Reader small image

You're reading from  Digital Forensics and Incident Response

Product typeBook
Published inJul 2017
PublisherPackt
ISBN-139781787288683
Edition1st Edition
Concepts
Right arrow
Author (1)
Gerard Johansen
Gerard Johansen
author image
Gerard Johansen

Gerard Johansen is an incident response professional with over 15 years' experience in areas like penetration testing, vulnerability management, threat assessment modeling, and incident response. Beginning his information security career as a cyber crime investigator, he has built on that experience while working as a consultant and security analyst for clients and organizations ranging from healthcare to finance. Gerard is a graduate of Norwich University's Master of Science in Information Assurance program and a certified information systems security professional. He is currently employed as a senior incident response consultant with a large technology company, focusing on incident detection, response, and threat intelligence integration.
Read more about Gerard Johansen

Right arrow

Chapter 3. Network Evidence Collection

The traditional focus of digital forensics has been to locate evidence on the host hard drive. Law enforcement officers interested in criminal activity such as fraud or child exploitation can find the vast majority of evidence required for prosecution on a single hard drive. In the realm of incident response though, it is critical that the focus goes far beyond a suspected compromised system. For example, there is a wealth of information to be obtained within the points along the flow of traffic from a compromised host to an external C2 server.

This chapter focuses on the preparation, identification, and collection of evidence that is commonly found among network devices and along the traffic routes within an internal network. This collection is critical during an incident where an external threat source is in the process of commanding internal systems or is in the process of pilfering data out of the network. Network-based evidence is also useful when...

Preparation


The ability to acquire network-based evidence is largely dependent on the preparations that are undertaken by an organization prior to an incident. Without some critical components of a proper infrastructure security program, key pieces of evidence will not be available for incident responders in a timely manner. The result is that evidence may be lost as the CSIRT members hunt down critical pieces of information. In terms of preparation, organizations can aid the CSIRT by having proper network documentation, up-to-date configurations of network devices, and a central log management solution in place.

Aside from the technical preparation for network evidence collection, CSIRT personnel need to be aware of any legal or regulatory issues in regards to collecting network evidence. CSIRT personnel need to be aware that capturing network traffic can be considered an invasion of privacy absent any other policy. Therefore, the legal representative of the CSIRT should ensure that all...

Network device evidence


There are a number of log sources that can provide CSIRT personnel and incident responders with good information. A range of manufacturers provides each of these network devices. As a preparation task, CSIRT personnel should become familiar on how to access these devices and obtain the necessary evidence:

  • Switches: These are spread throughout a network through a combination of core switches that handle traffic from a range of network segments and edge switches that handle the traffic for individual segments. As a result, traffic that originates on a host and travels out the internal network will traverse a number of switches. Switches have two key points of evidence that should be addressed by incident responders. First is the content addressable memory (CAM) table. This CAM table maps the physical ports on the switch to the Network Interface Card (NIC) on each device connected to the switch. Incident responders in tracing connections to specific network jacks can...

Packet capture


Capturing network traffic is critical to having a full understanding of an incident. Being able to identify potential C2 traffic IP addresses may provide further information about the type of malware that might have infected a host. In other types of incidents, CSIRT members may be able to identify potential exfiltration methods that an external threat actor is utilizing.

One method is to set up what is referred to as a network tap. A network tap is a system in-line with the compromised host and the switch. For example, in the network diagram, if the host that is compromised is on the 192.168.1.0/24 subnet, the tap should be placed in between the host and the switch. This often involves placing a system in between the host and the switch.

Another option is to configure a Switched Port Analyzer (SPAN) port. In this configuration, the switch closest to the compromised host will have port mirroring enabled. This then sends the traffic from the entire segment the switch is on to...

Evidence collection


In order to conduct a proper examination of log files and other network data such as packet captures, they often have to be moved from the log source and examined offline. As with any source of evidence, the log files or packet captures have to be handled with due care to ensure that they are not corrupted or modified during the transfer. One simple solution is to transfer the evidence immediately to a USB drive or similar removable medium. From there, a hash can be created for the evidence prior to any examination.

The acquisition of network evidence such as a packet capture or log file should be thoroughly documented. Incident response personnel may be acquiring log files and packet captures from a number of sources over the entire network. As a result, they should ensure that they can trace back every separate piece of evidence to its source as well as the date and time that the evidence was collected. This can be recorded in a network evidence log sheet and entries...

Summary


Evidence that is pertinent to incident responders is not just located on the hard drive of a compromised host. There is a wealth of information available from network devices spread throughout the environment. With proper preparation, a CSIRT may be able to leverage the evidence provided by these devices through solutions such as a SIEM. CSIRT personnel also have the ability to capture the network traffic for later analysis through a variety of methods and tools. Behind all of these techniques, though, are the legal and policy implications that CSIRT personnel and the organization at large needs to navigate. By preparing for the legal and technical challenges of network evidence collection, CSIRT members can leverage this evidence and move closer to the goal of determining the root cause of an incident and bringing the organization back up to operations.

This chapter discussed several sources of evidence available to incident response analysts. Logs from network devices, whether they...

lock icon
The rest of the chapter is locked
You have been reading a chapter from
Digital Forensics and Incident Response
Published in: Jul 2017Publisher: PacktISBN-13: 9781787288683
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Author (1)

author image
Gerard Johansen

Gerard Johansen is an incident response professional with over 15 years' experience in areas like penetration testing, vulnerability management, threat assessment modeling, and incident response. Beginning his information security career as a cyber crime investigator, he has built on that experience while working as a consultant and security analyst for clients and organizations ranging from healthcare to finance. Gerard is a graduate of Norwich University's Master of Science in Information Assurance program and a certified information systems security professional. He is currently employed as a senior incident response consultant with a large technology company, focusing on incident detection, response, and threat intelligence integration.
Read more about Gerard Johansen