Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Learn Robotics Programming - Second Edition

You're reading from  Learn Robotics Programming - Second Edition

Product type Book
Published in Feb 2021
Publisher Packt
ISBN-13 9781839218804
Pages 602 pages
Edition 2nd Edition
Languages
Concepts
Author (1):
Danny Staple Danny Staple
Profile icon Danny Staple

Table of Contents (25) Chapters

Preface 1. Section 1: The Basics – Preparing for Robotics
2. Chapter 1: Introduction to Robotics 3. Chapter 2: Exploring Robot Building Blocks – Code and Electronics 4. Chapter 3: Exploring the Raspberry Pi 5. Chapter 4: Preparing a Headless Raspberry Pi for a Robot 6. Chapter 5: Backing Up the Code with Git and SD Card Copies 7. Section 2: Building an Autonomous Robot – Connecting Sensors and Motors to a Raspberry Pi
8. Chapter 6: Building Robot Basics – Wheels, Power, and Wiring 9. Chapter 7: Drive and Turn – Moving Motors with Python 10. Chapter 8: Programming Distance Sensors with Python 11. Chapter 9: Programming RGB Strips in Python 12. Chapter 10: Using Python to Control Servo Motors 13. Chapter 11: Programming Encoders with Python 14. Chapter 12: IMU Programming with Python 15. Section 3: Hearing and Seeing – Giving a Robot Intelligent Sensors
16. Chapter 13: Robot Vision – Using a Pi Camera and OpenCV 17. Chapter 14: Line-Following with a Camera in Python 18. Chapter 15: Voice Communication with a Robot Using Mycroft 19. Chapter 16: Diving Deeper with the IMU 20. Chapter 17: Controlling the Robot with a Phone and Python 21. Section 4: Taking Robotics Further
22. Chapter 18: Taking Your Robot Programming Skills Further 23. Chapter 19: Planning Your Next Robot Project – Putting It All Together 24. Other Books You May Enjoy

Driving in a straight line

By now, you have seen differences in the outputs – that is, a veer. In only 400 mm, my left side is around 20 mm behind the right, an error that is climbing. Depending on your motors, your robot may have some veer too. It is rare for a robot to have driven perfectly straight. We use the sensors to correct this.

Tip

This behavior works better on wooden flooring or MDF boards, and poorly on carpet.

This correction is still dead reckoning; slipping on surfaces or incorrect measurements can still set this off course. How can we use motors and encoders to correct our course and drive in a straight line?

Correcting veer with a PID

A behavior to self-correct steering and drive in a straight line needs to vary motor speeds until the wheels have turned the same amount. If the wheels turn the same amount soon enough, then they will account for major course deviations.

Our robot will use the encoder sensor to measure how much each wheel has...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}