Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming

You're reading from   Mastering Embedded Linux Programming Harness the power of Linux to create versatile and robust embedded solutions

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781784392536
Length 418 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Chris Simmonds Chris Simmonds
Author Profile Icon Chris Simmonds
Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Starting Out FREE CHAPTER 2. Learning About Toolchains 3. All About Bootloaders 4. Porting and Configuring the Kernel 5. Building a Root Filesystem 6. Selecting a Build System 7. Creating a Storage Strategy 8. Introducing Device Drivers 9. Starting up - the init Program 10. Learning About Processes and Threads 11. Managing Memory 12. Debugging with GDB 13. Profiling and Tracing 14. Real-time Programming Index

User space memory layout

Linux employs a lazy allocation strategy for user space, only mapping physical pages of memory when the program accesses it. For example, allocating a buffer of 1 MiB using malloc(3) returns a pointer to a block of memory addresses but no actual physical memory. A flag is set in the page table entries such that any read or write access is trapped by the kernel. This is known as a page fault. Only at this point does the kernel attempt to find a page of physical memory and add it to the page table mapping for the process. It is worthwhile demonstrating this with a simple program like this one:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#define BUFFER_SIZE (1024 * 1024)

void print_pgfaults(void)
{
  int ret;
  struct rusage usage;
  ret = getrusage(RUSAGE_SELF, &usage);
  if (ret == -1) {
    perror("getrusage");
  } else {
    printf ("Major page faults %ld\n", usage.ru_majflt...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Embedded Linux Programming
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime
Modal Close icon
Modal Close icon