Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Data Engineering with Python
Data Engineering with Python

Data Engineering with Python: Work with massive datasets to design data models and automate data pipelines using Python

eBook
AU$52.19 AU$57.99
Paperback
AU$71.99
Hardcover
AU$55.99
Subscription
Free Trial
Renews at AU$24.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $24.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Data Engineering with Python

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples
  • Design data models and learn how to extract, transform, and load (ETL) data using Python
  • Schedule, automate, and monitor complex data pipelines in production

Description

Data engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.

Who is this book for?

This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

What you will learn

  • Understand how data engineering supports data science workflows
  • Discover how to extract data from files and databases and then clean, transform, and enrich it
  • Configure processors for handling different file formats as well as both relational and NoSQL databases
  • Find out how to implement a data pipeline and dashboard to visualize results
  • Use staging and validation to check data before landing in the warehouse
  • Build real-time pipelines with staging areas that perform validation and handle failures
  • Get to grips with deploying pipelines in the production environment

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 23, 2020
Length: 356 pages
Edition : 1st
Language : English
ISBN-13 : 9781839214189
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $24.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Oct 23, 2020
Length: 356 pages
Edition : 1st
Language : English
ISBN-13 : 9781839214189
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
AU$24.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
AU$249.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts
AU$349.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total AU$ 207.97
Python Data Cleaning Cookbook
AU$67.99
Data Engineering with Apache Spark, Delta Lake, and Lakehouse
AU$67.99
Data Engineering with Python
AU$71.99
Total AU$ 207.97 Stars icon

Table of Contents

19 Chapters
Section 1: Building Data Pipelines – Extract Transform, and Load Chevron down icon Chevron up icon
Chapter 1: What is Data Engineering? Chevron down icon Chevron up icon
Chapter 2: Building Our Data Engineering Infrastructure Chevron down icon Chevron up icon
Chapter 3: Reading and Writing Files Chevron down icon Chevron up icon
Chapter 4: Working with Databases Chevron down icon Chevron up icon
Chapter 5: Cleaning, Transforming, and Enriching Data Chevron down icon Chevron up icon
Chapter 6: Building a 311 Data Pipeline Chevron down icon Chevron up icon
Section 2:Deploying Data Pipelines in Production Chevron down icon Chevron up icon
Chapter 7: Features of a Production Pipeline Chevron down icon Chevron up icon
Chapter 8: Version Control with the NiFi Registry Chevron down icon Chevron up icon
Chapter 9: Monitoring Data Pipelines Chevron down icon Chevron up icon
Chapter 10: Deploying Data Pipelines Chevron down icon Chevron up icon
Chapter 11: Building a Production Data Pipeline Chevron down icon Chevron up icon
Section 3:Beyond Batch – Building Real-Time Data Pipelines Chevron down icon Chevron up icon
Chapter 12: Building a Kafka Cluster Chevron down icon Chevron up icon
Chapter 13: Streaming Data with Apache Kafka Chevron down icon Chevron up icon
Chapter 14: Data Processing with Apache Spark Chevron down icon Chevron up icon
Chapter 15: Real-Time Edge Data with MiNiFi, Kafka, and Spark Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.6
(24 Ratings)
5 star 12.5%
4 star 12.5%
3 star 25%
2 star 25%
1 star 25%
Filter icon Filter
Top Reviews

Filter reviews by




Christoph Oct 03, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book does a good job introducing the use of NiFi and Airflow as data orchestrators for data pipelines as well as briefly mentioning Kafka and Spark.NiFiNiFi is explained in detail in this book. It covers subjects that go beyond the basics and are not easily googled. Since NiFi tutorials are rather rare compared to many other technologies, this is a valuable resource for learning it. It covers topics such as deploying to production, versioning and monitoring.Online you find some false information that versioning and automated deployment wouldn't be possible with NiFi but this book shows how it's done!AirflowIn this book Airflow is also introduced and you're shown how to setup DAGs with it. If you're mainly interested in Airflow there are better books for you, e.g. "Data Pipelines With Apache Airflow". Nevertheless this book will teach you how to get started with Airflow as well and how to setup simple project sized data pipelines from extraction to visualization.Real-time processingAt the end of the book Kafka and Spark are introduced as well. The content on these is not comprehensive. You will definitely need another resource to learn more on those in case that's what you're intetested in.What I didn't likeThis book shows you how to install the tools mentioned by hand. I would have much preferred it if a Docker setup was used. Others pointed out that they had problems installing tools and copying examples 1:1. I didn't have such problems since I installed everything using Docker and since it often is a relevant skill in Data Engineering it would not have been out of place to use it here as well.The title can be criticized as well since it's broader than the content. Something like "Data Pipelines with NiFi and Airflow" might have been more fitting.SummaryI'm giving this book 5 stars since it's hard to find a good resource on NiFi and this book is it. After you read it, you will see that both Airflow and NiFi are good orchestration tools for very similar use cases.
Amazon Verified review Amazon
Amir Esmaeili Nov 15, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Einfach Super!
Amazon Verified review Amazon
jml Dec 20, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Data Engineering With Python provides a solid overview of pipelining and database connections for those tasked with processing both batch and stream data flows. Not only for the data miners, this book will be useful as well in a CI/CD environment using Kafka and Spark. It’s very readable and contains lots of practical, illustrative examples.Hits — solid explanations and demonstrations of Pandas, Zookeeper, Kafka, and Spark. Also introduces Great Expectations, NiFi, Airflow, and Faker, all of which are tied together in a usable demonstration environment. Pipeline implementation’s thoroughly covered as well.Misses — the book could use a little fine-tuning as to Python 3; some of the instructions are rather downrev, and concepts like 311 / SeeClickFix are sort of dropped in without a lot of explanation. Also, there’s a heavy focus on SQL and almost no coverage of noSQL databases.Overall, a good addition to the bookshelf if you’re using any of these Python packages. Readable and useful for anyone supporting data analysis.
Amazon Verified review Amazon
Michael Porter Dec 17, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This is a very hands on guide to building data pipelines with Python and a number of other tools that would be very useful for anyone looking to handle large data sets, clean or enhance data. Paul does a great job of breaking down the difference between a Data Scientist and a Data Engineer while also covering areas of overlap.His break down of the tools that are available and a number of quick start style tutorials would be useful to anyone who's experienced enough to understand them. This book is clearly not for beginners but is clear and concise enough to ensure that's it's not only for experts either.My only real compliant is that the book skips over a whole category of NoSQL databases, namely Graph Databases i.e. Neo4j, Neptune, etc. which are a fast growing part of data science as a whole.All in all a very through introduction to data engineering that focuses mostly on SQL and would help any experienced Python developer get their toes wet in the field.
Amazon Verified review Amazon
Habib Hezarehee Nov 30, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
The book is a little bit (not so remarkable) damaged. But since I love the content so I stay away from returning :p
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.

Modal Close icon
Modal Close icon