Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Linux Device Driver Development - Second Edition

You're reading from  Linux Device Driver Development - Second Edition

Product type Book
Published in Apr 2022
Publisher Packt
ISBN-13 9781803240060
Pages 708 pages
Edition 2nd Edition
Languages
Author (1):
John Madieu John Madieu
Profile icon John Madieu

Table of Contents (23) Chapters

Preface 1. Section 1 -Linux Kernel Development Basics
2. Chapter 1: Introduction to Kernel Development 3. Chapter 2: Understanding Linux Kernel Module Basic Concepts 4. Chapter 3: Dealing with Kernel Core Helpers 5. Chapter 4: Writing Character Device Drivers 6. Section 2 - Linux Kernel Platform Abstraction and Device Drivers
7. Chapter 5: Understanding and Leveraging the Device Tree 8. Chapter 6: Introduction to Devices, Drivers, and Platform Abstraction 9. Chapter 7: Understanding the Concept of Platform Devices and Drivers 10. Chapter 8: Writing I2C Device Drivers 11. Chapter 9: Writing SPI Device Drivers 12. Section 3 - Making the Most out of Your Hardware
13. Chapter 10: Understanding the Linux Kernel Memory Allocation 14. Chapter 11: Implementing Direct Memory Access (DMA) Support 15. Chapter 12: Abstracting Memory Access – Introduction to the Regmap API: a Register Map Abstraction 16. Chapter 13: Demystifying the Kernel IRQ Framework 17. Chapter 14: Introduction to the Linux Device Model 18. Section 4 - Misc Kernel Subsystems for the Embedded World
19. Chapter 15: Digging into the IIO Framework 20. Chapter 16: Getting the Most Out of the Pin Controller and GPIO Subsystems 21. Chapter 17: Leveraging the Linux Kernel Input Subsystem 22. Other Books You May Enjoy

Linux kernel locking mechanisms and shared resources

A resource is said to be shared when it is accessible by several contenders, whether exclusively or not. When it is exclusive, access must be synchronized so that only the allowed contender(s) may own the resource. Such resources might be memory locations or peripheral devices, and the contenders might be processors, processes, or threads. The operating system performs mutual exclusion by atomically modifying a variable that holds the current state of the resource, making this visible to all contenders that might access the variable at the same time. Atomicity guarantees the modification to be entirely successful, or not successful at all. Modern operating systems nowadays rely on hardware (which should allow atomic operations) to implement synchronization, though a simple system may ensure atomicity by disabling interrupts (and avoiding scheduling) around the critical code section.

We can enumerate two synchronization mechanisms...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}