Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python: Data Analytics and Visualization

You're reading from   Python: Data Analytics and Visualization Perform data processing and analysis with the help of python libraries, gain practical insights into predictive modeling and generate effective results in a variety of visually appealing charts using the plotting packages in Python

Arrow left icon
Product type Course
Published in Mar 2017
Publisher Packt
ISBN-13 9781788290098
Length 866 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Martin Czygan Martin Czygan
Author Profile Icon Martin Czygan
Martin Czygan
Phuong Vo.T.H Phuong Vo.T.H
Author Profile Icon Phuong Vo.T.H
Phuong Vo.T.H
Ashish Kumar Ashish Kumar
Author Profile Icon Ashish Kumar
Ashish Kumar
Kirthi Raman Kirthi Raman
Author Profile Icon Kirthi Raman
Kirthi Raman
Arrow right icon
View More author details
Toc

Chapter 4. Statistical Concepts for Predictive Modelling

There are a few statistical concepts, such as hypothesis testing, p-values, normal distribution, correlation, and so on without which grasping the concepts and interpreting the results of predictive models becomes very difficult. Thus, it is very critical to understand these concepts, before we delve into the realm of predictive modelling.

In this chapter, we will be going through and learning these statistical concepts so that we can use them in the upcoming chapters. This chapter will cover the following topics:

  • Random sampling and central limit theorem: Understanding the concept of random sampling through an example and illustrating the central limit theorem's application through an example. These two concepts form the backbone of hypothesis testing.
  • Hypothesis testing: Understanding the meaning of the terms, such as null hypothesis, alternate hypothesis, confidence intervals, p-value, significance level, and so on...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python: Data Analytics and Visualization
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime
Modal Close icon
Modal Close icon