Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - IoT and Hardware

152 Articles
article-image-ble-and-internet-things
Packt
02 Feb 2017
11 min read
Save for later

BLE and the Internet of Things

Packt
02 Feb 2017
11 min read
In this article by Muhammad Usama bin Aftab, the author of the book Building Bluetooth Low Energy (BLE) Systems, this article is a practical guide to the world of Internet of Things (IoT), where readers will not only learn the theoretical concepts of the Internet of Things but also will get a number of practical examples. The purpose of this article is to bridge the gap between the knowledge base and its interpretation. Much literature is available for the understanding of this domain but it is difficult to find something that follows a hands-on approach to the technology. In this article, the readers will get an introduction of Internet of Things with a special focus on Bluetooth Low Energy (BLE). There is no problem justifying that the most important technology for the Internet of Things is Bluetooth Low Energy as it is widely available throughout the world and almost every cell phone user keeps this technology in his pocket. The article will then go beyond Bluetooth Low Energy and will discuss many other technologies available for the Internet of Things. In this article we'll explore the following topics: Introduction to Internet of Things Current statistics about IoT and how we are living in a world which is going towards Machine to Machine (M2M) communication Technologies in IoT (Bluetooth Low Energy, Bluetooth beacons, Bluetooth mesh and wireless gateways and so on) Typical examples of IoT devices (catering wearables, sports gadgets and autonomous vehicles and so on) (For more resources related to this topic, see here.) Internet of Things The Internet is a system of interconnected devices which uses a full stack of protocols over a number of layers. In early 1960, the first packet-switched network ARPANET was introduced by the United States Department of Defense (DOD) which used a variety of protocols. Later, with the invention of TCP/IP protocols the possibilities were infinite. Many standards were evolved over time to facilitate the communication between devices over a network. Application layer protocols, routing layer protocols, access layer protocols, and physical layer protocols were designed to successfully transfer the Internet packets from the source address to the destination address. Security risks were also taken care of during this process and now we live in the world where the Internet is an essential part of our lives. The world had progressed quite afar from ARPANET and the scientific communities had realized that the need of connecting more and more devices was inevitable. Thus came the need of more Internet addresses. The Internet Protocol version 6 (IPv6) was developed to give support to an almost infinite number of devices. It uses 128 bits' address, allowing 2^128 (3.4 e38) devices to successfully transmit packets over the internet. With this powerful addressing mechanism, it was now possible to think beyond the traditional communication over the Internet. The availability of more addresses opened the way to connect more and more devices. Although, there are other limitations in expanding the number of connected devices, addressing scheme opened up significant ways. Modern Day IoT The idea of modern day Internet of Things is not significantly old. In 2013, the perception of the Internet of Things evolved. The reasons being the merger of wireless technologies, increase the range of wireless communication and significant advancement in embedded technology. It was now possible to connect devices, buildings, light bulbs and theoretically any device which has a power source and can be connected wirelessly. The combination of electronics, software, and network connectivity has already shown enough marvels in the computer industry in the last century and Internet of Things is no different. Internet of Things is a network of connected devices that are aware of their surrounding. Those devices are constantly or eventually transferring data to its neighboring devices in order to fulfil certain responsibility. These devices can be automobiles, sensors, lights, solar panels, refrigerators, heart monitoring implants or any day-to-day device. These things have their dedicated software and electronics to support the wireless connectivity. It also implements the protocol stack and the application level programming to achieve the required functionality: An illustration of connected devices in the Internet of Things Real life examples of the Internet of Things Internet of Things is fascinatingly spread in our surroundings and the best way to check it is to go to a shopping mall and turn on your Bluetooth. The devices you will see are merely a drop in the bucket of the Internet of Things. Cars, watches, printers, jackets, cameras, light bulbs, street lights, and other devices that were too simple before are now connected and continuously transferring data. It is to keep in mind that this progress in the Internet of Things is only 3 years old and it is not improbable to expect that the adoption rate of this technology will be something that we have never seen before. Last decade tells us that the increase in the internet users was exponential where it reached the first billion in 2005, second in 2010 and third in 2014. Currently, there are 3.4 billion internet users present in the world. Although this trend looks unrealistic, the adoption rate of the Internet of Things is even more excessive. The reports say that by 2020, there will be 50 billion connected devices in the world and 90 percent of the vehicles will be connected to the Internet. This expansion will bring $19 trillion in profits by the same year. By the end of this year, wearables will become a $6 billion market with 171 million devices sold. As the article suggests, we will discuss different kinds of IoT devices available in the market today. The article will not cover them all, but to an extent where the reader will get an idea about the possibilities in future. The reader will also be able to define and identify the potential candidates for future IoT devices. Wearables The most important and widely recognized form of Internet of Things is wearables. In the traditional definition, wearables can be any item that can be worn. Wearables technology can range from fashion accessories to smart watches. The Apple Watch is a prime example of wearable technology. It contains fitness tracking and health-oriented sensors/apps which work with iOS and other Apple products. A competitor of Apple Watch is Samsung Gear S2 which provides compatibility with Android devices and fitness sensors. Likewise, there are many other manufacturers who are building smart watches including, Motorola, Pebble, Sony, Huawei, Asus, LG and Tag Heuer. These devices are more than just watches as they form a part of the Internet of Things—they can now transfer data, talk to your phone, read your heart rate and connect directly to Wi-Fi. For example, a watch can now keep track of your steps and transfer this information to the cellphone: Fitbit Blaze and Apple Watch The fitness tracker The fitness tracker is another important example of the Internet of Things where the physical activities of an athlete are monitored and maintained. Fitness wearables are not confined to the bands, there are smart shirts that monitor the fitness goals and progress of the athlete. We will discuss two examples of fitness trackers in this article. Fitbit and Athos smart apparel. The Blaze is a new product from Fitbit which resembles a smart watch. Although it resembles a smart watch, it a fitness-first watch targeted at the fitness market. It provides step tracking, sleep monitoring, and 24/7 heart rate monitoring. Some of Fitbit's competitors like Garmin's vívoactive watch provide a built-in GPS capability as well. Athos apparel is another example of a fitness wearable which provides heart rate and EMG sensors. Unlike watch fitness tracker, their sensors are spread across the apparel. The theoretical definition of wearables may include augmented and virtual reality headsets and Bluetooth earphones/headphones in the list. Smart home devices The evolution of the Internet of Things is transforming the way we live our daily lives as people use wearables and other Internet of Things devices in their daily lives. Another growing technology in the field of the Internet of Things is the smart home. Home automation, sometimes referred to as smart homes, results from extending the home by including automated controls to the things like heating, ventilation, lighting, air-conditioning, and security. This concept is fully supported by the Internet of Things which demands the connection of devices in an environment. Although the concept of smart homes has already existed for several decades 1900s, it remained a niche technology that was either too expensive to deploy or with limited capabilities. In the last decade, many smart home devices have been introduced into the market by major technology companies, lowering costs and opening the doors to mass adoption. Amazon Echo A significant development in the world of home automation was the launch of Amazon Echo in late 2014. The Amazon Echo is a voice enabled device that performs tasks just by recognizing voice commands. The device responds to the name Alexa, a key word that can be used to wake up the device and perform an number of tasks. This keyword can be used followed by a command to perform specific tasks. Some basic commands that can be used to fulfil home automation tasks are: Alexa, play some Adele. Alexa, play playlist XYZ. Alexa, turn the bedroom lights on (Bluetooth enabled lights bulbs (for example Philips Hue) should be present in order to fulfil this command). Alexa, turn the heat up to 80 (A connected thermostat should be present to execute this command). Alexa, what is the weather? Alexa, what is my commute? Alexa, play audiobook a Game of Thrones. Alexa, Wikipedia Packt Publishing. Alexa, How many teaspoons are in one cup? Alexa, set a timer for 10 minutes. With these voice commands, Alexa is fully operable: Amazon Echo, Amazon Tap and Amazon Dot (From left to right) Amazon Echo's main connectivity is through Bluetooth and Wi-Fi. Wi-Fi connectivity enables it to connect to the Internet and to other devices present on the network or worldwide. Bluetooth Low Energy, on the other hand, is used to connect to other devices in the home which are Bluetooth Low Energy capable. For example, Philips Hue and Thermostat are controlled through Bluetooth Low Energy. In Google IO 2016, Google announced a competing smart home device that will use Google as a backbone to perform various tasks, similar to Alexa. Google intends to use this device to further increase their presence in the smart home market, challenging Amazon and Alexa. Amazon also launched Amazon Dot and Amazon Tap. Amazon Dot is a smaller version of Echo which does not have speakers. External speakers can be connected to the Dot in order to get full access to Alexa. Amazon Tap is a more affordable, cheaper and wireless version of Amazon Echo. Wireless bulbs The Philips Hue wireless bulb is another example of a smart home device. It is a Bluetooth Low Energy connected light bulb that's give full control to the user through his smartphone. These colored bulbs can display millions of colors and can be also controlled remotely through the away from home feature. The lights are also smart enough to sync with music: Illustration of controlling Philips Hue bulbs with smartphones Smart refrigerators Our discussion of home automation would not be complete incomplete without discussing kitchen and other house electronics, as several major vendors such as Samsung have begun offering smart appliances for a smarter home. The Family Hub refrigerator is a smart fridge that lets you access the Internet and runs applications. It is also categorized in the Internet of Things devices as it is fully connected to the Internet and provides various controls to the users: Samsung Family Hub refrigerator with touch controls Summary In this article we spoke about the Internet of Things technology and how it is rooting in our real lives. The introduction of the Internet of Things discussed wearable devices, autonomous vehicles, smart light bulbs, and portable media streaming devices. Internet of Things technologies like Wireless Local Area Network (WLAN), Mobile Ad-hoc Networks (MANETs) and Zigbee was discussed in order to have a better understanding of the available choices in the IoT. Resources for Article: Further resources on this subject: Get Connected – Bluetooth Basics [article] IoT and Decision Science [article] Building Voice Technology on IoT Projects [article]
Read more
  • 0
  • 0
  • 15404

article-image-lightweight-messaging-mqtt-311-and-mosquitto
Packt
01 Mar 2017
10 min read
Save for later

Lightweight messaging with MQTT 3.1.1 and Mosquitto

Packt
01 Mar 2017
10 min read
In this article by Gastón C. Hillar, author of the book, MQTT Essentials, we will start our journey towards the usage of the preferred IoT publish-subscribe lightweight messaging protocol in diverse IoT solutions combined with mobile apps and Web applications. We will learn how MQTT and its lightweight messaging system work. We will learn MQTT basics, the specific vocabulary for MQTT, and its working modes. We will use different utilities and diagrams to understand the most important concepts related to MQTT. We will: Understand convenient scenarios for the MQTT protocol Work with the publish-subscribe pattern Work with message filtering (For more resources related to this topic, see here.) Understanding convenient scenarios for the MQTT protocol Imagine that we have dozens of different devices that must exchange data between them. These devices have to request data to other devices and the devices that receive the requests must respond with the demanded data. The devices that requested the data must process the data received from the devices that responded with the demanded data. The devices are IoT (Internet of Things) boards that have dozens of sensors wired to them. We have the following IoT boards with different processing powers: Raspberry Pi 3, Raspberry Pi Model B, Intel Edison, and Intel Joule 570x. Each of these boards has to be able to send and receive data. In addition, we want many mobile devices to be able to send and receive data, some of them running iOS and others Android. We have to work with many programming languages. We want to send and receive data in near real time through the Internet and we might face some network problems, that is, our wireless networks are somewhat unreliable and we have some high-latency environments. Some devices have low power, many of them are powered by batteries and their resources are scarce. In addition, we must be careful with the network bandwidth usage because some of the devices use metered connections. A metered connection is a network connection in which we have a limited amount of data usage per month. If we go over this amount of data, we get billed extra charges. We can use HTTP requests and a build a publish-subscribe model to exchange data between different devices. However, there is a protocol that has been specifically designed to be lighter than the HTTP 1.1 protocol and work better when unreliable networks are involved and connectivity is intermittent. The MQTT (short for MQ Telemetry Transport) is better suited for this scenario in which many devices have to exchange data between themselves in near real time through the Internet and we need to consume the least possible network bandwidth. The MQTT protocol is an M2M (Machine-to-Machine) and IoT connectivity protocol. MQTT is a lightweight messaging protocol that works with a broker-based publish-subscribe mechanism and runs on top of TCP/IP (Transmission Control Protocol/Internet Protocol). The following diagram shows the MQTT protocol on top of the TCP/IP stack: The most popular versions of MQTT are 3.1 and 3.1.1. In this article, we will work with MQTT 3.1.1. Whenever we reference MQTT, we are talking about MQTT 3.1.1, that is, the newest version of the protocol. The MQTT 3.1.1 specification has been standardised by the OASIS consortium. In addition, MQTT 3.1.1 became an ISO standard (ISO/IEC 20922) in 2016. MQTT is lighter than the HTTP 1.1 protocol, and therefore, it is a very interesting option whenever we have to send and receive data in near real time with a publish-subscribe model while requiring the lowest possible footprint. MQTT is very popular in IoT, M2M, and embedded projects, but it is also gaining presence in web applications and mobile apps that require assured messaging and an efficient message distribution. As a summary, MQTT is suitable for the following application domains in which data exchange is required: Asset tracking and management Automotive telematics Chemical detection Environment and traffic monitoring Field force automation Fire and gas testing Home automation IVI (In-Vehicle Infotainment) Medical POS (Point of Sale) kiosks Railway RFID (Radio-Frequency Identification) SCADA (Supervisory Control and Data Acquisition) Slot machines As a summary, MQTT was designed to be suitable to support the following typical challenges in IoT, M2M, embedded, and mobile applications: Be lightweight to make it possible to transmit high volumes of data without huge overheads Distribute minimal packets of data in huge volumes Support an event-oriented paradigm with asynchronous bidirectional low latency push delivery of messages Easily emit data from one client to many clients Make it possible to listen for events whenever they happen (event-oriented architecture) Support always-connected and sometimes-connected models Publish information over unreliable networks and provide reliable deliveries over fragile connections Work very well with battery-powered devices or require low power consumption Provide responsiveness to make it possible to achieve near real-time delivery of information Offer security and privacy for all the data Be able to provide the necessary scalability to distribute data to hundreds of thousands of clients Working with the publish-subscribe pattern Before we dive deep into MQTT, we must understand the publish-subscribe pattern, also known as the pub-sub pattern. In the publish-subscribe pattern, a client that publishes a message is decoupled from the other client or clients that receive the message. The clients don’t know about the existence of the other clients. A client can publish messages of a specific type and only the clients that are interested in specific types of messages will receive the published messages. The publish-subscribe pattern requires a broker, also known as server. All the clients establish a connection with the broker. The client that sends a message through the broker is known as the publisher. The broker filters the incoming messages and distributes them to the clients that are interested in the type of received messages. The clients that register to the broker as interested in specific types of messages are known as subscribers. Hence, both publishers and subscribers establish a connection with the broker. It is easy to understand how things work with a simple diagram. The following diagram shows one publisher and two subscribers connected to a broker: A Raspberry Pi 3 board with an altitude sensor wired to it is a publisher that establishes a connection with the broker. An iOS smartphone and an Android tablet are two subscribers that establish a connection with the broker. The iOS smartphone indicates the broker that it wants to subscribe to all the messages that belong to the sensor1/altitude topic. The Android tablet indicates the same to the broker. Hence, both the iOS smartphone and the Android tablet are subscribed to the sensor1/altitude topic. A topic is a named logical channel and it is also referred to as a channel or subject. The broker will send publishers only the messages published to topics to which they are subscribed. The Raspberry Pi 3 board publishes a message with 100 feet as the payload and sensor1/altitude as the topic. The board, that is, the publisher, sends the publish request to the broker. The data for a message is known as payload. A message includes the topic to which it belongs and the payload. The broker distributes the message to the two clients that are subscribed to the sensor1/altitude topic: the iOS smartphone and the Android tablet. Publishers and subscribers are decoupled in space because they don’t know each other. Publishers and subscribers don’t have to run at the same time. The publisher can publish a message and the subscriber can receive it later. In addition, the publish operation isn’t synchronized with the receive operation. A publisher requests the broker to publish a message and the different clients that have subscribed to the appropriate topic can receive the message at different times. The publisher can perform asynchronous requests to avoid being blocked until the clients receive the messages. However, it is also possible to perform a synchronous request to the broker and to continue the execution only after the request was successful. In most cases, we will want to take advantage of asynchronous requests. A publisher that requires sending a message to hundreds of clients can do it with a single publish operation to a broker. The broker is responsible of sending the published message to all the clients that have subscribed to the appropriate topic. Because publishers and subscribers are decoupled, the publisher doesn’t know whether there is any subscriber that is going to listen to the messages it is going to send. Hence, sometimes it is necessary to make the subscriber become a publisher too and to publish a message indicating that it has received and processed a message. The specific requirements depend on the kind of solution we are building. MQTT offers many features that make our lives easier in many of the scenarios we have been analyzing. Working with message filtering The broker has to make sure that subscribers only receive the messages they are interested in. It is possible to filter messages based on different criteria in a publish-subscribe pattern. We will focus on analyzing topic-based filtering, also known as subject-based filtering. Consider that each message belongs to a topic. When a publisher requests the broker to publish a message, it must specify both the topic and the message. The broker receives the message and delivers it to all the subscribers that have subscribed to the topic to which the message belongs. The broker doesn’t need to check the payload for the message to deliver it to the corresponding subscribers, it just needs to check the topic for each message that has arrived and needs to be filtered before publishing it to the corresponding subscribers. A subscriber can subscribe to more than one topic. In this case, the broker has to make sure that the subscriber receives the messages that belong to all the topics to which it has subscribed. It is easy to understand how things work with another simple diagram. The following diagram shows two future publishers that haven’t published any message yet, a broker and two subscribers connected to the broker: A Raspberry Pi 3 board with an altitude sensor wired to it and an Intel Edison board with a temperature sensor wired to it will be two publishers. An iOS smartphone and an Android tablet are two subscribers that establish a connection to the broker. The iOS smartphone indicates the broker that it wants to subscribe to all the messages that belong to the sensor1/altitude topic. The Android tablet indicates the broker that it wants to subscribe to all the messages that belong to any of the following two topics: sensor1/altitude and sensor42/temperature. Hence, the Android tablet is subscribed to two topics while the iOS smartphone is subscribed to just one topic. The following diagram shows what happens after the two publishers connect and publish messages to different topics through the broker: The Raspberry Pi 3 board publishes a message with 120 feet as the payload and sensor1/altitude as the topic. The board, that is, the publisher, sends the publish request to the broker. The broker distributes the message to the two clients that are subscribed to the sensor1/altitude topic: the iOS smartphone and the Android tablet. The Intel Edison board publishes a message with 75 F as the payload and sensor42/temperature as the topic. The board, that is, the publisher, sends the publish request to the broker. The broker distributes the message to the only client that is subscribed to the sensor42/temperature topic: the Android Tablet. Thus, the Android tablet receives two messages. Summary In this article, we started our journey towards the MQTT protocol. We understood convenient scenarios for this protocol, the details of the publish-subscribe pattern and message filtering. We learned basic concepts related to MQTT and understood the different components: clients, brokers, and connections. Resources for Article: Further resources on this subject: All About the Protocol [article] Analyzing Transport Layer Protocols [article] IoT and Decision Science [article]
Read more
  • 0
  • 0
  • 15208

