Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Hadoop 2

You're reading from   Learning Hadoop 2 Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher Packt
ISBN-13 9781783285518
Length 382 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
GABRIELE MODENA GABRIELE MODENA
Author Profile Icon GABRIELE MODENA
GABRIELE MODENA
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Storage 3. Processing – MapReduce and Beyond 4. Real-time Computation with Samza 5. Iterative Computation with Spark 6. Data Analysis with Apache Pig 7. Hadoop and SQL 8. Data Lifecycle Management 9. Making Development Easier 10. Running a Hadoop Cluster 11. Where to Go Next Index

Apache Spark

Apache Spark (https://spark.apache.org/) is a data processing framework based on a generalization of MapReduce. It was originally developed by the AMPLab at UC Berkeley (https://amplab.cs.berkeley.edu/). Like Tez, Spark acts as an execution engine that models data transformations as DAGs and strives to eliminate the I/O overhead of MapReduce in order to perform iterative computation at scale. While Tez's main goal was to provide a faster execution engine for MapReduce on Hadoop, Spark has been designed both as a standalone framework and an API for application development. The system is designed to perform general-purpose in-memory data processing, stream workflows, as well as interactive and iterative computation.

Spark is implemented in Scala, which is a statically typed programming language for the Java VM and exposes native programming interfaces for Java and Python in addition to Scala itself. Note that though Java code can call the Scala interface directly, there...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Hadoop 2
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime
Modal Close icon
Modal Close icon