Search icon
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Natural Language Processing with TensorFlow

You're reading from  Natural Language Processing with TensorFlow

Product type Book
Published in May 2018
Publisher Packt
ISBN-13 9781788478311
Pages 472 pages
Edition 1st Edition
Languages
Authors (2):
Motaz Saad Motaz Saad
Thushan Ganegedara Thushan Ganegedara
Profile icon Thushan Ganegedara
View More author details

Table of Contents (16) Chapters

Natural Language Processing with TensorFlow
Contributors
Preface
1. Introduction to Natural Language Processing 2. Understanding TensorFlow 3. Word2vec – Learning Word Embeddings 4. Advanced Word2vec 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Applications of LSTM – Image Caption Generation 10. Sequence-to-Sequence Learning – Neural Machine Translation 11. Current Trends and the Future of Natural Language Processing Mathematical Foundations and Advanced TensorFlow Index

The original skip-gram algorithm


The skip-gram algorithm discussed up to this point in the book is actually an improvement over the original skip-gram algorithm proposed in the original paper by Mikolov and others, published in 2013. In this paper, the algorithm did not use an intermediate hidden layer to learn the representations. In contrast, the original algorithm used two different embedding or projection layers (the input and output embeddings in Figure 4.1) and defined a cost function derived from the embeddings themselves:

Figure 4.1: The original skip-gram algorithm without hidden layers

The original negative sampled loss was defined as follows:

Here, v is the input embeddings layer, v' is the output word embeddings layer, corresponds to the embedding vector for the word wi in the input embeddings layer and corresponds to the word vector for the word wi in the output embeddings layer.

is the noise distribution, from which we sample noise samples (for example, it can be as simple...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $19.99/month. Cancel anytime}