article-image-internet-connected-smart-water-meter-0
Packt
23 Oct 2015
15 min read
Save for later

Internet-Connected Smart Water Meter

Packt
23 Oct 2015
15 min read
In this article by Pradeeka Seneviratne author of the book, Internet of Things with Arduino Blueprints, explains that for many years and even now, water meter readings have been collected manually. To do this, a person has to visit the location where the water meter is installed. In this article, you will learn how to make a smart water meter with an LCD screen that has the ability to connect to the internet and serve meter readings to the consumer through the Internet. In this article, you shall do the following: Learn about water flow sensors and its basic operation Learn how to mount and plumb a water flow meter on and into the pipeline Read and count the water flow sensor pulses Calculate the water flow rate and volume Learn about LCD displays and connecting with Arduino Convert a water flow meter to a simple web server and serve meter readings through the Internet (For more resources related to this topic, see here.) Prerequisites An Arduino UNO R3 board (http://store.arduino.cc/product/A000066) Arduino Ethernet Shield R3 (https://www.adafruit.com/products/201) A liquid flow sensor (http://www.futurlec.com/FLOW25L0.shtml) A Hitachi HD44780 DRIVER compatible LCD Screen (16 x 2) (https://www.sparkfun.com/products/709) A 10K ohm resistor A 10K ohm potentiometer (https://www.sparkfun.com/products/9806) Few Jumper wires with male and female headers (https://www.sparkfun.com/products/9140) A breadboard (https://www.sparkfun.com/products/12002) Water flow sensors The heart of a water flow sensor consists of a Hall effect sensor (https://en.wikipedia.org/wiki/Hall_effect_sensor) that outputs pulses for magnetic field changes. Inside the housing, there is a small pinwheel with a permanent magnet attached to it. When the water flows through the housing, the pinwheel begins to spin, and the magnet attached to it passes very close to the Hall effect sensor in every cycle. The Hall effect sensor is covered with a separate plastic housing to protect it from the water. The result generates an electric pulse that transitions from low voltage to high voltage, or high voltage to low voltage, depending on the attached permanent magnet's polarity. The resulting pulse can be read and counted using the Arduino. For this project, we will use a Liquid Flow sensor from Futurlec (http://www.futurlec.com/FLOW25L0.shtml). The following image shows the external view of a Liquid Flow Sensor: Liquid flow sensor – the flow direction is marked with an arrow The following image shows the inside view of the liquid flow sensor. You can see a pinwheel that is located inside the housing: Pinwheel attached inside the water flow sensor Wiring the water flow sensor with Arduino The water flow sensor that we are using with this project has three wires, which are the following: Red (or it may be a different color) wire, which indicates the Positive terminal Black (or it may be a different color) wire, which indicates the Negative terminal Brown (or it may be a different color) wire, which indicates the DATA terminal All three wire ends are connected to a JST connector. Always refer to the datasheet of the product for wiring specifications before connecting them with the microcontroller and the power source. When you use jumper wires with male and female headers, do the following: Connect positive terminal of the water flow sensor to Arduino 5V. Connect negative terminal of the water flow sensor to Arduino GND. Connect DATA terminal of the water flow sensor to Arduino digital pin 2. Water flow sensor connected with Arduino Ethernet Shield using three wires You can directly power the water flow sensor using Arduino since most residential type water flow sensors operate under 5V and consume a very low amount of current. Read the product manual for more information about the supply voltage and supply current range to save your Arduino from high current consumption by the water flow sensor. If your water flow sensor requires a supply current of more than 200mA or a supply voltage of more than 5v to function correctly, then use a separate power source with it. The following image illustrates jumper wires with male and female headers: Jumper wires with male and female headers Reading pulses The water flow sensor produces and outputs digital pulses that denote the amount of water flowing through it. These pulses can be detected and counted using the Arduino board. Let's assume the water flow sensor that we are using for this project will generate approximately 450 pulses per liter (most probably, this value can be found in the product datasheet). So 1 pulse approximately equals to [1000 ml/450 pulses] 2.22 ml. These values can be different depending on the speed of the water flow and the mounting polarity of the water flow sensor. Arduino can read digital pulses generating by the water flow sensor through the DATA line. Rising edge and falling edge There are two type of pulses, as listed here:. Positive-going pulse: In an idle state, the logic level is normally LOW. It goes HIGH state, stays there for some time, and comes back to the LOW state. Negative-going pulse: In an idle state, the logic level is normally HIGH. It goes LOW state, stays LOW state for time, and comes back to the HIGH state. The rising and falling edges of a pulse are vertical. The transition from LOW state to HIGH state is called rising edge and the transition from HIGH state to LOW state is called falling edge. Representation of Rising edge and Falling edge in digital signal You can capture digital pulses using either the rising edge or the falling edge. In this project, we will use the rising edge. Reading and counting pulses with Arduino In the previous step, you attached the water flow sensor to Arduino UNO. The generated pulse can be read by Arduino digital pin 2 and the interrupt 0 is attached to it. The following Arduino sketch will count the number of pulses per second and display it on the Arduino Serial Monitor: Open a new Arduino IDE and copy the sketch named B04844_03_01.ino. Change the following pin number assignment if you have attached your water flow sensor to a different Arduino pin: int pin = 2; Verify and upload the sketch on the Arduino board: int pin = 2; //Water flow sensor attached to digital pin 2 volatile unsigned int pulse; const int pulses_per_litre = 450; void setup() { Serial.begin(9600); pinMode(pin, INPUT); attachInterrupt(0, count_pulse, RISING); } void loop() { pulse = 0; interrupts(); delay(1000); noInterrupts(); Serial.print("Pulses per second: "); Serial.println(pulse); } void count_pulse() { pulse++; } Open the Arduino Serial Monitor and blow air through the water flow sensor using your mouth. The number of pulses per second will print on the Arduino Serial Monitor for each loop, as shown in the following screenshot: Pulses per second in each loop The attachInterrupt() function is responsible for handling the count_pulse() function. When the interrupts() function is called, the count_pulse() function will start to collect the pulses generated by the liquid flow sensor. This will continue for 1000 milliseconds, and then the noInterrupts() function is called to stop the operation of count_pulse() function. Then, the pulse count is assigned to the pulse variable and prints it on the serial monitor. This will repeat again and again inside the loop() function until you press the reset button or disconnect the Arduino from the power. Calculating the water flow rate The water flow rate is the amount of water flowing in at a given point of time and can be expressed in gallons per second or liters per second. The number of pulses generated per liter of water flowing through the sensor can be found in the water flow sensor's specification sheet. Let's say there are m pulses per liter of water. You can also count the number of pulses generated by the sensor per second: Let's say there are n pulses per second. The water flow rate R can be expressed as: In litres per second Also, you can calculate the water flow rate in liters per minute using the following formula: For example, if your water flow sensor generates 450 pulses for one liter of water flowing through it, and you get 10 pulses for the first second, then the elapsed water flow rate is: 10/450 = 0.022 liters per second or 0.022 * 1000 = 22 milliliters per second. The following steps will explain you how to calculate the water flow rate using a simple Arduino sketch: Open a new Arduino IDE and copy the sketch named B04844_03_02.ino. Verify and upload the sketch on the Arduino board. The following code block will calculate the water flow rate in milliliters per second: Serial.print("Water flow rate: "); Serial.print(pulse * 1000/pulses_per_litre); Serial.println("milliliters per second"); Open the Arduino Serial Monitor and blow air through the water flow sensor using your mouth. The number of pulses per second and the water flow rate in milliliters per second will print on the Arduino Serial Monitor for each loop, as shown in the following screenshot: Pulses per second and water flow rate in each loop Calculating the water flow volume The water flow volume can be calculated by summing up the product of flow rate and the time interval: Volume = ∑ Flow Rate * Time_Interval The following Arduino sketch will calculate and output the total water volume since the device startup: Open a new Arduino IDE and copy the sketch named B04844_03_03.ino. The water flow volume can be calculated using following code block: volume = volume + flow_rate * 0.1; //Time Interval is 0.1 second Serial.print("Volume: "); Serial.print(volume); Serial.println(" milliliters"); Verify and upload the sketch on the Arduino board. Open the Arduino Serial Monitor and blow air through the water flow sensor using your mouth. The number of pulses per second, water flow rate in milliliters per second, and total volume of water in milliliters will be printed on the Arduino Serial Monitor for each loop, as shown in the following screenshot: Pulses per second, water flow rate and in each loop and sum of volume  To accurately measure water flow rate and volume, the water flow sensor needs to be carefully calibrated. The hall effect sensor inside the housing is not a precision sensor, and the pulse rate does vary a bit depending on the flow rate, fluid pressure, and sensor orientation. Adding an LCD screen to the water meter You can add an LCD screen to your newly built water meter to display readings, rather than displaying them on the Arduino serial monitor. You can then disconnect your water meter from the computer after uploading the sketch on to your Arduino. Using a Hitachi HD44780 driver compatible LCD screen and Arduino Liquid Crystal library, you can easily integrate it with your water meter. Typically, this type of LCD screen has 16 interface connectors. The display has two rows and 16 columns, so each row can display up to 16 characters. The following image represents the top view of a Hitachi HD44760 driver compatible LCD screen. Note that the 16-pin header is soldered to the PCB to easily connect it with a breadboard. Hitachi HD44780 driver compatible LCD screen (16 x 2)—Top View The following image represents the bottom view of the LCD screen. Again, you can see the soldered 16-pin header. Hitachi HD44780 driver compatible LCD screen (16x2)—Bottom View Wire your LCD screen with Arduino as shown in the next diagram. Use the 10k potentiometer to control the contrast of the LCD screen. Now, perform the following steps to connect your LCD screen with your Arduino: LCD RS pin (pin number 4 from left) to Arduino digital pin 8. LCD ENABLE pin (pin number 6 from left) to Arduino digital pin 7. LCD READ/WRITE pin (pin number 5 from left) to Arduino GND. LCD DB4 pin (pin number 11 from left) to Arduino digital pin 6. LCD DB5 pin (pin number 12 from left) to Arduino digital pin 5. LCD DB6 pin (pin number 13 from left) to Arduino digital pin 4. LCD DB7 pin (pin number 14 from left) to Arduino digital pin 3. Wire a 10K pot between Arduino +5V and GND, and wire its wiper (center pin) to LCD screen V0 pin (pin number 3 from left). LCD GND pin (pin number 1 from left) to Arduino GND. LCD +5V pin (pin number 2 from left) to Arduino 5V pin. LCD Backlight Power pin (pin number 15 from left) to Arduino 5V pin. LCD Backlight GND pin (pin number 16 from left) to Arduino GND. Fritzing representation of the circuit Open a new Arduino IDE and copy the sketch named B04844_03_04.ino. First initialize the Liquid Crystal library using following line: #include <LiquidCrystal.h> To create a new LCD object with following parameters, the syntax is LiquidCrystal lcd (RS, ENABLE, DB4, DB5, DB6, DB7): LiquidCrystal lcd(8, 7, 6, 5, 4, 3); Then initialize number of rows and columns in the LCD. Syntax is lcd.begin(number_of_columns, number_of_rows): lcd.begin(16, 2); You can set the starting location to print a text on the LCD screen using following function, syntax is lcd.setCursor(column, row): lcd.setCursor(7, 1); The column and row numbers are 0 index based and the following line will start to print a text in the intersection of the 8th column and 2nd row. Then, use the lcd.print() function to print some text on the LCD screen: lcd.print(" ml/s"); Verify and upload the sketch on the Arduino board. Blow some air through the water flow sensor using your mouth. You can see some information on the LCD screen such as pulses per second, water flow rate, and total water volume from the beginning of the time:  LCD screen output Converting your water meter to a web server In the previous steps, you learned how to display your water flow sensor's readings and calculate water flow rate and total volume on the Arduino serial monitor. In this step, you will learn how to integrate a simple web server to your water flow sensor and remotely read your water flow sensor's readings. You can make an Arduino web server with Arduino WiFi Shield or Arduino Ethernet shield. The following steps will explain how to convert the Arduino water flow meter to a web server with Arduino Wi-Fi shield: Remove all the wires you have connected to your Arduino in the previous sections in this article. Stack the Arduino WiFi shield on the Arduino board using wire wrap headers. Make sure the Arduino WiFi shield is properly seated on the Arduino board. Now, reconnect the wires from water flow sensor to the Wi-Fi shield. Use the same pin numbers as used in the previous steps. Connect the 9VDC power supply to the Arduino board. Connect your Arduino to your PC using the USB cable and upload the next sketch. Once the upload is completed, remove your USB cable from the Arduino. Open a new Arduino IDE and copy the sketch named B04844_03_05.ino. Change the following two lines according to your WiFi network settings, as shown here: char ssid[] = "MyHomeWiFi"; char pass[] = "secretPassword"; Verify and upload the sketch on the Arduino board. Blow the air through the water flow sensor using your mouth, or it would be better if you can connect the water flow sensor to a water pipeline to see the actual operation with the water. Open your web browser, type the WiFi shield's IP address assigned by your network, and hit the Enter key: http://192.168.1.177 You can see your water flow sensor's pulses per second, flow rate, and total volume on the Web page. The page refreshes every 5 seconds to display updated information. You can add an LCD screen to the Arduino WiFi shield as discussed in the previous step. However, remember that you can't use some of the pins in the Wi-Fi shield because they are reserved for SD (pin 4), SS (pin 10), and SPI (pin 11, 12, 13). We have not included the circuit and source code here in order to make the Arduino sketch simple. A little bit about plumbing Typically, the direction of the water flow is indicated by an arrow mark on top of the water flow meter's enclosure. Also, you can mount the water flow meter either horizontally or vertically according to its specifications. Some water flow meters can mount both horizontally and vertically. You can install your water flow meter to a half-inch pipeline using normal BSP pipe connectors. The outer diameter of the connector is 0.78" and the inner thread size is half-inch. The water flow meter has threaded ends on both sides. Connect the threaded side of the PVC connectors to both ends of the water flow meter. Use a thread seal tape to seal the connection, and then connect the other ends to an existing half-inch pipeline using PVC pipe glue or solvent cement. Make sure that you connect the water flow meter with the pipe line in the correct direction. See the arrow mark on top of the water flow meter for flow direction. BNC pipe line connector made by PVC Securing the connection between the water flow meter and BNC pipe connector using thread seal PVC solvent cement. Image taken from https://www.flickr.com/photos/ttrimm/7355734996/ Summary In this article, you gained hands-on experience and knowledge about water flow sensors and counting pulses while calculating and displaying them. Finally, you made a simple web server to allow users to read the water meter through the Internet. You can apply this to any type of liquid, but make sure to select the correct flow sensor because some liquids react chemically with the material that the sensor is made of. You can Google and find which flow sensors support your preferred liquid type. Resources for Article: Further resources on this subject: The Arduino Mobile Robot [article] Arduino Development [article] Getting Started with Arduino [article]
Read more
  • 0
  • 0
  • 15034

article-image-our-first-program
Packt
03 Jan 2017
5 min read
Save for later

Our First Program!

