Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Applied Deep Learning and Computer Vision for Self-Driving Cars

You're reading from  Applied Deep Learning and Computer Vision for Self-Driving Cars

Product type Book
Published in Aug 2020
Publisher Packt
ISBN-13 9781838646301
Pages 332 pages
Edition 1st Edition
Languages
Authors (2):
Sumit Ranjan Sumit Ranjan
Profile icon Sumit Ranjan
Dr. S. Senthamilarasu Dr. S. Senthamilarasu
Profile icon Dr. S. Senthamilarasu
View More author details

Table of Contents (18) Chapters

Preface 1. Section 1: Deep Learning Foundation and SDC Basics
2. The Foundation of Self-Driving Cars 3. Dive Deep into Deep Neural Networks 4. Implementing a Deep Learning Model Using Keras 5. Section 2: Deep Learning and Computer Vision Techniques for SDC
6. Computer Vision for Self-Driving Cars 7. Finding Road Markings Using OpenCV 8. Improving the Image Classifier with CNN 9. Road Sign Detection Using Deep Learning 10. Section 3: Semantic Segmentation for Self-Driving Cars
11. The Principles and Foundations of Semantic Segmentation 12. Implementing Semantic Segmentation 13. Section 4: Advanced Implementations
14. Behavioral Cloning Using Deep Learning 15. Vehicle Detection Using OpenCV and Deep Learning 16. Next Steps 17. Other Books You May Enjoy

Understanding the semantic segmentation architecture

The semantic segmentation network generally consists of an encoder-decoder network. The encoder produces high-level features using convolution, while the decoder helps in interpreting these high-level features using classes. The encoder is a common encoding mechanism that is used by pre-trained networks and the decoder weight that's learned while training a segmentation network. The following diagram shows the architecture of the encoder-decoder-based FCN architecture for semantic segmentation: 

Fig 8.2: Semantic segmentation architecture

You can check out the preceding diagram at the following link: https://www.mdpi.com/2313-433X/4/10/116/pdf.

The encoder gradually reduces the spatial dimension with the help of pooling layers, while the decoder recovers the features of the object and spatial dimensions. You can read more about semantic segmentation in the paper on ECRU: An Encoder-Decoder-Based Convolution Neural...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}