDC Basics
2. The Foundation of Self-Driving Cars 3. Dive Deep into Deep Neural Networks 4. Implementing a Deep Learning Model Using Keras 5. Section 2: Deep Learning and Computer Vision Techniques for SDC
6. Computer Vision for Self-Driving Cars 7. Finding Road Markings Using OpenCV 8. Improving the Image Classifier with CNN 9. Road Sign Detection Using Deep Learning 10. Section 3: Semantic Segmentation for Self-Driving Cars
11. The Principles and Foundations of Semantic Segmentation 12. Implementing Semantic Segmentation 13. Section 4: Advanced Implementations
14. Behavioral Cloning Using Deep Learning 15. Vehicle Detection Using OpenCV and Deep Learning 16. Next Steps 17. Other Books You May Enjoy

Learning rate

The learning rate is the mother of all hyperparameters and quantifies the model's learning progress in a way that can be used to optimize its capacity.

A too-low learning rate would increase the training time of the model as it would take longer to incrementally change the weights of the network to reach an optimal state. On the other hand, although a large learning rate helps the model adjust to the data quickly, it causes the model to overshoot the minima. A good starting value for the learning rate for most models would be 0.001; in the following diagram, you can see that a low learning rate requires many updates before reaching the minimum point:

Fig 2.18: A low learning rate

However, an optimal learning rate swiftly reaches the minimum point. It requires less of an update before reaching near minima. Here, we can see a diagram with a decent learning rate:

Fig 2.19: Decent learning rate

A high learning rate causes drastic updates that lead...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}