Packt
03 Jan 2017
5 min read
In this article by Syed Omar Faruk Towaha, author of Learning C for Arduino, we will be learning how we can connect our Arduino to our system and we will learn how to write program on the Arduino IDE. (For more resources related to this topic, see here.) First connect your A-B cable to your PC and then connect the cable to the PC. Your PC will make a sound which will confirm that the Arduino has connected to the PC. Now open the Arduino IDE. From menu go to Tools | Board:"Arduino/Genuino Uno". You can select any board you have bought from the list. See the following screenshot for the list: You have to select the port on which the Arduino is connected. There are a lot of things you can do to see on which port your Arduino is connected. Hello Arduino! Let's write our first program on the Arduino IDE. Go to File and click on New. A text editor will open with few lines of code. Delete those lines first, and then type the following code: void setup() { Serial.begin(9600); } void loop() { Serial.print("Hello Arduino!n"); } From menu go to Sketch and click Upload. It is a good practice to verify or compile the code before uploading to the Arduino board. To verify or compile the code you need to go to Sketch and click Verify/Compile. You will see a message Done compiling. on the bottom of the IDE if the code is error free. See the following figure for the explanation: After the successful upload, you need to open the serial monitor of the Arduino IDE. To open the serial monitor, you need to go to Tools and click on Serial Monitor. You will see the following screen: setup() function The setup() function helps to initialize variables, set pin modes, and we can also use libraries here. This function is called first when we compile or upload the whole code. The setup() runs only for the first time it is uploaded to the board and later it runs every time we press the reset button on the Arduino. On our code we used Serial.begin(9600); which sets the data rate per second for the serial communication. We already know that serial communication is the process by which we send data one bit at a time over a communication channel. For Arduino to communicate with the computer we used the data rate 9600 which is a standard data rate. This is also known as baud rate. We can set the baud rate any of the following depending on the connection speed and type. I will recommend using 9600 for general data communication purposes. If you use higher baud rate, the characters we print might be broken: 300 1200 2400 4800 9600 19200 38400 57600 74880 115200 230400 250000 If we do not declare the baud rate inside the setup() function there will be no output on the serial monitor. Baud rate 9600 means 960 characters per second. This is because in serial communication, you need to transmit one start bit, eight data bits and one stop bit, for a total of 10 bits at a speed of 9600 bits per second. loop() function loop() function will let the code run again and again until we disconnect the Arduino. We have written a print statement on the loop() function which will execute for the infinity time. To print something on the serial monitor we need to write the following line: Serial.print("Anything We Want To Print"); Between the quotations we can write anything we want to print. On the last code we have written Serial.print("Hello Arduino!n");. That's why on the serial monitor we have seen Hello Arduino! had been printing for an infinity time. We have used n after Hello Arduino!.This is called escape sequence. For now, just remember we need to put this after each of our line inside the print statement to break a line and print the next command on the net line. We can use Serial.println("Hello Arduino!"); instead of Serial.print("Hello Arduino!n");. Both will give the same result. We need to put Serial.println("Hello Arduino!"); inside the setup() function. Now let's see what happens if we put a print statement inside the setup() function. Have a look at the following figure. Hello Arduino! is printed for only one time: Since C is a case sensitive language we need to be careful about the casing. We cannot use serial.print("Hello Arduino!"); instead of Serial.print("Hello Arduino!n");. Summary In this article we have learned how to connect the Arduino to our system and uploaded the code to our board. We have learned how the Arduino code work. If you are new to Arduino this article is most important. Resources for Article: Further resources on this subject: Zabbix Configuration [article] A Configuration Guide [article] Thorium and Salt API [article]
Read more
  • 0
  • 0
  • 15024

article-image-first-projects-esp8266
Packt
17 Oct 2016
9 min read
Save for later

First Projects with the ESP8266

Packt
17 Oct 2016
9 min read
In this article by Marco Schwartz, author Internet of Things with ESP8266, we will focus on the ESP8266 chip is ready to be used and you can connect it to your Wi-Fi network, we can now build some basic projects with it. This will help you understand the basics of the ESP8266. (For more resources related to this topic, see here.) We are going to see three projects in this article: how to control an LED, how to read data from a GPIO pin, and how to grab the contents from a web page. We will also see how to read data from a digital sensor. Controlling an LED First, we are going to see how to control a simple LED. Indeed, the GPIO pins of the ESP8266 can be configured to realize many functions: inputs, outputs, PWM outputs, and also SPI or I2C communications. This first project will teach you how to use the GPIO pins of the chip as outputs. The first step is to add an LED to our project. These are the extra components you will need for this project: 5mm LED (https://www.sparkfun.com/products/9590) 330 Ohm resistor (to limit the current in the LED) (https://www.sparkfun.com/products/8377) The next step is to connect the LED with the resistor to the ESP8266 board. To do so, the first thing to do is to place the resistor on the breadboard. Then, place the LED on the breadboard as well, connecting the longest pin of the LED (the anode) to one pin of the resistor. Then, connect the other end of the resistor to the GPIO pin 5 of the ESP8266, and the other end of the LED to the ground. This is how it should look like at the end: We are now going to light up the LED by programming the ESP8266 chip, by connecting it to the Wi-Fi network. This is the complete code for this section: // Import required libraries #include <ESP8266WiFi.h> void setup() { // Set GPIO 5 as output pinMode(5, OUTPUT); // Set GPIO 5 on a HIGH state digitalWrite(5, HIGH); } void loop() { } This code simply sets the GPIO pin as an output, and then applies a HIGH state on it. The HIGH state means that the pin is active, and that positive voltage (3.3V) is applied on the pin. A LOW state would mean that the output is at 0V. You can now copy this code and paste it in the Arduino IDE. Then, upload the code to the board using the instructions from the previous article. You should immediately see that the LED is lighting up. You can shut it down again by using digitalWrite(5, LOW) in the code. You could also, for example, modify the code so the ESP8266 switches the LED on and off every second. Reading data from a GPIO pin As a second project in this article, we are going to read the state of a GPIO pin. For this, we will use the same pin as in the previous project. You can therefore remove the LED and the resistor that we used in the previous project. Now, simply connect this pin (GPIO 5) of the board to the positive power supply on your breadboard with a wire, therefore applying a 3.3V signal on this pin. Reading data from a pin is really simple. This is the complete code for this part: // Import required libraries #include <ESP8266WiFi.h> void setup(void) { // Start Serial (to display results on the Serial monitor) Serial.begin(115200); // Set GPIO 5 as input pinMode(5, INPUT);} void loop() { // Read GPIO 5 and print it on Serial port Serial.print("State of GPIO 5: "); Serial.println(digitalRead(5)); // Wait 1 second delay(1000); } We simply set the pin as an input, and then read the value of this pin, and print it out every second. Copy and paste this code into the Arduino IDE, then upload it to the board using the instructions from the previous article. This is the result you should get in the Serial monitor: State of GPIO 5: 1 We can see that the returned value is 1 (digital state HIGH), which is what we expected, because we connected the pin to the positive power supply. As a test, you can also connect the pin to the ground, and the state should go to 0. Grabbing the content from a web page As a last project in this article, we are finally going to use the Wi-Fi connection of the chip to grab the content of a page. We will simply use the www.example.com page, as it's a basic page largely used for test purposes. This is the complete code for this project: // Import required libraries #include <ESP8266WiFi.h> // WiFi parameters constchar* ssid = "your_wifi_network"; constchar* password = "your_wifi_password"; // Host constchar* host = "www.example.com"; void setup() { // Start Serial Serial.begin(115200); // We start by connecting to a WiFi network Serial.println(); Serial.println(); Serial.print("Connecting to "); Serial.println(ssid); WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } Serial.println(""); Serial.println("WiFi connected"); Serial.println("IP address: "); Serial.println(WiFi.localIP()); } int value = 0; void loop() { Serial.print("Connecting to "); Serial.println(host); // Use WiFiClient class to create TCP connections WiFiClient client; const int httpPort = 80; if (!client.connect(host, httpPort)) { Serial.println("connection failed"); return; } // This will send the request to the server client.print(String("GET /") + " HTTP/1.1rn" + "Host: " + host + "rn" + "Connection: closernrn"); delay(10); // Read all the lines of the reply from server and print them to Serial while(client.available()){ String line = client.readStringUntil('r'); Serial.print(line); } Serial.println(); Serial.println("closing connection"); delay(5000); } The code is really basic: we first open a connection to the example.com website, and then send a GET request to grab the content of the page. Using the while(client.available()) code, we also listen for incoming data, and print it all inside the Serial monitor. You can now copy this code and paste it into the Arduino IDE. This is what you should see in the Serial monitor: This is basically the content of the page, in pure HTML code. Reading data from a digital sensor In this last section of this article, we are going to connect a digital sensor to our ESP8266 chip, and read data from it. As an example, we will use a DHT11 sensor that can be used to get ambient temperature and humidity. You will need to get this component for this section, the DHT11 sensor (https://www.adafruit.com/products/386) Let's now connect this sensor to your ESP8266: First, place the sensor on the breadboard. Then, connect the first pin of the sensor to VCC, the second pin to pin #5 of the ESP8266, and the fourth pin of the sensor to GND. This is how it will look like at the end: Note that here I've used another ESP8266 board, the Adafruit ESP8266 breakout board. We will also use the aREST framework in this example, so it's easy for you to access the measurements remotely. aREST is a complete framework to control your ESP8266 boards remotely (including from the cloud), and we are going to use it several times in the article. You can find more information about it at the following URL: http://arest.io/. Let's now configure the board. The code is too long to be inserted here, but I will detail the most important part of it now. It starts by including the required libraries: #include "ESP8266WiFi.h" #include <aREST.h> #include "DHT.h" To install those libraries, simply look for them inside the Arduino IDE library manager. Next, we need to set the pin on which the DHT sensor is connected to: #define DHTPIN 5 #define DHTTYPE DHT11 After that we declare an instance of the DHT sensor: DHT dht(DHTPIN, DHTTYPE, 15); As earlier, you will need to insert your own Wi-Fi name and password inside the code: const char* ssid = "wifi-name"; const char* password = "wifi-pass"; We also define two variables that will hold the measurements of the sensor: float temperature; float humidity; In the setup() function of the sketch, we initialize the sensor: dht.begin(); Still in the setup() function, we expose the variables to the aREST API, so we can access them remotely via Wi-Fi: rest.variable("temperature",&temperature); rest.variable("humidity",&humidity); Finally, in the loop() function, we make the measurements from the sensor: humidity = dht.readHumidity(); temperature = dht.readTemperature(); It's now time to test the project! Simply grab all the code and put it inside the Arduino IDE. Also make sure to install the aREST Arduino library using the Arduino library manager. Now, put the ESP8266 board in bootloader mode, and upload the code to the board. After that, reset the board, and open the Serial monitor. You should see the IP address of the board being displayed: Now, we can access the measurements from the sensor remotely. Simply go to your favorite web browser, and type: 192.168.115.105/temperature You should immediately get the answer from the board, with the temperature being displayed: { "temperature": 25.00, "id": "1", "name": "esp8266", "connected": true } You can of course do the same with humidity. Note that we used here the aREST API. You can learn more about it at: http://arest.io/. Congratulations, you just completed your very first projects using the ESP8266 chip! Feel free to experiment with what you learned in this article, and start learning more about how to configure your ESP8266 chip. Summary In this article, we realized our first basic projects using the ESP8266 Wi-Fi chip. We first learned how to control a simple output, by controlling the state of an LED. Then, we saw how to read the state of a digital pin on the chip. Finally, we learned how to read data from a digital sensor, and actually grab this data using the aREST framework. We are going to go right into the main topic of the article, and build our first Internet of Things project using the ESP8266. Resources for Article: Further resources on this subject: Sending Notifications using Raspberry Pi Zero [article] The Raspberry Pi and Raspbian [article] Working with LED Lamps [article]
Read more
  • 0
  • 0
  • 14940

