Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Linux Device Driver Development - Second Edition

You're reading from  Linux Device Driver Development - Second Edition

Product type Book
Published in Apr 2022
Publisher Packt
ISBN-13 9781803240060
Pages 708 pages
Edition 2nd Edition
Languages
Author (1):
John Madieu John Madieu
Profile icon John Madieu

Table of Contents (23) Chapters

Preface 1. Section 1 -Linux Kernel Development Basics
2. Chapter 1: Introduction to Kernel Development 3. Chapter 2: Understanding Linux Kernel Module Basic Concepts 4. Chapter 3: Dealing with Kernel Core Helpers 5. Chapter 4: Writing Character Device Drivers 6. Section 2 - Linux Kernel Platform Abstraction and Device Drivers
7. Chapter 5: Understanding and Leveraging the Device Tree 8. Chapter 6: Introduction to Devices, Drivers, and Platform Abstraction 9. Chapter 7: Understanding the Concept of Platform Devices and Drivers 10. Chapter 8: Writing I2C Device Drivers 11. Chapter 9: Writing SPI Device Drivers 12. Section 3 - Making the Most out of Your Hardware
13. Chapter 10: Understanding the Linux Kernel Memory Allocation 14. Chapter 11: Implementing Direct Memory Access (DMA) Support 15. Chapter 12: Abstracting Memory Access – Introduction to the Regmap API: a Register Map Abstraction 16. Chapter 13: Demystifying the Kernel IRQ Framework 17. Chapter 14: Introduction to the Linux Device Model 18. Section 4 - Misc Kernel Subsystems for the Embedded World
19. Chapter 15: Digging into the IIO Framework 20. Chapter 16: Getting the Most Out of the Pin Controller and GPIO Subsystems 21. Chapter 17: Leveraging the Linux Kernel Input Subsystem 22. Other Books You May Enjoy

Creating a device node

The creation of a device node makes it visible to users and allows users to interact with the underlying device. Linux requires intermediate steps before the device node is created and the following section discusses these steps.

Device identification

To precisely identify devices, their identifiers must be unique. Although identifiers can be dynamically allocated, most drivers still use static identifiers for compatibility reasons. Whatever the allocation method, the Linux kernel stores file device numbers in elements of dev_t type, which is a 32-bit unsigned integer in which the major is represented by the first 12 bits, and the minor is coded on the 20 remaining bits.

All of this is stated in include/linux/kdev_t.h, which contains several macros, including those that, given a dev_t type variable, can return either a minor or a major number:

#define MINORBITS    20
#define MINORMASK    ((1U << MINORBITS...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}