Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Applied Deep Learning and Computer Vision for Self-Driving Cars

You're reading from  Applied Deep Learning and Computer Vision for Self-Driving Cars

Product type Book
Published in Aug 2020
Publisher Packt
ISBN-13 9781838646301
Pages 332 pages
Edition 1st Edition
Languages
Authors (2):
Sumit Ranjan Sumit Ranjan
Profile icon Sumit Ranjan
Dr. S. Senthamilarasu Dr. S. Senthamilarasu
Profile icon Dr. S. Senthamilarasu
View More author details

Table of Contents (18) Chapters

Preface 1. Section 1: Deep Learning Foundation and SDC Basics
2. The Foundation of Self-Driving Cars 3. Dive Deep into Deep Neural Networks 4. Implementing a Deep Learning Model Using Keras 5. Section 2: Deep Learning and Computer Vision Techniques for SDC
6. Computer Vision for Self-Driving Cars 7. Finding Road Markings Using OpenCV 8. Improving the Image Classifier with CNN 9. Road Sign Detection Using Deep Learning 10. Section 3: Semantic Segmentation for Self-Driving Cars
11. The Principles and Foundations of Semantic Segmentation 12. Implementing Semantic Segmentation 13. Section 4: Advanced Implementations
14. Behavioral Cloning Using Deep Learning 15. Vehicle Detection Using OpenCV and Deep Learning 16. Next Steps 17. Other Books You May Enjoy

Behavior cloning using deep learning

This section will focus on a very useful technique called behavioral cloning. This chapter is relatively intense and will combine all the previous techniques we have dealt with in this book, such as deep learning, feature extraction from images, CNNs, and continuous regression. 

We are going to follow these steps:

  1. Download an open source SDC simulator by Udacity.
  2. Collect the training data by driving the car in manual mode in the simulator. The training data consists of images from the surrounding environment of the car and the steering angles.
  3. Clean the collected dataset using various OpenCV techniques.
  4. Train a convolution neural network model.
  5. Evaluate the model in Autonomous mode of the Udacity simulator.

This project isn't easy as it requires complex deep learning techniques and image preprocessing techniques. For this reason, I have structured this book so that you have all the necessary skills to complete...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}