Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Python Machine Learning - Third Edition

You're reading from  Python Machine Learning - Third Edition

Product type Book
Published in Dec 2019
Publisher Packt
ISBN-13 9781789955750
Pages 772 pages
Edition 3rd Edition
Languages
Authors (2):
Sebastian Raschka Sebastian Raschka
Profile icon Sebastian Raschka
Vahid Mirjalili Vahid Mirjalili
Profile icon Vahid Mirjalili
View More author details

Table of Contents (21) Chapters

Preface 1. Giving Computers the Ability to Learn from Data 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks 17. Generative Adversarial Networks for Synthesizing New Data 18. Reinforcement Learning for Decision Making in Complex Environments 19. Other Books You May Enjoy 20. Index

Improving the quality of synthesized images using a convolutional and Wasserstein GAN

In this section, we will implement a DCGAN, which will enable us to improve the performance we saw in the previous GAN example. Additionally, we will employ several extra key techniques and implement a Wasserstein GAN (WGAN).

The techniques that we will cover in this section will include the following:

  • Transposed convolution
  • BatchNorm
  • WGAN
  • Gradient penalty

The DCGAN was proposed in 2016 by A. Radford, L. Metz, and S. Chintala in their article Unsupervised representation learning with deep convolutional generative adversarial networks, which is freely available at https://arxiv.org/pdf/1511.06434.pdf. In this article, the researchers proposed using convolutional layers for both the generator and discriminator networks. Starting from a random vector, z, the DCGAN first uses a fully connected layer to project z into a new vector with a proper size so that it can be reshaped...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}