article-image-working-led-lamps
Packt
12 May 2016
11 min read
Save for later

Working with LED Lamps

Packt
12 May 2016
11 min read
In this article by Samarth Shah and Utsav Shah, the authors of Arduino BLINK Blueprints, you will learn some cool stuff to do with controlling LEDs, such as creating a mood lamp and developing an LED night lamp. (For more resources related to this topic, see here.) Creating a mood lamp Lighting is one of the biggest opportunities for homeowners to effectively influence the ambience of their home, whether for comfort and convenience or to set the mood for guests. In this section, we will make a simple yet effective mood lamp using our own Arduino. We will be using an RGB LED for creating our mood lamp. An RGB (Red, Green, and Blue) LED has all three LEDs in one single package, so we don't need to use three different LEDs for getting different colors. Also, by mixing the values, we can simulate many colors using some sophisticated programming. It is said that, we can produce 16.7 million different colors. Using an RGB LED An RGB LED is simply three LEDs crammed into a single package. An RGB LED has four pins. Out of these four pins, one pin is the cathode (ground). As an RGB LED has all other three pins shorted with each other, it is also called a Common Anode RGB LED: Here, the longer head is the cathode, which is connected with ground, and the other three pins are connected with the power supply. Be sure to use a current-limiting resistor to protect the LED from burning out. Here, we will mix colors as we mix paint on a palette or mix audio with a mixing board. But to get a different color, we will have to write a different analog voltage to the pins of the LED. Why do RGB LEDs change color? As your eye has three types of light interceptor (red, green, and blue), you can mix any color you like by varying the quantities of red, green, and blue light. Your eyes and brain process the amounts of red, green, and blue, and convert them into a color of the spectrum: If we set the brightness of all our LEDs the same, the overall color of the light will be white. If we turn off the red LED, then only the green and blue LEDs will be on, which will make a cyan color. We can control the brightness of all three LEDs, making it possible to make any color. Also, the three different LEDs inside a single RGB LED might have different voltage and current levels; you can find out about them in a datasheet. For example, a red LED typically needs 2 V, while green and blue LEDs may drop up to 3-4 V. Designing a mood lamp Now, we are all set to use our RGB LED in our mood lamp. We will start by designing the circuit for our mood lamp. In our mood lamp, we will make a smooth transition between multiple colors. For that, we will need following components: An RGB LED 270 Ω resistors (for limiting the current supplied to the LED) Breadboard As we did earlier, we need one pin to control one LED. Here, our RGB LED consists of three LEDs. So, we need three different control pins to control three LEDs. Similarly, three current-limiting resistors are required for each LED. Usually, this resistor's value can be between 100 Ω and 1000 Ω. If we use a resistor with a value higher than 1000 Ω, minimal current will flow through the circuit, resulting in negligible light emission from our LED. So, it is advisable to use a resistor having suitable resistance. Usually, a resistor of 220 Ω or 470 Ω is preferred as a current-limiting resistor. As discussed in the earlier section, we want to control the voltage applied to each pin, so we will have to use PWM pins (3, 5, 6, 9, 10, and 11). The following schematic controls the red LED from pin 11, the blue LED from pin 10, and the green LED from pin 9. Hook the following circuit using resistors, breadboard, and your RGB LED: Once you have made the connection, write the following code in the editor window of Arduino IDE: int redLed = 11; int blueLed = 10; int greenLed = 9; void setup() { pinMode(redLed, OUTPUT); pinMode(blueLed, OUTPUT); pinMode(greenLed, OUTPUT); } void loop() { setColor(255, 0, 0); // Red delay(500); setColor(255, 0, 255); // Magenta delay(500); setColor(0, 0, 255); // Blue delay(500); setColor(0, 255, 255); // Cyan delay(500); setColor(0, 255, 0); // Green delay(500); setColor(255, 255, 0); // Yellow delay(500); setColor(255, 255, 255); // White delay(500); } void setColor(int red, int green, int blue) { // For common anode LED, we need to substract value from 255. red = 255 - red; green = 255 - green; blue = 255 - blue; analogWrite(redLed, red); analogWrite(greenLed, green); analogWrite(blueLed, blue); } We are using very simple code for changing the color of the LED every one second interval. Here, we are setting the color every second. So, this code won't give you a smooth transition between colors. But with this code, you will be able to run the RGB LED. Now we will modify this code to smoothly transition between colors. For a smooth transition between colors, we will use the following code: int redLed = 11; int greenLed = 10; int blueLed = 9; int redValue = 0; int greenValue = 0; int blueValue = 0; void setup(){ randomSeed(analogRead(0)); } void loop() { redValue = random(0,256); // Randomly generate 1 to 255 greenValue = random(0,256); // Randomly generate 1 to 255 blueValue = random(0,256); // Randomly generate 1 to 255 analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); // Incrementing all the values one by one after setting the random values. for(redValue = 0; redValue < 255; redValue++){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(greenValue = 0; greenValue < 255; greenValue++){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(blueValue = 0; blueValue < 255; blueValue++){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } //Decrementing all the values one by one for turning off all the LEDs. for(redValue = 255; redValue > 0; redValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(greenValue = 255; greenValue > 0; greenValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(blueValue = 255; blueValue > 0; blueValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } } We want our mood lamp to repeat the same sequence of colors again and again. So, we are using the randomSeed() function. The randomSeed() function initializes the pseudo random number generator, which will start at an arbitrary point and will repeat in the same sequence again and again. This sequence is very long and random, but will always be the same. Here, pin 0 is unconnected. So, when we start our sequence using analogRead(0), it will give some random number, which is useful in initializing the random number generator with a pretty fair random number. The random(min,max) function generates the random number between min and max values provided as parameters. In the analogWrite() function, the number should be between 0 and 255. So, we are setting min and max as 0 and 255 respectively. We are setting the random value to redPulse, greenPulse, and bluePulse, which we are setting to the pins. Once a random number is generated, we increment or decrement the value generated with a step of 1, which will smooth the transition between colors. Now we are all set to use this as mood lamp in our home. But before that we need to design the outer body of our lamp. We can use white paper (folded in a cube shape) to put around our RGB LED. White paper acts as a diffuser, which will make sure that the light is mixed together. Alternatively, you can use anything which diffuses light and make things looks beautiful! If you want to make the smaller version of the mood lamp, make a hole in a ping pong ball. Extend the RGB LED with jump wires and put that LED in the ball and you are ready to make your home look beautiful. Developing an LED night lamp So now we have developed our mood lamp, but it will turn on only and only when we connect a power supply to Arduino. It won't turn on or off depending on the darkness of the environment. Also, to turn it off, we have to disconnect our power supply from the Arduino. In this section, we will learn how to use switches with Arduino. Introduction to switch Switch is one of the most elementary and easy-to-overlook components. Switches do only one thing: either they open a circuit or short circuit. Mainly, there are two types of switches: Momentary switch: Momentary switches are those switches which require continuous actuation—like a keyboard switch and reset button on Arduino board. Maintained Switch: Maintained switches are those switches which, once actuated, remain actuated—like a wall switch. Normally, all the switches are NO (Normally Opened) type switches. So, when the switch is actuated, it closes the path and acts as a perfect piece of conducting wire. Apart from this, based on their working, many switches are out there in the world, such as toggle, rotary, DIP, rocker, membrane, and so on. Here, we will use a normal push button switch with four pins: In our push button switch, contacts A-D and B-C are short. We will connect our circuit between A and C. So, whenever you press the switch, the circuit will be complete and current will flow through the circuit. We will read the input from the button using the digitalRead() function. We will connect one pin (pin A) to the 5 V, and the other pin (pin C) to Arduino's digital input pin (pin 2). So whenever the key is pressed, it will send a 5 V signal to pin 2. Pixar lamp We will add a few more things in the mood lamp we discussed to make it more robust and easy to use. Along with the switch, we will add some kind of light-sensing circuit to make it automatic. We will use a Light Dependent Resistor (LDR) for sensing the light and controlling the lamp. Basically, LDR is a resistor whose resistance changes as the light intensity changes. Mostly, the resistance of LDRs drops as light increases. For getting the value changes as per the light levels, we need to connect our LDR as per the following circuit: Here, we are using a voltage divider circuit for measuring the light intensity change. As light intensity changes, the resistance of the LDR changes, which in turn changes the voltage across the resistor. We can read the voltage from any analog pin using analogRead(). Once you have connected the circuit as shown, write the following code in the editor: int LDR = 0; //will be getting input from pin A0 int LDRValue = 0; int light_sensitivity = 400; //This is the approx value of light surrounding your LDR int LED = 13; void setup() { Serial.begin(9600); //start the serial monitor with 9600 buad pinMode(LED, OUTPUT); } void loop() { LDRValue = analogRead(LDR); //Read the LDR's value through LDR pin A0 Serial.println(LDRValue); //Print the LDR values to serial monitor if (LDRValue < light_sensitivity) { digitalWrite(LED, HIGH); } else { digitalWrite(LED, LOW); } delay(50); //Delay before LDR value is read again } In the preceding code, we are reading the value from our LDR at pin analog A0. Whenever the value read from pin A0 is certain threshold value, we are turning on the LED. So whenever the light (lux value) around the LDR drops, then the set value, it will turn on the LED, or in our case, mood lamp. Similarly, we will add a switch in our mood lamp to make it fully functional as a Pixar lamp. Connect one pin of the push button at 5 V and the other pin to digital pin 2. We will turn on the lamp only, and only when the room is dark and the switch is on. So we will make the following changes in the previous code. In the setup function, initialize pin 2 as input, and in the loop add the following code: buttonState = digitalRead(pushSwitch); //pushSwitch is initialized as 2. If (buttonState == HIGH){ //Turn on the lamp } Else { //Turn off the lamp. //Turn off all LEDs one by one for smoothly turning off the lamp. for(redValue = 255; redValue > 0; redValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(greenValue = 255; greenValue > 0; greenValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } for(blueValue = 255; blueValue > 0; blueValue--){ analogWrite(redLed,redValue); analogWrite(greenLed,greenValue); analogWrite(blueLed,blueValue); delay(10); } } So, now we have incorporated an LDR and switch in our lamp to use it as a normal lamp. Summary In this article, we created a mood lamp with RGB LED and Pixar lamp along with developing an LED night lamp Resources for Article: Further resources on this subject: Arduino Development [article] Getting Started with Arduino [article] First Look and Blinking Lights [article]
Read more
  • 0
  • 0
  • 14756
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at €18.99/month. Cancel anytime
article-image-introducing-iot-particles-photon-and-electron
Packt
07 Sep 2016
14 min read
Save for later

Introducing IoT with Particle's Photon and Electron

Packt
07 Sep 2016
14 min read
In this article by Rashid Khan, Kajari Ghoshdastidar, and Ajith Vasudevan, authors of the book Learning IoT with Particle Photon and Electron, we will have a brief walkthrough of the evolution of Internet of Things (IoT) followed by an overview of the basics of IoT-related software and hardware, which every IoT enthusiast should know. The discussion then moves on to introduce Particle, an IoT company (https://www.particle.io/), followed by a description of Particle's popular IoT products—Core, Photon and Electron. This article will cover following topics: Evolution of IoT Hardware and software in the IoT ecosystem Market survey of IoT development boards and cloud services What is Particle? Summary (For more resources related to this topic, see here.) Evolution of IoT It is not very clear exactly who coined the term IoT. Kevin Ashton (https://en.wikipedia.org/wiki/Kevin_Ashton) supposedly coined the phrase IoT while working for Procter & Gamble (P&G) in 1999. Kevin was then working on an RFID (https://en.wikipedia.org/wiki/Radio-frequency_identification) initiative by P&G, and proposed taking the system online to the Internet. In 2005, UN's International Telecommunications Union (ITU) - http://www.itu.int/, published its first report on IoT. In 2008, the global non-profit organization IPSO Alliance (http://www.ipso-alliance.org/) was launched to serve the various communities seeking to establish IoT by providing coordinated marketing efforts available to the general public. IPSO currently has more than 50 member companies including Google, Cisco, Intel, Texas Instruments, Bosch, Atmel. In 2012, IoT Consortium (IoTC) - http://iofthings.org/, was founded to educate technology firms, retailers, insurance companies, marketers, media companies, and the wider business community about the value of IoT. IoTC has more than 60 member companies in the area of hardware, software, and analytics, a few of them being Logitech, Node, and SigFox. A 2014 Forbes article by Gil Press mentions: "Gartner estimates that IoT product and service suppliers will generate incremental revenue exceeding $300 billion in 2020. IDC forecasts that the worldwide market for IoT solutions will grow from $1.9 trillion in 2013 to $7.1 trillion in 2020". Why IoT has become a household word now IoT has, in recent years, become quite popular and an everyday phenomenon primarily due to IoT-related hardware, software, accessories, sensors, and the Internet connection becoming very affordable and user friendly. An explosion in the availability of free Integrated Development Environments (IDEs) and Software Development Kits (SDKs) have made programming and deployment of IoT really simple and easy. Thus, IoT enthusiasts range from school kids, hobbyists, and non-programmers to embedded software engineers specialized in this area. Hardware and software in the IoT ecosystem Advancement in technology and affordability has made acquisition and usage of IoT devices very simple. However, in order to decide which IoT package (boards, accessories, sensors, software) to choose for a particular application, and actually building projects, it is essential to have knowledge of IoT terminology, hardware, and software. In this section, we will introduce the reader to the essential terminology used when dealing with IoT. This will also help the reader understand and appreciate the features of the Particle IoT products—Core, Photon, and Electron. Essential terminology Let's learn about a few terms that we're going to be hearing all throughout this article, and whenever we work with IoT hardware and software components: Term Definition IoT Development Board A development board is essentially a programmable circuit board which wraps an IoT device. The IoT device's processor/microcontroller, memory, communications ports, input-output pins, sensors, Wi-Fi module, and so on are exposed by the development board, in a convenient way, to the user. A board manufacturer usually provides an IDE with it to write and deploy code to the physical board. A development board with the IDE enables rapid prototyping of IoT projects. Microcontroller A microcontroller is a highly compact single Integrated Circuit (IC) with a processor and limited Random Access Memory (RAM) and Read Only Memory (ROM) embedded in it with programmable peripherals. Microcontrollers are "computer on a single chip". Because of its limited memory and architecture constraints, usually, only one specific program is deployable and runnable on a microcontroller at one time. Preprogrammed microcontrollers are used in electrical machinery such as washing machines, dish-washers, microwave, and so on. Microprocessor A microprocessor is a single integrated chip which in itself is a Central Processing Unit (CPU). The microprocessor has separate RAM and ROM modules, and digital inputs and outputs. The Microprocessor CPU is usually more powerful than that of a microcontroller, and there is provision to add larger amounts of memory externally. This makes microprocessors suitable for general-purpose programming, and are used in desktop computers, Laptops, and the like. Flash Memory Flash memory is an electronic non-volatile storage device, for example, USB pen-drives, memory cards, and so on. Data in Flash memory can be erased and rewritten. Unlike RAM, access speed is lower for flash memories, and also unlike RAM, the data stored in flash memory is not erased when power is switched off. Flash memories are generally used as reusable extra storage. RTOS RTOS as the name suggests, RTOS responds to events in real time. This means, as soon as an event occurs, a response is guaranteed within an acceptable and calculable amount of time. RTOS can be hard, firm, or soft depending on the amount of flexibility allowed in missing a task deadline. RTOS is essential in embedded systems, where real-time response is necessary. M2M Machine-to-Machine (M2M) communication encompasses communication between two or more machines (devices, computers, sensors, and so on) over a network (wireless/wired). Basically, a variant of IoT, where things are machines. Cloud Technology Cloud refers to computing resources available for use over a network (usually, the Internet). An end user can use such a resource on demand without having to install anything more than a lightweight client in the local machine. The major resources relevant to IoT include data storage, data analytics, data streaming, and communication with other devices. mBaaS Mobile Backend as a Service (mBaaS) is a infrastructure that provides cloud storage, data streaming, push notifications, and other related services for mobile application developers (web, native, IoT app development). The services are exposed via web-based APIs. BaaS is usually provided as a pay-per-use service. GPIO General Purpose Input Output (GPIO), these are electrical terminals or 'pins' exposed from ICs and IoT devices/boards that can be used to either send a signal to the device from the outside (input mode), or get a signal out from the inside of the device (output mode). Input or Output mode can be configured by the user at runtime. Module Unit of electronics, sometimes a single IC and at other times a group of components that may include ICs, providing a logical function to the device/board. For example, a Wi-Fi module provides Wi-Fi functionality to a board. Other examples are Bluetooth, Ethernet, USB, and so on, Port An electrical or Radio-Frequency-based interface available on a board through which external components can communicate with the board. For example, HDMI, USB, Ethernet, 3.5mm jack, UART (https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter). Table 1: Terminology Network Protocols Connected smart devices need to communicate with each other, and exchange large volumes of messages between themselves and the cloud. To ensure near real-time response, smart bandwidth usage, and energy savings on the resource-constrained IoT devices, new protocols have been added to the traditional seven-layer network model (OSI model: https://en.wikipedia.org/wiki/OSI_model). The following table shows the major OSI network protocols and the IoT network protocols suitable for various smart, connected devices. Layer Examples of Traditional Network Protocols (OSI) Examples of IoT Network Protocols Application, Presentation, Session HTTP, FTP, SMTP, TLS, RPC, JSON, CSS, GIF, XML CoAP, MQTT, DDS, M2M service layer Transport TCP, UDP UDP, DTLS Network ICMP, IPsec, IPv4, IPv6 6LoWPAN, RPL (Zigbee) Data Link IEEE 802.2, L2TP, LLDP, MAC, PPP IEEE 802.15.4, BLE4.0, RFID, NFC, Cellular Physical DSL, Ethernet physical layer, RS-232, any physical transmission medium (for example, Cables) Wires, Sensor drivers to read from sensor devices Table 2: Layerwise Network Protocols – OSI vs IoT Market survey of IoT development boards and cloud services Here we list some of the most popular IoT boards and cloud services, available in the market at the time of writing this article, with some of their important specifications and features. These tables should help the reader get an idea as to where Particle products fit in on the IoT map. IoT development boards The next table lists the main specifications of popular IoT boards. These specs are the basic details one has to consider while selecting a board—its specifications in terms of processor and speed, memory, available communication modules and ports, and IO Pins. Also, while selecting a board, one has to analyze and match the project's requirements with the available boards, so that the right board is selected for the application in terms of fitment and performance. Board Name Microcontroller Microprocessor Memory Modules Ports IO Pins Raspberry Pi 1/2/3 Broadcom SoC BCM2835/6/7 Single/Quad-core ARM 11/Cortex-A7/A53 CPU, VideoCore IV GPU 256MB/512MB/1 GB RAM Ethernet, Wi-Fi, Serial UART, I2C HDMI, USB, Ethernet (RJ45), GPIO 26/40/40 Arduino Mini ATmega328 NA 32 KB Flash 2 KB SRAM NA NA 14 Arduino Yun ATmega32u4 Atheros AR9331 32 KB Flash 2.5 KB SRAM, 16 MB Flash, 64 MB RAM Wi-Fi, Ethernet USB, Ethernet (RJ45) 20 Intel Edison MCU at 100 MHz ( Intel Atom Soc) Dual-core CPU at 500 MHz (Intel Atom Soc) 4 GB Flash, 1 GB RAM Wi-Fi, Bluetooth 4.0 USB, UART, SPI, GPIO 28 Libelium Waspmote ATmega1281 NA 128 KB Flash, 8 KB SRAM Temp, Humidity, Light Sensors, (optional) GPS UART, I2C, SPI, USB 19 NodeMCU ESP8266 ESP 8266 SoC ESP-12 module 4 MB Flash Wi-Fi, Serial UART, ADC UART, GPIO, SPI 14 BeagleBone Black Sitara SoC AM3358/9 AM335x 1 GHz ARM Cortex-A8 512 MB RAM, 2/4 GB flash storage Ethernet, Serial UART, ADC, I2C Ethernet (RJ45), HDMI, USB, GPIO 24 CubieBoard ARM Cortex-A8 CPU AllWinner A10 SoC 512 MB/ 1 GB RAM, 4 GB flash memory Ethernet, Serial UART, ADC, I2C Ethernet (RJ45) , USB, SATA 96 Table 3: IoT development Boards Cloud services (PaaS, BaaS, M2M) It is important to know what kind of cloud service we will be dealing with, and whether our board has open standards and allows us to use our own personal service easily, or whether the board-provided service needs some manipulation to use in the current project. Cloud Service Name Salient Features Amazon Web Services (https://aws.amazon.com/) Microsoft Azure (https://azure.microsoft.com/) Cloud Foundry (https://www.cloudfoundry.org/) IBM Bluemix (http://www.ibm.com/cloud-computing/bluemix/) Platform as a Service (PaaS) Infrastructure (VM, Storage), Big Data Analytics, Application Services, Deployment and Management, Mobile and Device Services Parse (http://www.parse.com/) Kinvey (http://www.kinvey.com/) AnyPresence (http://www.anypresence.com/) Appcelerator (http://www.appcelerator.com/) mBaaS ThingWorx (https://www.thingworx.com/) M2M offering from PTC (http://www.ptc.com/) Table 4: Cloud services What is Particle? Particle (https://www.particle.io), formerly known as Spark, is a company started by Zach Supalla. It provides hardware and software for development of IoT projects. Journey of Particle The first company started by Zach Supalla in 2011 was known as Hex Goods, and it sold designer products online. In early 2012, Hex Goods was shut down, and Zach started a second company called Switch Devices, which dealt with connected lighting. Switch Devices was then renamed Spark Devices. The name Spark was used as it provided a double meaning to the founders. Spark stood for spark of light and also sparks of inspiration. In early 2013, Spark transformed to an IoT platform for engineers and developers. The name Spark also did not last long as the founders felt Spark created confusion for a lot of users. There exist 681 live trademarks that include the word Spark. Apart from the number of trademarks, there are some other great, unrelated software and hardware products employing the name Spark in them—some of them being Apache Spark, SparkFun, and Spark NZ. It has been reported that a lot of people logged on to Zach's #spark IRC channel and asked doubts about big data. The name Particle was finally chosen, as it gave plenty of room to grow in terms of products and offerings. Particle, in scientific terms, is a single discreet unit within a larger system. The name draws a parallel with the mission of Particle—the company which provides development kits and devices as single units used to build the greater whole of IoT. We'll cover Particle IoT products in depth, and see how and when they perform better than other IoT development boards. Why Particle? Today, the most recurring problem with all existing IoT prototyping boards is that of connectivity. In order to connect the existing boards to the Internet, additional components such as Wi-Fi or GSM modules have to be attached in the development environment as well as in production. Attaching external devices for communication is cumbersome, and adds another point of failure with frequent issues such as Internet unavailability, intermittent network connectivity, and so on. This leads to a bad experience for the developer. Developers have to frequently (re)write code, deploy it onto the device(s), test, debug, fix any bugs, rinse, and repeat. The problem with code deployment with existing boards is that the boards need to be connected to a computer, which means for even the smallest code update, the device/board needs to be connected to the developer's computer, either by moving the computer to the device (which may be located at a not-so-easily accessible location) or vice versa. This poses a problem when the device, after an update at the developer's site, has to be placed back in its original production environment for testing and debugging the new changes. This means large turnaround times to load new code into production. Particle provides products that have built-in Wi-Fi modules or GSM modules, which help in easy connection to a network or the internet, with support for OTA (Over-The-Air) code deployment. This removes the hassle of adding extra modules on the prototyping boards for connectivity, and it also allows for pushing code or testing/debugging on site. As previously mentioned, one of the important features which differentiates Particle products from other devices is the Particle device's ability of deployment of code over the air. New code can be deployed onto the device or burnt, as the process is called in embedded systems' parlance, via REST API calls, which makes it very convenient to provide updates. This feature of Particle products helps in faster code release cycle and testing/debugging. What does Particle offer? Particle offers a suite of hardware and software tools to help prototype, scale, and manage the IoT products. It also provides the ability to build cloud-connected IoT prototypes quickly. If you're satisfied with your prototype and want to productize your IoT design, no problem there. It helps us to go from a single prototype to millions of units with a cloud platform that can scale as the number of devices grow. The popular Particle hardware devices are listed as follows: Core: A tiny Wi-Fi development kit for prototyping and scaling your IoT product. Reprogrammable and connected to the cloud, this has now been superseded by the Photon. Photon: A tiny Wi-Fi development kit for prototyping and scaling your IoT product. Reprogrammable and connected to the cloud. Electron: A tiny development kit for creating 2G/3G cellular connected products. The Photon and the Core are bundled with Wi-Fi modules, which help them connect to a network or the Internet without adding any extra modules. The Electron has a 3G/2G GSM module, which can be used to send or receive messages directly or connect to the Internet. The firmware for the Photon, Electron, and Core can be written in a web-based IDE provided by Particle, and the deployment of the firmware code to the device is done over-the-air. Particle also offers SDKs for mobile and web to extend the IoT experience from the devices/sensors to the phone and web. Summary In this article, we learnt about IoT, and how it all began. We briefly touched upon major organizations involved in IoT, common terminology used, and we looked at different hardware products and cloud services we have available for building IoT projects.  Resources for Article: Further resources on this subject: Identity and Access-Management Solutions for the IoT [article] Internet of Things with BeagleBone [article] The Internet of Things [article]
Read more
  • 0
  • 0
  • 14637

