Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Embedded Linux Programming - Third Edition

You're reading from  Mastering Embedded Linux Programming - Third Edition

Product type Book
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Pages 758 pages
Edition 3rd Edition
Languages
Authors (2):
Frank Vasquez Frank Vasquez
Profile icon Frank Vasquez
Chris Simmonds Chris Simmonds
Profile icon Chris Simmonds
View More author details

Table of Contents (27) Chapters

Preface Section 1: Elements of Embedded Linux
Chapter 1: Starting Out Chapter 2: Learning about Toolchains Chapter 3: All about Bootloaders Chapter 4: Configuring and Building the Kernel Chapter 5: Building a Root Filesystem Chapter 6: Selecting a Build System Chapter 7: Developing with Yocto Chapter 8: Yocto Under the Hood Section 2: System Architecture and Design Decisions
Chapter 9: Creating a Storage Strategy Chapter 10: Updating Software in the Field Chapter 11: Interfacing with Device Drivers Chapter 12: Prototyping with Breakout Boards Chapter 13: Starting Up – The init Program Chapter 14: Starting with BusyBox runit Chapter 15: Managing Power Section 3: Writing Embedded Applications
Chapter 16: Packaging Python Chapter 17: Learning about Processes and Threads Chapter 18: Managing Memory Section 4: Debugging and Optimizing Performance
Chapter 19: Debugging with GDB Chapter 20: Profiling and Tracing Chapter 21: Real-Time Programming Other Books You May Enjoy

User space memory layout

Linux employs a lazy allocation strategy for user space, only mapping physical pages of memory when the program accesses it. For example, allocating a buffer of 1 MiB using malloc(3) returns a pointer to a block of memory addresses but no actual physical memory. A flag is set in the page table entries such that any read or write access is trapped by the kernel. This is known as a page fault. Only at this point does the kernel attempt to find a page of physical memory and add it to the page table mapping for the process. It is worthwhile demonstrating this with a simple program, MELP/Chapter18/pagefault-demo:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#define BUFFER_SIZE (1024 * 1024)
void print_pgfaults(void)
{
     int ret;
     struct rusage usage;
     ret = getrusage(RUSAGE_SELF, &usage);
   ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}