Reader small image

You're reading from  Machine Learning with PyTorch and Scikit-Learn

Product typeBook
Published inFeb 2022
PublisherPackt
ISBN-139781801819312
Edition1st Edition
Right arrow
Authors (3):
Sebastian Raschka
Sebastian Raschka
author image
Sebastian Raschka

Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. As Lead AI Educator at Grid AI, Sebastian plans to continue following his passion for helping people get into machine learning and artificial intelligence.
Read more about Sebastian Raschka

Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
author image
Yuxi (Hayden) Liu

Yuxi (Hayden) Liu was a Machine Learning Software Engineer at Google. With a wealth of experience from his tenure as a machine learning scientist, he has applied his expertise across data-driven domains and applied his ML expertise in computational advertising, cybersecurity, and information retrieval. He is the author of a series of influential machine learning books and an education enthusiast. His debut book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon and has been translated into many different languages.
Read more about Yuxi (Hayden) Liu

Vahid Mirjalili
Vahid Mirjalili
author image
Vahid Mirjalili

Vahid Mirjalili is a deep learning researcher focusing on CV applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University.
Read more about Vahid Mirjalili

View More author details
Right arrow

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the previous chapters, we learned about the essential machine learning algorithms for classification and how to get our data into shape before we feed it into those algorithms. Now, it’s time to learn about the best practices of building good machine learning models by fine-tuning the algorithms and evaluating the performance of the models. In this chapter, we will learn how to do the following:

  • Assess the performance of machine learning models
  • Diagnose the common problems of machine learning algorithms
  • Fine-tune machine learning models
  • Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing techniques in the previous chapters, such as standardization for feature scaling in Chapter 4, Building Good Training Datasets – Data Preprocessing, or principal component analysis for data compression in Chapter 5, Compressing Data via Dimensionality Reduction, you learned that we have to reuse the parameters that were obtained during the fitting of the training data to scale and compress any new data, such as the examples in the separate test dataset. In this section, you will learn about an extremely handy tool, the Pipeline class in scikit-learn. It allows us to fit a model including an arbitrary number of transformation steps and apply it to make predictions about new data.

Loading the Breast Cancer Wisconsin dataset

In this chapter, we will be working with the Breast Cancer Wisconsin dataset, which contains 569 examples of malignant and benign tumor cells. The first two columns in the...

Using k-fold cross-validation to assess model performance

In this section, you will learn about the common cross-validation techniques holdout cross-validation and k-fold cross-validation, which can help us to obtain reliable estimates of the model’s generalization performance, that is, how well the model performs on unseen data.

The holdout method

A classic and popular approach for estimating the generalization performance of machine learning models is the holdout method. Using the holdout method, we split our initial dataset into separate training and test datasets—the former is used for model training, and the latter is used to estimate its generalization performance. However, in typical machine learning applications, we are also interested in tuning and comparing different parameter settings to further improve the performance for making predictions on unseen data. This process is called model selection, with the name referring to a given classification problem...

Debugging algorithms with learning and validation curves

In this section, we will take a look at two very simple yet powerful diagnostic tools that can help us to improve the performance of a learning algorithm: learning curves and validation curves. In the next subsections, we will discuss how we can use learning curves to diagnose whether a learning algorithm has a problem with overfitting (high variance) or underfitting (high bias). Furthermore, we will take a look at validation curves, which can help us to address the common issues of learning algorithms.

Diagnosing bias and variance problems with learning curves

If a model is too complex for a given training dataset—for example, think of a very deep decision tree—the model tends to overfit the training data and does not generalize well to unseen data. Often, it can help to collect more training examples to reduce the degree of overfitting.

However, in practice, it can often be very expensive or simply...

Looking at different performance evaluation metrics

In the previous sections and chapters, we evaluated different machine learning models using prediction accuracy, which is a useful metric with which to quantify the performance of a model in general. However, there are several other performance metrics that can be used to measure a model’s relevance, such as precision, recall, the F1 score, and Matthews correlation coefficient (MCC).

Reading a confusion matrix

Before we get into the details of different scoring metrics, let’s take a look at a confusion matrix, a matrix that lays out the performance of a learning algorithm.

A confusion matrix is simply a square matrix that reports the counts of the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions of a classifier, as shown in Figure 6.9:

Figure 6.9: The confusion matrix

Although these metrics can be easily computed manually by comparing the actual...

Summary

At the beginning of this chapter, we discussed how to chain different transformation techniques and classifiers in convenient model pipelines that help us to train and evaluate machine learning models more efficiently. We then used those pipelines to perform k-fold cross-validation, one of the essential techniques for model selection and evaluation. Using k-fold cross-validation, we plotted learning and validation curves to diagnose common problems of learning algorithms, such as overfitting and underfitting.

Using grid search, randomized search, and successive halving, we further fine-tuned our model. We then used confusion matrices and various performance metrics to evaluate and optimize a model’s performance for specific problem tasks. Finally, we concluded this chapter by discussing different methods for dealing with imbalanced data, which is a common problem in many real-world applications. Now, you should be well equipped with the essential techniques to build...

lock icon
The rest of the chapter is locked
You have been reading a chapter from
Machine Learning with PyTorch and Scikit-Learn
Published in: Feb 2022Publisher: PacktISBN-13: 9781801819312
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Authors (3)

author image
Sebastian Raschka

Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. As Lead AI Educator at Grid AI, Sebastian plans to continue following his passion for helping people get into machine learning and artificial intelligence.
Read more about Sebastian Raschka

author image
Yuxi (Hayden) Liu

Yuxi (Hayden) Liu was a Machine Learning Software Engineer at Google. With a wealth of experience from his tenure as a machine learning scientist, he has applied his expertise across data-driven domains and applied his ML expertise in computational advertising, cybersecurity, and information retrieval. He is the author of a series of influential machine learning books and an education enthusiast. His debut book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon and has been translated into many different languages.
Read more about Yuxi (Hayden) Liu

author image
Vahid Mirjalili

Vahid Mirjalili is a deep learning researcher focusing on CV applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University.
Read more about Vahid Mirjalili