article-image-heart-it-all
Packt
27 Jan 2016
15 min read
Save for later

The Heart of It All

Packt
27 Jan 2016
15 min read
In this article by Thomas Hamilton, the author of Building a Media Center with Raspberry Pi ,you will learn how to find the operating system that you will use on the system that you chose. Just like with hardware, there are a plethora of options for the operating systems for the Raspberry Pi. For this book, we are going to focus on transforming the Raspberry Pi into a media center. At the time of writing this book, there are two operating systems available that are well known for being geared specifically to do just this. The first one is called the Open Embedded Linux Entertainment Center (openELEC) and is a slimmed-down operating system that has been optimized to be a media center and nothing else. The second option, and the one that we will be using for this project, is called the Open Source Media Center (OSMC). The main advantage of this specific version is that there is a full operating system running in the background. This will be important for some of the add-ons to work correctly. Once you can do this, if you want to try openELEC, you will be fully prepared to be able to do this on your own. In fact, the information in this article will enable you to install practically any operating system that's designed for a Raspberry Pi onto an SD card for you to use and experiment with as you see fit. In this article, we will cover the following topics: Downloading an operating system Installing an operating system to an SD card using Windows Install an operating system to an SD card using Linux (For more resources related to this topic, see here.) The Operating System It is now time to find the correct version of OSMC so that we can download and install it. If you are primarily a Windows or an iOS user, it may feel strange to think that you can search online for operating systems and just download them to your computer. In the Linux world, the world in which the Raspberry Pi resides, this is very normal and one of the great things about open source. The Raspberry Pi is built as a learning tool. It was designed in such a way that it will allow you to modify and add to it. In this way, the community can develop it and make it better. Open source software does the same thing. If you know programming, you can contribute to and change software that someone else developed, and this is encouraged! More eyes on the code means less bugs and vulnerabilities. Most versions of Linux follow this open source principle. Versions of Linux? Yes. This is another point of confusion for Windows and Mac users. For the computers that you buy in a normal retail or computer store, you do not have many choices related to the OS that is already installed. You can either buy an Apple product with the newest version of their OS, or a Windows-based computer with Windows 7, 8, or 10 pre-installed. In this example, Windows 7, 8, and 10 are just newer and older versions of each other. Linux works off a different principle. Linux itself is not an operating system. Think of it more like a type of operating system or maybe as a brand such as Microsoft and Apple. Because it is open source and free, developers can take it and turn it into whatever they need it to be. The most popular versions of Linux are Ubuntu, Fedora, Suse, Mint, and CentOS. They each have a different look and feel and can have different functions. They are also operating systems that can be used daily for your normal computing needs. This article is based on a combination of Ubuntu and Fedora operating systems. The world of Linux and open source software can be confusing at first. Don't be scared! After you get past the shock, you will find that this openness is very exciting and helpful and can actually make your life much easier. Now, lets download OSMC. Raspberrypi.org If you haven't come across this already, it is the official website for the Raspberry Pi. From this website, you can find information about the Raspberry Pi, instructional how-tos and forums to talk with other Raspberry Pi users. This site can point you to their official retailers for the versions of the Raspberry Pi that are currently in production, and for the purpose of this article, it points us to the most popular operating systems for the Raspberry Pi (though not nearly all the ones that can work on it). From the main page, click on the link that says DOWNLOADS near the top of the page. This will bring you to the page that lists the most popular operating systems. Raspbian is the official OS of the Raspberry Pi and what OSMC is based on. Noobs is worth looking at for your next project. It isn't an OS itself, but it gives you the ability to choose from a list of operating systems and install them with a single click. If you want to see what the Raspberry Pi is capable of, start with Noobs. Under these options, you will have a list of third-party operating systems. The names may sound familiar at this point, as we have mentioned most of them already. This list is where you will find OSMC. Click on its link to go to their website. We could have gone straight to this website to download OSMC, but this allowed you to see what other options are available and which is the easiest place to find them. OSMC gives a few different ways to install the OS onto different types of computers. If you want to use their automated way of installing OSMC to an SD card for the Raspberry Pi, you are welcome to do so; just follow their instructions for the operation system that you are using on your main computer. For learning purposes, I am going to explain the method of downloading a disk image and doing it ourselves, as this is how most operating systems are installed to the Raspberry Pi. Under the heading named Get Started, where you can choose the automated installation methods, there is a line just under it that allows you to download disk images. This is what we are going to do. Click on that link. Now, we are presented with choices, namely Raspberry Pi 1 and Raspberry Pi 2. The Raspberry Pi 1 refers to any of the single-core Raspberry Pi devices while the Raspberry Pi 2 refers to the newest Pi with a quad-core processor and more RAM. Click on the link under whichever heading applies for the type of Pi that you will be using and select the newest release option that is available. Verifying the download While OSMC is downloading, let's take a minute to understand what the MD5 Checksum is. An MD5 Checksum is used to verify a file's integrity. The number that you see beside the download is the Checksum that was created when the file that you are downloading was created. After the image has finished downloading, we will check the MD5 Checksum of the file on your computer as well. These numbers should be identical. If they are not, it indicates that the image is corrupt and you will need to download it again. From a security standpoint, a checksum can also be used to ensure that data hasn't been tampered with in the time span between when it was created and when it was given to you. This could indicate malicious software or a data breech. Now that OSMC has been downloaded, we can verify its integrity. In Linux, this is easy. Open a terminal and navigate to the Downloads folder or wherever you downloaded the file. Now type in the following command: [md5sum name-of-file] The output that this gives should match the MD5 Checksum that was beside the file that you clicked on to download. If it doesn't, delete the file and try doing this again. To verify the file integrity using Windows, you will need to install a program that can do this. Search online for MD5 checksum Windows, and you will see that Microsoft has a program that can be downloaded from their website. Once you download and install it, it will work in a fashion that's similar to the Linux method, where you use the Windows command prompt. It comes with a readme file to explain how to use it. If you are unable to find a program to verify the checksum, do not worry. This step isn't required, but it helps you troubleshoot whether the Raspberry Pi will not boot after you install the OS onto the SD card. Installing OSMC - for Windows users For Windows, you need to install two more applications to successfully write OSMC to an SD card. Because the OSMC file that you downloaded is compressed using gzip, you need a program that can unzip it. The recommended program for all of your compression needs in Windows is WinRAR. It is free and can be found at www.filehippo.com along with the next program that you will need. After you unzip the OSMC file, you will need a program that can write (burn) it to your SD card. There are many options to choose from, and these options can be found under the CD/DVD option of Categories on the homepage. ImgBurn and DeepBurner appear to be the most popular image burning software at the time of writing this article. Preparing everything Ensure that you have the appropriate type of SD card for the Raspberry Pi that you own. The original Raspberry Pi Model A and B use full-size SD cards. Thus, if you purchased a miniSD by mistake, do not worry. The miniSD probably came with an adapter that turns it into a full-size SD. If it did not, they are easy to acquire. You will need to insert your SD card into your computer so that you can write the operating system on it. If your computer has an in-built SD card reader, then that is ideal. If it does not, there are card readers available that plug in through your USB port and which can accomplish this goal as well. Once you have inserted your SD card into your computer using either method, ensure that you have taken all the information off the card that you want to keep. Anything that's currently on the card will be erased in the following steps! Install WinRAR and your image burning program if you have not already done so. When it is , you should be able to right-click on the OSMC file that you downloaded and select the option to uncompress or extract the files in a gzip file. Burn It! Now that we have an OSMC file that ends with .img, we can open the image burning program. Each program works differently, but you want to set the destination (where the image will be burned) as your SD card and the source (or input file) as the OSMC image. Once these settings are correct, click on BurnISO to begin burning the image. Now that this is done, congratulations! Installing OSMC - for Linux users As you have seen several times already, Linux comes with nearly everything that you need already installed. The software used to install the operating system to the SD card is no different. Ensure that you have the appropriate type of the SD card for the Raspberry Pi that you own. The original Raspberry Pi Model A and B use full-size SD cards. Therefore, if you purchased a miniSD by mistake, do not worry. The miniSD probably came with an adapter that turns it into a full-size SD. If it did not, they are easy to acquire. Preparing the SD card You will need to insert your SD card into your computer so that you can write the operating system on it. If your computer has an in-built SD card reader, then that is ideal. If it does not, there are card readers available that plug in through your USB port that can accomplish this goal as well. Once you have inserted your SD card into your computer using either method, ensure that you have taken all information that you want to keep off the card. Anything that's currently on the card will be erased in the next step! If the SD card was already formatted with a filesystem, it probably automounted itself somewhere so that you can access it. We need to unmount it so that the system is not actually using it, but it is still inserted into the computer. To do this, type the following command into your command line: lsblk This command lists the block devices that are currently on your computer. In other words, it shows the storage devices and the partitions on them. Sda is most likely your hard drive; you can tell by the size of the device in the right columns. Sda1 and sda2 are the partitions on the sda device. Look for your device by its size. If you have a 4 GB SD card, then you will see something like this: NAME                    MAJ:MIN RM   SIZE    RO TYPE  MOUNTPOINT sda                          8:0          0     238.5G  0   disk  ├─sda1                      8:1          0     476M  0   part    /boot └─sda2                       8:2          0      186.3G  0   part    / sdb                          8:16        1      3.8G  0   disk  ├─sdb1                       8:17        1      2.5G   0  part   └─sdb2                       8:18        1      1.3G   0  part    /run/media/username/mountpoint In this case, my SD card is sdb and the second partition is mounted. To unmount this, we are going to issue the following command in the terminal again: sudo umount /dev/sdb* It will then ask you for your sudo (administrator) password and then unmount all the partitions for the sdb device. In this case, you could have replaced the sdb* with the partition number (sdb2) to be more specific if you only wanted to unmount one partition and not the entire device. In this example, we will erase everything on the device so that we unmount everything. Now, we can write the operating system to the SD card. Burn It! The process of installing an OSMC to the SD card is called burning an image. The process of burning an image is done with a program called dd, and it is done via the terminal. dd is a very useful tool that's used to copy disks and partitions to other disks or partitions or to images and vice versa. In this instance, we will take an image and copy it to a disk. In the terminal, navigate to the directory where you downloaded OSMC. The file that you downloaded is compressed using gzip. Before we can burn it to the disk, we need to unzip it. To do so, type in the following command: gunzip name-of-file.img.gz This will leave you with a new file that has the same name but with the .gz file no longer at the end. This file is also much bigger than the gzipped version. This .img (image) file is what we will burn to the SD card. In the previous step, we found out what device our SD card was listed under (it was sdb in the preceding example) and unmounted it. Now, we are going to use the following command to burn the image: sudo dd if=name-of-file.img of=/dev/sdb  (change /dev/sdb to whatever it is on your computer)  And that's it! This will take several minutes to complete and the terminal will look like it froze, but this is because it is working. When it is done, the prompt will come back and you can remove the SD card: Summary If your computer already uses Linux, these steps will be a little bit faster because you already have the needed software. For Windows users, hunting for the right software and installing it will take some time. Just have patience and know that the exciting part is just around the corner. Now that we have downloaded OSMC, verified the download, prepared the SD card, and burned OSMC on it, the hardest part is over. Resources for Article:   Further resources on this subject: Raspberry Pi LED Blueprints [article] Raspberry Pi and 1-Wire [article] Raspberry Pi Gaming Operating Systems [article]
Read more
  • 0
  • 0
  • 14553

article-image-building-cloud-spy-camera-and-creating-gps-tracker
Packt
30 Oct 2015
4 min read
Save for later

