Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Parallel Programming with Python

You're reading from   Parallel Programming with Python Develop efficient parallel systems using the robust Python environment.

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783288397
Length 124 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Palach Palach
Author Profile Icon Palach
Palach
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Contextualizing Parallel, Concurrent, and Distributed Programming FREE CHAPTER 2. Designing Parallel Algorithms 3. Identifying a Parallelizable Problem 4. Using the threading and concurrent.futures Modules 5. Using Multiprocessing and ProcessPoolExecutor 6. Utilizing Parallel Python 7. Distributing Tasks with Celery 8. Doing Things Asynchronously Index

Using multiprocessing to compute Fibonacci series terms with multiple inputs

Let's implement the case study of processing a Fibonacci series for multiple inputs using the processes approach instead of threads.

The multiprocessing_fibonacci.py code makes use of the multiprocessing module, and in order to run, it imports some essential modules as we can observe in the following code:

import sys, time, random, re, requests
import concurrent.futures
from multiprocessing import, cpu_count, current_process, Manager

Some imports have been mentioned in the previous chapters; nevertheless, some of the following imports do deserve special attention:

  • cpu_count: This is a function that permits obtaining the quantity of CPUs in a machine
  • current_process: This is a function that allows obtaining information on the current process, for example, its name
  • Manager: This is a type of object that allows sharing Python objects among different processes by means of proxies (for more information, see http://docs...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Parallel Programming with Python
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime
Modal Close icon
Modal Close icon