Building a Cloud Spy Camera and Creating a GPS Tracker

Packt
30 Oct 2015
4 min read
In this article by Marco Schwartz author of the book Arduino for Secret Agents, we will build a GPS location tracker and use a spy camera for live streaming. Building a GPS location tracker It's now time to build a real GPS location tracker. For this project, we'll get the location just as before, using the GPS if available, and the GPRS location otherwise. However here, we are going to use the GPRS capabilities of the shield to send the latitude and longitude data to Dweet.io, which is a service we already used before. Then, we'll plot this data in Google Maps, allowing you to follow your device in real-time from anywhere in the world. (For more resources related to this topic, see here.) You need to define a name for the Thing that will contain the GPS location data: String dweetThing = "mysecretgpstracker"; Then, after getting the current location, we prepare the data to be sent to Dweet.io: uint16_t statuscode; int16_t length; char url[80]; String request = "www.dweet.io/dweet/for/" + dweetThing + "?latitude=" + latitude + "andlongitude=" + longitude; request.toCharArray(url, request.length()); After that, we actually send the data to Dweet.io: if (!fona.HTTP_GET_start(url, andstatuscode, (uint16_t *)andlength)) { Serial.println("Failed!"); } while (length > 0) { while (fona.available()) { char c = fona.read(); // Serial.write is too slow, we'll write directly to Serial register! #if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) loop_until_bit_is_set(UCSR0A, UDRE0); /* Wait until data register empty. */ UDR0 = c; #else Serial.write(c); #endif length--; } } fona.HTTP_GET_end(); Now, before testing the project, we are going to prepare our dashboard that will host the Google Maps widget. We are going to use Freeboard.io for this purpose. If you don't have an account yet, go to http://freeboard.io/. Create a new dashboard, and also a new datasource. Insert the name of your Thing inside the THING NAME field: Then, create a new Pane with a Google Maps widget. Link this widget to the latitude and longitude of your Location datasource: It's now time to test the project. Make sure to grab all the code, for example from the GitHub repository of the book. Also don't forget to modify the Thing name, as well as your GPRS settings. Then, upload the sketch to the board, and open the Serial monitor. This is what you should see: The most important line is the last one, which confirms that data has been sent to Dweet.io and has been stored there. Now, simply go back to the dashboard you just created: you can now see that the location on the map has been updated: Note that this map is also updated in real-time, as new measurements arrive from the board. You can also modify the delay between two updates of the position of the tracker, by changing the delay() function in the sketch. Congratulations, you just built your own GPS tracking device! Live streaming from the spy camera We are now going to use the camera to stream live video in a web browser. This stream will be accessible from any device connected to the same WiFi network as the Yun. To start with this project, log into your Yun using the following command (by changing the name of the board with the name of your Yun): ssh root@arduinoyun.local Then, type: mjpg_streamer -i "input_uvc.so -d /dev/video0 -r 640x480 -f 25" -o "output_http.so -p 8080 -w /www/webcam" & This will start the streaming from your Yun. You can now simply go the URL of your Yun, and add ':8080' at the end. For example, http://arduinoyun.local:8080. You should arrive on the streaming interface: You can now stream this video live to your mobile phone or any other device within the same network. It's the perfect project to spy in a room while you are sitting outside for example. Summary In this article, we built a device that allows us to track the GPS location of any object it is attached to and we built a spy camera project that can send pictures in the cloud whenever motion is detected Resources for Article: Further resources on this subject: Getting Started with Arduino [article] Arduino Development [article] Prototyping Arduino Projects using Python [article]
Read more
  • 0
  • 0
  • 14544

article-image-getting-started-arduino
Packt
20 Aug 2015
12 min read
Save for later

Getting Started with Arduino

Packt
20 Aug 2015
12 min read
Hello there! If you are reading this article by Adith Jagadish Boloor, the author of the book Arduino By Example, it means that you've taken your first step to make fascinating projects using Arduinos. This article will teach you how to set up an Arduino and write your first Arduino code. You'll be in good hands whilst you learn some of the basics aspects of coding using the Arduino platform, which will allow you to build almost anything from robots, home automation systems, touch interfaces, sensory systems, and so on. Firstly, you will learn how to install the powerful Arduino software, then set that up, followed by hooking up your Arduino board and, after making sure that everything is fine and well, you will write your first code! Once you are comfortable with that, we will modify the code to make it do something more, which is often what Arduino coders do. We do not just create completely new programs but often we build on what has been done before, to make it better and more suited to our objectives. The contents of this article are divided into the following topics: Prerequisites Setting up Hello World Summary (For more resources related to this topic, see here.) Prerequisites Well, you can't jump onto a horse without putting on a saddle first, can you? This section will cover what components you need to start coding on an Arduino. These can be purchased from your favorite electrical hobby store or simply ordered online. Materials needed 1x Arduino compatible board such as an Arduino UNO 1x USB cable A to B 2x LEDs 2x 330Ω resistors A mini breadboard 5x male-to-male jumper wires Note The UNO can be substituted for any other Arduino board (Mega, Leonardo and so on) for most of the projects. These boards have their own extra features. For example, the Mega has almost double the number of I/O (input/output) pins for added functionality. The Leonardo has a feature which enables it to control the keyboard and mouse of your computer. Setting up This topic involves downloading the Arduino software, installing the drivers, hooking up the Arduino, and understanding the IDE menus. Downloading and installing the software Arduino is open source-oriented. This means all the software is free to use non-commercially. Go to http://arduino.cc/en/Main/Software and download the latest version for your specific operating system. If you are using a Mac, make sure you choose the right Java version, and similarly on Linux, download the 32 or 64 bit version according to your computer. Arduino download page Windows Once you have downloaded the setup file, run it. If it asks for administrator privileges, allow it. Install it in its default location (C:Program FilesArduino or C:Program Files (x86)Arduino). Create a new folder in this location and rename it My Codes or something where you can conveniently store all your programs. Mac OS X Once the ZIP file has finished downloading, double-click to expand it. Copy the Arduino application to the Applications folder. You won't have to install additional drivers to make the Arduino work since we will be using only the Arduino UNO and MEGA. You're all set. If you didn't get anything to work, go to https://www.arduino.cc/en/guide/macOSX. Linux (Ubuntu 12.04 and above) Once you have downloaded the latest version of Arduino from the above link, install the compiler and the library packages using the following command: sudo apt-get update && sudo apt-get install arduino arduino-core If you are using a different version of Linux, this official Arduino walkthrough at http://playground.arduino.cc/Learning/Linux will help you out. Connecting the Arduino It is time to hook up the Arduino board. Plug in the respective USB terminals to the USB cable and the tiny LEDs on the Arduino should begin to flash. Arduino UNO plugged in If the LEDs didn't turn on, ensure that the USB port on your computer is functioning and make sure the cable isn't faulty. If it still does not light up, there is something wrong with your board and you should get it checked. Windows The computer will begin to install the drivers for the Arduino by itself. If it does not succeed, do the following: Open Device Manager Click on Ports (COM & LPT) Right-click on Unknown Device and select Properties Click install driver and choose browse files on the computer Choose the drivers folder in the previously installed Arduino folder The computer should say that your Arduino UNO (USB) has been successfully installed on COM port (xx). Here xx refers to a single or double digit number. If this message didn't pop up, go back to the Device Manager and check if it has been installed under COM ports. Arduino UNO COM port Remember the (COMxx) port that the Arduino UNO was installed on. Mac OS X If you are using Mac OS, a dialog box will tell you that a new network interface has been detected. Click Network Preferences and select Apply. Even though the Arduino board may show up as Not Configured, it should be working perfectly. Linux You are ready to go. The serial ports for Mac OS and Linux will be obtained once the Arduino software has been launched. The Arduino IDE The Arduino software, commonly referred to as the Arduino IDE (integrated development environment). The IDE for Windows, Mac OS and Linux is almost identical. Now let's look at some of the highlights of this software. Arduino IDE This is the window that you will see when you first start up the IDE. The tick/check mark verifies that your code's syntax is correct. The arrow pointing right is the button that uploads the code to the board and checks if the code has been changed since the last upload or verification. The magnifying glass is the Serial Monitor. This is used to input text or output debugging statements or sensor values. Examples of Arduino Every Arduino programmer starts by using one of these examples. Even after mastering Arduino, one would still return here to find examples to use. Arduino tools The screenshot shows the tools that are available in the Arduino IDE. The Board option opens up all the different boards that the software supports. Hello World The easiest way to start working with Arduinos begins here. You'll learn how to output print statements. The Arduino uses a Serial Monitor for displaying information such as print statements, sensor data and the like. This is a very powerful tool for debugging long codes. Now for your first code! Writing a simple print statement Open up the Arduino IDE and copy the following code into a new sketch. void setup() { Serial.begin(9600); Serial.println("Hello World!"); } void loop() { } Open Tools | Board and choose Arduino UNO, as shown in the following screenshot: Open Tools | Port and choose the appropriate port (remember the previous COM xx number? select that), as shown in the following screenshot. For Mac and Linux users, once you have connected the Arduino board, going to Tools | Serial Port will give you a list of ports. The Arduino is typically something like /dev/tty.usbmodem12345 where 12345 will be different. Selecting port Finally, hit the upload button. If everything is fine, the LEDs on the Arduino should start flickering as the code is uploaded to the Arduino. The code will then have uploaded to the Arduino. To see what you have accomplished, click on the Serial Monitor button on the right side and switch the baud rate on the Serial Monitor window to 9600. You should see your message Hello World! waiting for you there. LED blink That wasn't too bad but it isn't cool enough. This article will enlighten you, literally. Open up a new sketch. Go to File | Examples | Basics | Blink. Blink example Before we upload the code, we need to make sure of one more thing. Remember the LED that we spoke about in the prerequisites? Let’s learn a bit about it before plugging it in. LED basics We will make use of it now. Plug in the LED such that the longer leg goes into pin 13 and the shorter leg goes into the GND pin as in the following images: LED blink setup (Fritzing) This diagram is made using software called Fritzing. This software will be used in future projects to make it cleaner to see and easier to understand as compared to a photograph with all the wires running around. Fritzing is opensource software which you can learn more about at www.fritzing.org. Arduino LED setup Upload the code. Your LED will start blinking, as shown in the following image. Lit up LED Isn't it just fascinating? You just programmed your first hardware. There's no stopping you now. Let's see what the code does and what happens when you change it. This is the blink example code that you just used. /* Blink Turns on an LED on for one second, then off for one second, repeatedly. This example code is in the public domain. */ //Pin 13 has an LED connected on most Arduino boards. //give it a name: int led = 13; //the setup routine runs once when you press reset: void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT); } //the loop routine runs over and over again forever: void loop() { digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(led, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second } We have three major sections in this code. int led = 13; This line simply stores the numerical PIN value onto a variable called led. void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT); } This is the setup function. Here is where you tell the Arduino what is connected on each used pin. In this case, we tell the Arduino that there is an output device (LED) on pin 13. void loop() { digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(led, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second } This is the loop function. It tells the Arduino to keep repeating whatever is inside it in a sequence. The digitalWrite command is like a switch that can be turned ON (HIGH) or OFF (LOW). The delay(1000) function simply makes the Arduino wait for a second before heading to the next line. If you wanted to add another LED, you'd need some additional tools and some changes to the code. This is the setup that you want to create. Connecting two LEDs to an Arduino If this is your first time using a breadboard, take some time to make sure all the connections are in the right place. The colors of the wires don't matter. However, GND is denoted using a black wire and VCC/5V/PWR is denoted with a red wire. The two resistors, each connected in series (acting like a connecting wire itself) with the LEDs limit the current flowing to the LEDs, making sure they don't blow up. As before, create a new sketch and paste in the following code: /* Double Blink Turns on and off two LEDs alternatively for one second each repeatedly. This example code is in the public domain. */ int led1 = 12; int led2 = 13; void setup() { // initialize the digital pins as an output. pinMode(led1, OUTPUT); pinMode(led2, OUTPUT); // turn off LEDs before loop begins digitalWrite(led1, LOW); // turn the LED off (LOW is the voltage level) digitalWrite(led2, LOW); // turn the LED off (LOW is the voltage level) } //the loop routine runs over and over again forever: void loop() { digitalWrite(led1, HIGH); // turn the LED on (HIGH is the voltage level) digitalWrite(led2, LOW); // turn the LED off (LOW is the voltage level) delay(1000); // wait for a second digitalWrite(led1, LOW); // turn the LED off (LOW is the voltage level) digitalWrite(led2, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second } Once again, make sure the connections are made properly, especially the positive LEDs (longer to OUTPUT PIN) and the negative (shorter to GND) terminals. Save the code into DoubleBlink.ino. Now, if you make any changes to it, you can always retrieve it. Upload the code. 3… 2… 1… And there you have it, an alternating LED blink cycle created purely with the Arduino. You can try changing the delay to see its effects. For the sake of completeness, I would like to mention that you could take this mini-project further by using a battery to power the system and decorate your desk/room/house. Summary You have now completed the basic introduction to the world of Arduino. In short, you have successfully set up your Arduino and have written your first code. You also learned how to modify the existing code to create something new, making it more suitable for your specific needs. This methodology will be applied repeatedly while programming, because almost all the code available is open source and it saves time and energy. Resources for Article: Further resources on this subject: Central Air and Heating Thermostat [article] Christmas Light Sequencer [article] Webcam and Video Wizardry [article]
Read more
  • 0
  • 0
  • 14356
article-image-python-driving-hardware
Packt
06 Oct 2016
7 min read
Save for later

Python for Driving Hardware

Packt
06 Oct 2016
7 min read
In this article by Tim Cox, author of the book Raspberry Pi Cookbook for Python Programmers - Second Edition, we will see how to control Raspberry Pi with the help of your own buttons and switches. (For more resources related to this topic, see here.) Responding to a button Many applications using the Raspberry Pi require that actions are activated without a keyboard and screen attached to it. The GPIO pins provide an excellent way for the Raspberry Pi to be controlled by your own buttons and switches without a mouse/keyboard and screen. Getting ready You will need the following equipment: 2 x DuPont female to male patch wires Mini breadboard (170 tie points) or a larger one Push button switch (momentary close) or a wire connection to make/break the circuit Breadboarding wire (solid core) 1k ohm resistor The switches are as seen in the following diagram: The push button switch and other types of switches The switches used in the following examples are single pole single throw (SPST) momentary close push button switches. Single pole (SP) means that there is one set of contacts that makes a connection. In the case of the push switch used here, the legs on each side are connected together with a single pole switch in the middle. A double pole (DP) switch acts just like a single pole switch, except that the two sides are separated electrically, allowing you to switch two separate components on/off at the same time. Single throw (ST) means the switch will make a connection with just one position; the other side will be left open. Double throw (DT) means both positions of the switch will connect to different parts. Momentary close means that the button will close the switch when pressed and automatically open it when released. A latched push button switch will remain closed until it is pressed again. The layout of the button circuit We will use sound in this example, so you will also need speakers or headphones attached to audio socket of the Raspberry Pi. You will need to install a program called flite using the following command, which will let us make the Raspberry Pi talk: sudo apt-get install flite After it has been installed, you can test it with the following command: sudo flite -t "hello I can talk" If it is a little too quiet (or too loud), you can adjust the volume (0-100 percent) using the following command: amixer set PCM 100% How to do it… Create the btntest.py script as follows: #!/usr/bin/python3 #btntest.py import time import os import RPi.GPIO as GPIO #HARDWARE SETUP # GPIO # 2[==X==1=======]26[=======]40 # 1[=============]25[=======]39 #Button Config BTN = 12 def gpio_setup(): #Setup the wiring GPIO.setmode(GPIO.BOARD) #Setup Ports GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP) def main(): gpio_setup() count=0 btn_closed = True while True: btn_val = GPIO.input(BTN) if btn_val and btn_closed: print("OPEN") btn_closed=False elif btn_val==False and btn_closed==False: count+=1 print("CLOSE %s" % count) os.system("flite -t '%s'" % count) btn_closed=True time.sleep(0.1) try: main() finally: GPIO.cleanup() print("Closed Everything. END") #End How it works… We set up the GPIO pin as required, but this time as an input, and we also enable the internal pull-up resistor (refer to the Pull-up and pull-down resistor circuits subsection in the There's more… section of this recipe for more information) using the following code: GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP) After the GPIO pin is set up, we create a loop that will continuously check the state of BTN using GPIO.input(). If the value returned is false, the pin has been connected to 0V (ground) through the switch, and we will use flite to count out loud for us each time the button is pressed. Since we have called the main function from within a try/finally condition, it will still call GPIO.cleanup() even if we close the program using Ctrl + Z. We use a short delay in the loop; this ensures that any noise from the contacts on the switch is ignored. This is because when we press the button, there isn't always perfect contact as we press or release it, and it may produce several triggers if we press it again too quickly. This is known as software debouncing; we ignore the bounce in the signal here. There's more… The Raspberry Pi GPIO pins must be used with care; voltages used for inputs should be within specific ranges, and any current drawn from them should be minimized using protective resistors. Safe voltages We must ensure that we only connect inputs that are between 0V (Ground) and 3.3V. Some processors use voltages between 0V and 5V, so extra components are required to interface safely with them. Never connect an input or component that uses 5V unless you are certain it is safe, or you will damage the GPIO ports of the Raspberry Pi. Pull-up and pull-down resistor circuits The previous code sets the GPIO pins to use an internal pull-up resistor. Without a pull-up resistor (or pull-down resistor) on the GPIO pin, the voltage is free to float somewhere between 3.3V and 0V, and the actual logical state remains undetermined (sometimes 1 and sometimes 0). Raspberry Pi's internal pull-up resistors are 50k ohm - 65k ohm and the pull-down resistors are 50k ohm - 65k ohm. External pull-up/pull-down resistors are often used in GPIO circuits (as shown in the following diagram), typically using 10k ohm or larger for similar reasons (giving a very small current draw when not active). A pull-up resistor allows a small amount of current to flow through the GPIO pin and will provide a high voltage when the switch isn't pressed. When the switch is pressed, the small current is replaced by the larger one flowing to 0V, so we get a low voltage on the GPIO pin instead. The switch is active low and logic 0 when pressed. It works as shown in the following diagram: A pull-up resistor circuit Pull-down resistors work in the same way, except the switch is active high (the GPIO pin is logic 1 when pressed). It works as shown in the following diagram: A pull-down resistor circuit Protection resistors In addition to the switch, the circuit includes a resistor in series with the switch to protect the GPIO pin as shown in the following diagram: A GPIO protective current-limiting resistor The purpose of the protection resistor is to protect the GPIO pin if it is accidentally set as an output rather than an input. Imagine, for instance, that we have our switch connected between the GPIO and ground. Now the GPIO pin is set as an output and switched on (driving it to 3.3V) as soon as we press the switch; without a resistor present, the GPIO pin will directly be connected to 0V. The GPIO will still try to drive it to 3.3V; this would cause the GPIO pin to burn out (since it would use too much current to drive the pin to the high state). If we use a 1k ohm resistor here, the pin is able to be driven high using an acceptable amount of current (I = V/R = 3.3/1k = 3.3mA). Resources for Article: Further resources on this subject: Raspberry Pi LED Blueprints [article] Raspberry Pi and 1-Wire [article] Learning BeagleBone Python Programming [article]
Read more
  • 0
  • 0
  • 14300

article-image-introduction-device-management
Packt
20 Feb 2018
10 min read
Save for later

Introduction with Device Management

Packt
20 Feb 2018
10 min read
In this article by Yatish Patil, the author of the book Microsoft Azure IOT Development Cookbook, we will look at device management using different techniques with Azure IoT Hub. We will see the following recipes: Device registry operations Device twins Device direct methods Device jobs (For more resources related to this topic, see here.) Azure IoT Hub has the capabilities that can be used by a developer to build a robust device management. There could be different use cases or scenarios across multiple industries but these device management capabilities, their patterns and the SDK code remains same, saving the significant time in developing and managing as well as maintaining the millions of devices. Device management will be the central part of any IoT solution. The IoT solution is going to help the users to manage the devices remotely, take actions from the cloud based application like disable, update data, run any command, and firmware update. In this article, we are going to perform all these tasks for device management and will start with creating the device. Device registry operations This sample application is focused on device registry operations and how it works, we will create a console application as our first IoT solution and look at the various device management techniques. Getting ready Let’s create a console application to start with IoT: Create a new project in Visual Studio: Create a Console Application Add IoT Hub connectivity extension in Visual Studio: Add the extension for IoT Hub connectivity Now right click on the Solution and go to Add a Connected Services. Select Azure IoT Hub and click Add. Now select Azure subscription and the IoT Hub created: Select IoT Hub for our application Next it will ask you to add device or you can skip this step and click Complete the configuration. How to do it... Create device identity: initialize the Azure IoT Hub registry connection: registryManager = RegistryManager.CreateFromConnectionString(connectionString); Device device = new Device(); try { device = await registryManager.AddDeviceAsync(new Device(deviceId)); success = true; } catch (DeviceAlreadyExistsException) { success = false; } Retrieve device identity by ID: Device device = new Device(); try { device = await registryManager.GetDeviceAsync(deviceId); } catch (DeviceAlreadyExistsException) { return device; } Delete device identity: Device device = new Device(); try { device = GetDevice(deviceId); await registryManager.RemoveDeviceAsync(device); success = true; } catch (Exception ex) { success = false; } List up to 1000 identities: try { var devicelist = registryManager.GetDevicesAsync(1000); return devicelist.Result; } catch (Exception ex) { // Export all identities to Azure blob storage: var blobClient = storageAccount.CreateCloudBlobClient(); string Containername = "iothubdevices"; //Get a reference to a container var container = blobClient.GetContainerReference(Containername); container.CreateIfNotExists(); //Generate a SAS token var storageUri = GetContainerSasUri(container); await registryManager.ExportDevicesAsync(storageUri, "devices1.txt", false); } Import all identities to Azure blob storage: await registryManager.ImportDevicesAsync(storageUri, OutputStorageUri); How it works... Let’s now understand the steps we performed. We initiated by creating a console application and configured it for the Azure IoT Hub solution. The idea behind this is to see the simple operation for device management. In this article, we started with simple operation for provision of the device by adding it to IoT Hub. We need to create connection to the IoT Hub followed by the created object of registry manager which is a part of devices namespace. Once we are connected we can perform operations like, add device, delete device, get device, these methods are asynchronous ones. IoT Hub also provides a way where in it connects with Azure storage blob for bulk operations like export all devices or import all devices, this works on JSON format only, the entire set of IoT devices gets exported in this way. There's more... Device identities are represented as JSON documents. It consists of properties like: deviceId: It represents the unique identification or the IoT device. ETag: A string representing a weak ETag for the device identity. symkey: A composite object containing a primary and a secondary key, stored in base64 format. status: If enabled, the device can connect. If disabled, this device cannot access any device-facing Endpoint. statusReason: A string that can be used to store the reason for the status changes. connectionState: It can be connected or disconnected. Device twins First we need to understand what device twin is and what is the purpose where we can use the device twin in any IoT solution. The device twin is a JSON formatted document that describes the metadata, properties of any device created within IoT Hub. It describes the individual device specific information. The device twin is made up of: tags, desired properties, and the reported properties. The operation that can be done by a IoT solution are basically update this the data, query for any IoT device. Tags hold the device metadata that can be accessed from IoT solution only. Desired properties are set from IoT solution and can be accessed on the device. Whereas the reported properties are set on the device and retrieved at IoT solution end. How to do it... Store device metadata: var patch = new { properties = new { desired = new { deviceConfig = new { configId = Guid.NewGuid().ToString(), DeviceOwner = "yatish", latitude = "17.5122560", longitude = "70.7760470" } }, reported = new { deviceConfig = new { configId = Guid.NewGuid().ToString(), DeviceOwner = "yatish", latitude = "17.5122560", longitude = "70.7760470" } } }, tags = new { location = new { region = "US", plant = "Redmond43" } } }; await registryManager.UpdateTwinAsync(deviceTwin.DeviceId, JsonConvert.SerializeObject(patch), deviceTwin.ETag); Query device metadata: var query = registryManager.CreateQuery("SELECT * FROM devices WHERE deviceId = '" + deviceTwin.DeviceId + "'"); Report current state of device: var results = await query.GetNextAsTwinAsync(); How it works... In this sample, we retrieved the current information of the device twin and updated the desired properties, which will be accessible on the device side. In the code, we will set the co-ordinates of the device with latitude and longitude values, also the device owner name and so on. This same value will be accessible on the device side. In the similar manner, we can set some properties on the device side which will be a part of the reported properties. While using the device twin we must always consider: Tags can be set, read, and accessed only by backend . Reported properties are set by device and can be read by backend. Desired properties are set by backend and can be read by backend. Use version and last updated properties to detect updates when necessary. Each device twin size is limited to 8 KB by default per device by IoT Hub There's more... Device twin metadata always maintains the last updated time stamp for any modifications. This is UTC time stamp maintained in the metadata. Device twin format is JSON format in which the tags, desired, and reported properties are stored, here is sample JSON with different nodes showing how it is stored: "tags": { "$etag": "1234321", "location": { "country": "India" "city": "Mumbai", "zipCode": "400001" } }, "properties": { "desired": { "latitude": 18.75, "longitude": -75.75, "status": 1, "$version": 4 }, "reported": { "latitude": 18.75, "longitude": -75.75, "status": 1, "$version": 4 } } Device direct methods Azure IoT Hub provides a fully managed bi-directional communication between the IoT solution on the backend and the IoT devices in the fields. When there is need for an immediate communication result, a direct method best suites the scenarios. Lets take example in home automation system, one needs to control the AC temperature or on/off the faucet showers. Invoke method from application: public async Task<CloudToDeviceMethodResult> InvokeDirectMethodOnDevice(string deviceId, ServiceClient serviceClient) { var methodInvocation = new CloudToDeviceMethod("WriteToMessage") { ResponseTimeout = TimeSpan.FromSeconds(300) }; methodInvocation.SetPayloadJson("'1234567890'"); var response = await serviceClient.InvokeDeviceMethodAsync(deviceId, methodInvocation); return response; } Method execution on device: deviceClient = DeviceClient.CreateFromConnectionString("", TransportType.Mqtt); deviceClient.SetMethodHandlerAsync("WriteToMessage", new DeviceSimulator().WriteToMessage, null).Wait(); deviceClient.SetMethodHandlerAsync("GetDeviceName", new DeviceSimulator().GetDeviceName, new DeviceData("DeviceClientMethodMqttSample")).Wait(); How it works... Direct method works on request-response interaction with the IoT device and backend solution. It works on timeout basis if no reply within that, it fails. These synchronous requests have by default 30 seconds of timeout, one can modify the timeout and increase up to 3600 depending on the IoT scenarios they have.  The device needs to connect using the MQTT protocol whereas the backend solution can be using HTTP. The JSON data size direct method can work up to 8 KB Device jobs In a typical scenario, device administrator or operators are required to manage the devices in bulk. We look at the device twin which maintains the properties and tags. Conceptually the job is nothing but a wrapper on the possible actions which can be done in bulk. Suppose we have a scenario in which we need to update the properties for multiple devices, in that case one can schedule the job and track the progress of that job. I would like to set the frequency to send the data at every 1 hour instead of every 30 min for 1000 IoT devices. Another example could be to reboot the multiple devices at the same time. Device administrators can perform device registration in bulk using the export and import methods. How to do it... Job to update twin properties. var twin = new Twin(); twin.Properties.Desired["HighTemperature"] = "44"; twin.Properties.Desired["City"] = "Mumbai"; twin.ETag = "*"; return await jobClient.ScheduleTwinUpdateAsync(jobId, "deviceId='"+ deviceId + "'", twin, DateTime.Now, 10); Job status. var twin = new Twin(); twin.Properties.Desired["HighTemperature"] = "44"; twin.Properties.Desired["City"] = "Mumbai"; twin.ETag = "*"; return await jobClient.ScheduleTwinUpdateAsync(jobId, "deviceId='"+ deviceId + "'", twin, DateTime.Now, 10); How it works... In this example, we looked at a job updating the device twin information and we can follow up the job for its status to find out if the job was completed or failed. In this case, instead of having single API calls, a job can be created to execute on multiple IoT devices. The job client object provides the jobs available with the IoT Hub using the connection to it. Once we locate the job using its unique ID we can retrieve the status for it. The code snippet mentioned in the How to do it... preceding recipe, uses the temperature properties and updates the data. The job is scheduled to start execution immediately with 10 seconds of execution timeout set. There's more... For a job, the life cycle begins with initiation from the IoT solution. If any job is in execution, we can query to it and see the status of execution. Another most common scenario where this could be useful is the firmware update, reboot, configuration updates, and so on, apart from the device property read or write. Each device job has properties that helps us working with them. The useful properties are start and end date time, status, and lastly device job statistics which gives the job execution statistics. Summary We have learned the device management using different techniques with Azure IoT Hub in detail. We have explained, how the IoT solution is going to help the users to manage the devices remotely, take actions from the cloud based application like disable, update data, run any command, and firmware update. We also performed different tasks for device management. Resources for Article: Further resources on this subject: Device Management in Zenoss Core Network and System Monitoring: Part 1 [article] Device Management in Zenoss Core Network and System Monitoring: Part 2 [article] Managing Network Devices [article]
Read more
  • 0
  • 0
  • 13929

article-image-introducing-beagleboard
Packt
29 Oct 2013
9 min read
Save for later

Introducing BeagleBoard

Packt
29 Oct 2013
9 min read
(For more resources related to this topic, see here.) We'll first have a quick overview of the features of BeagleBoard (with focus on the latest xM version) —an open source hardware platform, borne for audio, video, and digital signal processing. Then we will introduce the concept of rapid prototyping and explain what we can do with the BeagleBoard support tools from MATLAB® and Simulink® by MathWorks®. Finally, this article ends with a summary. Different from most approaches that involve coding and compiling at a Linux PC and require intensive manual configuration in command-line manner, the rapid prototyping approach presented in this article is a Windows-based approach that features a Windows PC for embedded software development through user-friendly graphic interaction and relieves the developer from intensive coding so that you can concentrate on your application and algorithms and have the BeagleBoard run your inspiration. First of all, let's begin with a quick overview of this article. A quick overview of the BeagleBoard's functionality We can create a number of exciting projects to demonstrate how to build a prototype of an embedded audio, video, and digital signal processing system rapidly without intensive programming and coding. The main projects include: Installing Linux for BeagleBoard from a Windows PC Developing C/C++ with Eclipse on a Windows PC Automatic embedded code generation for BeagleBoard Serial communication and digital I/O application: Infrared motion detection Audio application: voice recognition Video application: motion detection These projects provide the workflow of building an embedded system. With the help of various online documents you can learn about setting up the development environment, writing software at a host PC running Microsoft Windows, and compiling the code for standalone ARM-executables at the BeagleBoard running Linux. Then you can learn the skills of rapid prototyping embedded audio and video systems via the BeagleBoard support tools from Simulink by MathWorks. The main features of these techniques include: Open source hardware A Windows-based friendly development environment Rapid prototyping and easy learning without intensive coding These features will save you from intensive coding and will also relieve the pressure on you to build an embedded audio/video processing system without learning the complicated embedded Linux. The rapid prototyping techniques presented allow you to concentrate on your brilliant concept and algorithm design, rather than being distracted by the complicated embedded system and low-level manual programming. This is beneficial for students and academics who are primarily interested in the development of audio/video processing algorithms, and want to build an embedded prototype for proof-of-concept quickly. BeagleBoard-xM BeagleBoard, the brainchild of a small group of Texas Instruments (TI) engineers and volunteers, is a pocket-sized, low-cost, fan-less, single-board computer containing TI Open Multimedia Application Platform 3 (OMAP3) System on a chip (SoC) processor, which integrates a 1 GHz ARM core and a TI's Digital Signal Processor (DSP) together. Since many consumer electronics devices nowadays run some form of embedded Linux-based environment and usually are on an ARM-based platform, the BeagleBoard was proposed as an inexpensive development kit for hobbyists, academics, and professionals for high-performance, ARM-based embedded system learning and evaluation. As an open hardware embedded computer with open source software development in mind, the BeagleBoard was created for audio, video, and digital signal processing with the purpose of meeting the demands of those who want to get involved with embedded system development and build their own embedded devices or solutions. Furthermore, by utilizing standard interfaces, the BeagleBoard comes with all of the expandability of today's desktop machines. The developers can easily bring their own peripherals and turn the pocket-sized BeagleBoard into a single-board computer with many additional features. The following figure shows the PCB layout and major components of the latest xM version of the BeagleBoard. The BeagleBoard-xM (referred to as BeagleBoard in this article unless specified otherwise) is an 8.25 x 8.25cm (3.25" x 3.25") circuit board that includes the following components: CPU: TI's DM3730 processor, which houses a 1 GHz ARM Cortex-A8 superscalar core and a TI's C64x+ DSP core. The power of the 32-bit ARM and C64+ DSP, plus a large amount of onboard DDR RAM arm the BeagleBoard with the capacity to deal with computational intensive tasks, such as audio and video processing. Memory: 512 MB MDDR SDRAM working 166MHz. The processor and the 512 MB RAM comes in a .44 mm (Package on Package) POP package, where the memory is mounted on top of the processor. microSD card slot: being provided as a means for the main nonvolatile memory. The SD cards are where we install our operating system and will act as a hard disk. The BeagleBoard is shipped with a 4GB microSD card containing factory-validated software (actually, an Angstrom distribution of embedded Linux tailored for BeagleBoard). Of course, this storage can be easily expanded by using, for example, an USB portable hard drive. USB2.0 On-The-Go (OTG) mini port: This port can be used as a communication link to a host PC and the power source deriving power from the PC over the USB cable. 4-port USB-2.0 hub: These four USB Type A connectors with full LS/FS/HS support. Each port can provide power on/off control and up to 500 mA as long as the input DC to the BeagleBoard is at least 3 A. RS232 port: A single RS232 port via UART3 of DM3730 processor is provided by a DB9 connector on BeagleBoard-xM. A USB-to-serial cable can be plugged directly into the DB9 connector. By default, when the BeagleBoard boots, system information will be sent to the RS232 port and you can log in to the BeagleBoard through it. 10/100 M Ethernet: The Ethernet port features auto-MDIX, which works for both crossover cable and straight-through cable. Stereo audio output and input: BeagleBoard has a hardware accelerated audio encoding and decoding (CODEC) chip and provides stereo in and out ports via two 3.5 mm jacks to support external audio devices, such as headphones, powered speakers, and microphones (either stereo or mono). Video interfaces: It includes S-video and Digital Visual Interface (DVI)-D output, LCD port, a Camera port. Joint Test Action Group (JTAG) connector: reset button, a user button, and many developer-friendly expansion connectors. The user button can be used as an application button. To get going, we need to power the BeagleBoard by either the USB OTG mini port, which just provides current of up to 500 mA to run the board alone, or a 5V power source to run with external peripherals. The BeagleBoard boots from the microSD card once the power is on. Various alternative software images are available on the BeagleBoard website, so we can replace the factory default images and have the BeagleBoard run with many other popular embedded operating systems (like Andria and Windows CE). The off-the-shelf expansion via standard interfaces on the BeagleBoard allows developers to choose various components and operating systems they prefer to build their own embedded solutions or a desktop-like system as shown below: BeagleBoard for rapid prototyping A rapid prototyping approach allows you to quickly create a working implementation of your proof-of-concept and verify your audio or video applications on hardware early, which overcomes barriers in the design-implementation-validation loops and helps you find the right solution for your applications. Rapid prototyping not only reduces the development time from concept to product, but also allows you to identify defects and mistakes in system and algorithm design at an early stage. Prototyping your concept and evaluating its performance on a target hardware platform gives you confidence in your design, and promotes its success in applications. The powerful BeagleBoard equipped with many standard interfaces provides a good hardware platform for rapid embedded system prototyping. On the other hand, the rapid prototyping tool, the BeagleBoard Support from Simulink package, provided by MathWorks with graphic user interface (GUI) allows developers to easily implement their concept and algorithm graphically in Simulink, and then directly run the algorithms at the BeagleBoard. In short, you design algorithms in MATLAB/Simulink and see them perform as a standalone application on the BeagleBoard. In this way, you can concentrate on your brilliant concept and algorithm design, rather than being distracted by the complicated embedded system and low-level manual programming. The prototyping tool reduces the steep learning curve of embedded systems and helps hobbyists, students, and academics who have a great idea, but have little background knowledge of embedded systems. This feature is particularly useful to those who want to build a prototype of their applications in a short time. MathWorks introduced the BeagleBoard support package for rapid prototyping in 2010. Since the release of MATLAB 2012a, support for the BeagleBoard-xM has been integrated into Simulink and is also available in the student version of MATLAB and Simulink. Your rapid prototyping starts with modeling your systems and implementing algorithms in MATLAB and Simulink. From your models, you can automatically generate algorithmic C code along with processor-specific, real-time scheduling code and peripheral drivers, and run them as standalone executables on embedded processors in real time. The following steps provide an overview of the work flow for BeagleBoard rapid prototyping in MATLAB/Simulink: Create algorithms for various applications in Simulink and MATLAB with a user-friendly GUI. The applications can be audio processing (for example, digital amplifiers), computer vision applications (for example, object tracking), control systems (for example, flight control), and so on. Verify and improve the algorithm work by simulation. With intensive simulation, it is expected that most defects, errors, and mistakes in algorithms will be identified. Then the algorithms are easily modified and updated to fix the identified issues. Run the algorithms as standalone applications on the BeagleBoard. Interactive parameter turning, signal monitoring, and performance optimization of applications running on the BeagleBoard. Summary In this article, we have familiarized ourselves with the BeagleBoard and rapid prototyping by using MATLAB/Simulink. We have also looked at some of the features of rapid prototyping and the basic steps in rapid prototyping in MATLAB/Simulink. Resources for Article: Further resources on this subject: 2-Dimensional Image Filtering [Article] Creating Interactive Graphics and Animation [Article] Advanced Matplotlib: Part 1 [Article]
Read more
  • 0
  • 0
  • 13528
article-image-creating-random-insults
Packt
28 Apr 2015
21 min read
Save for later

Creating Random Insults

Packt
28 Apr 2015
21 min read
In this article by Daniel Bates, the author of Raspberry Pi for Kids - Second edition, we're going to learn and use the Python programming language to generate random funny phrases such as, Alice has a smelly foot! (For more resources related to this topic, see here.) Python In this article, we are going to use the Python programming language. Almost all programming languages are capable of doing the same things, but they are usually designed with different specializations. Some languages are designed to perform one job particularly well, some are designed to run code as fast as possible, and some are designed to be easy to learn. Scratch was designed to develop animations and games, and to be easy to read and learn, but it can be difficult to manage large programs. Python is designed to be a good general-purpose language. It is easy to read and can run code much faster than Scratch. Python is a text-based language. Using it, we type the code rather than arrange building blocks. This makes it easier to go back and change the pieces of code that we have already written, and it allows us to write complex pieces of code more quickly. It does mean that we need to type our programs accurately, though—there are no limits to what we can type, but not all text will form a valid program. Even a simple spelling mistake can result in errors. Lots of tutorials and information about the available features are provided online at http://docs.python.org/2/. Learn Python the Hard Way, by Shaw Zed A., is another good learning resource, which is available at http://learnpythonthehardway.org. As an example, let's take a look at some Scratch and Python code, respectively, both of which do the same thing. Here's the Scratch code: The Python code that does the same job looks like: def count(maximum):    value = 0    while value < maximum:        value = value + 1        print "value =", value   count(5) Even if you've never seen any Python code before, you might be able to read it and tell what it does. Both the Scratch and Python code count from 0 to a maximum value, and display the value each time. The biggest difference is in the first line. Instead of waiting for a message, we define (or create) a function, and instead of sending a message, we call the function (more on how to run Python code, shortly). Notice that we include maximum as an argument to the count function. This tells Python the particular value we would like to keep as the maximum, so we can use the same code with different maximum values. The other main differences are that we have while instead of forever if, and we have print instead of say. These are just different ways of writing the same thing. Also, instead of having a block of code wrap around other blocks, we simply put an extra four spaces at the beginning of a line to show which code is contained within a particular block. Python programming To run a piece of Python code, open Python 2 from the Programming menu on the Raspberry Pi desktop and perform the following steps: Type the previous code into the window and you should notice that it can recognize how many spaces to start a line with. When you have finished the function block, press Enter a couple of times, until you see >>>. This shows that Python recognizes that your block of code has been completed, and that it is ready to receive a new command. Now, you can run your code by typing in count(5) and pressing Enter. You can change 5 to any number you like and press Enter again to count to a different number. We're now ready to create our program! The Raspberry Pi also supports Python 3, which is very similar but incompatible with Python 2. You can check out the differences between Python 2 and Python 3 at http://python-future.org/compatible_idioms.html. The program we're going to use to generate phrases As mentioned earlier, our program is going to generate random, possibly funny, phrases for us. To do this, we're going to give each phrase a common structure, and randomize the word that appears in each position. Each phrase will look like: <name> has a <adjective> <noun> Where <name> is replaced by a person's name, <adjective> is replaced by a descriptive word, and <noun> is replaced by the name of an object. This program is going to be a little larger than our previous code example, so we're going to want to save it and modify it easily. Navigate to File | New Window in Python 2. A second window will appear which starts off completely blank. We will write our code in this window, and when we run it, the results will appear in the first window. For the rest of the article, I will call the first window the Shell, and the new window the Code Editor. Remember to save your code regularly! Lists We're going to use a few different lists in our program. Lists are an important part of Python, and allow us to group together similar things. In our program, we want to have separate lists for all the possible names, adjectives, and nouns that can be used in our sentences. We can create a list in this manner: names = ["Alice", "Bob", "Carol"] Here, we have created a variable called names, which is a list. The list holds three items or elements: Alice, Bob, and Carol. We know that it is a list because the elements are surrounded by square brackets, and are separated by commas. The names need to be in quote marks to show that they are text, and not the names of variables elsewhere in the program. To access the elements in a list, we use the number which matches its position, but curiously, we start counting from zero. This is because if we know where the start of the list is stored, we know that its first element is stored at position start + 0, the second element is at position start + 1, and so on. So, Alice is at position 0 in the list, Bob is at position 1, and Carol is at position 2. We use the following code to display the first element (Alice) on the screen: print names[0] We've seen print before: it displays text on the screen. The rest of the code is the name of our list (names), and the position of the element in the list that we want surrounded by square brackets. Type these two lines of code into the Code Editor, and then navigate to Run | Run Module (or press F5). You should see Alice appear in the Shell. Feel free to play around with the names in the list or the position that is being accessed until you are comfortable with how lists work. You will need to rerun the code after each change. What happens if you choose a position that doesn't match any element in the list, such as 10? Adding randomness So far, we have complete control over which name is displayed. Let's now work on displaying a random name each time we run the program. Update your code in the Code Editor so it looks like: import random names = ["Alice", "Bob", "Carol"] position = random.randrange(3) print names[position] In the first line of the code, we import the random module. Python comes with a huge amount of code that other people have written for us, separated into different modules. Some of this code is simple, but makes life more convenient for us, and some of it is complex, allowing us to reuse other people's solutions for the challenges we face and concentrate on exactly what we want to do. In this case, we are making use of a collection of functions that deal with random behavior. We must import a module before we are able to access its contents. Information on the available modules available can be found online at www.python.org/doc/. After we've created the list of names, we then compute a random position in the list to access. The name random.randrange tells us that we are using a function called randrange, which can be found inside the random module that we imported earlier. The randrange function gives us a random whole number less than the number we provide. In this case, we provide 3 because the list has three elements and we store the random position in a new variable called position. Finally, instead of accessing a fixed element in the names list, we access the element that position refers to. If you run this code a few times, you should notice that different names are chosen randomly. Now, what happens if we want to add a fourth name, Dave, to our list? We need to update the list itself, but we also need to update the value we provide to randrange to let it know that it can give us larger numbers. Making multiple changes just to add one name can cause problems—if the program is much larger, we may forget which parts of the code need to be updated. Luckily, Python has a nice feature which allows us to make this simpler. Instead of a fixed number (such as 3), we can ask Python for the length of a list, and provide that to the randrange function. Then, whenever we update the list, Python knows exactly how long it is, and can generate suitable random numbers. Here is the code, which is updated to make it easier to change the length of the list: import random names = ["Alice", "Bob", "Carol"] length = len(names) position = random.randrange(length) print names[position] Here, we've created a new variable called length to hold the length of the list. We then use the len function (which is short for length) to compute the length of our list, and we give length to the randrange function. If you run this code, you should see that it works exactly as it did before, and it easily copes if you add or remove elements from the list. It turns out that this is such a common thing to do, that the writers of the random module have provided a function which does the same job. We can use this to simplify our code: import random names = ["Alice", "Bob", "Carol", "Dave"] print random.choice(names) As you can see, we no longer need to compute the length of the list or a random position in it: random.choice does all of this for us, and simply gives us a random element of any list we provide it with. As we will see in the next section, this is useful since we can reuse random.choice for all the different lists we want to include in our program. If you run this program, you will see that it works the same as it did before, despite being much shorter. Creating phrases Now that we can get a random element from a list, we've crossed the halfway mark to generating random sentences! Create two more lists in your program, one called adjectives, and the other called nouns. Put as many descriptive words as you like into the first one, and a selection of objects into the second. Here are the three lists I now have in my program: names = ["Alice", "Bob", "Carol", "Dave"] adjectives = ["fast", "slow", "pretty", "smelly"] nouns = ["dog", "car", "face", "foot"] Also, instead of printing our random elements immediately, let's store them in variables so that we can put them all together at the end. Remove the existing line of code with print in it, and add the following three lines after the lists have been created: name = random.choice(names) adjective = random.choice(adjectives) noun = random.choice(nouns) Now, we just need to put everything together to create a sentence. Add this line of code right at the end of the program: print name, "has a", adjective, noun Here, we've used commas to separate all of the things we want to display. The name, adjective, and noun are our variables holding the random elements of each of the lists, and "has a" is some extra text that completes the sentence. print will automatically put a space between each thing it displays (and start a new line at the end). If you ever want to prevent Python from adding a space between two items, separate them with + rather than a comma. That's it! If you run the program, you should see random phrases being displayed each time, such as Alice has a smelly foot or Carol has a fast car. Making mischief So, we have random phrases being displayed, but what if we now want to make them less random? What if you want to show your program to a friend, but make sure that it only ever says nice things about you, or bad things about them? In this section, we'll extend the program to do just that. Dictionaries The first thing we're going to do is replace one of our lists with a dictionary. A dictionary in Python uses one piece of information (a number, some text, or almost anything else) to search for another. This is a lot like the dictionaries you might be used to, where you use a word to search for its meaning. In Python, we say that we use a key to look for a value. We're going to turn our adjectives list into a dictionary. The keys will be the existing descriptive words, and the values will be tags that tell us what sort of descriptive words they are. Each adjective will be "good" or "bad". My adjectives list becomes the following dictionary. Make similar changes to yours. adjectives = {"fast":"good", "slow":"bad", "pretty":"good", "smelly":"bad"} As you can see, the square brackets from the list become curly braces when you create a dictionary. The elements are still separated by commas, but now each element is a key-value pair with the adjective first, then a colon, and then the type of adjective it is. To access a value in a dictionary, we no longer use the number which matches its position. Instead, we use the key with which it is paired. So, as an example, the following code will display "good" because "pretty" is paired with "good" in the adjectives dictionary: print adjectives["pretty"] If you try to run your program now, you'll get an error which mentions random.choice(adjectives). This is because random.choice expects to be given a list, but is now being given a dictionary. To get the code working as it was before, replace that line of code with this: adjective = random.choice(adjectives.keys()) The addition of .keys() means that we only look at the keys in the dictionary—these are the adjectives we were using before, so the code should work as it did previously. Test it out now to make sure. Loops You may remember the forever and repeat code blocks in Scratch. In this section, we're going to use Python's versions of these to repeatedly choose random items from our dictionary until we find one which is tagged as "good". A loop is the general programming term for this repetition—if you walk around a loop, you will repeat the same path over and over again, and it is the same with loops in programming languages. Here is some code, which finds an adjective and is tagged as "good". Replace your existing adjective = line of code with these lines: while True:    adjective = random.choice(adjectives.keys())    if adjectives[adjective] == "good":        break The first line creates our loop. It contains the while key word, and a test to see whether the code should be executed inside the loop. In this case, we make the test True, so it always passes, and we always execute the code inside. We end the line with a colon to show that this is the beginning of a block of code. While in Scratch we could drag code blocks inside of the forever or repeat blocks, in Python we need to show which code is inside the block in a different way. First, we put a colon at the end of the line, and then we indent any code which we want to repeat by four spaces. The second line is the code we had before: we choose a random adjective from our dictionary. The third line uses adjectives[adjective] to look into the (adjectives) dictionary for the tag of our chosen adjective. We compare the tag with "good" using the double = sign (a double = is needed to make the comparison different from the single = case, which stores a value in a variable). Finally, if the tag matches "good",we enter another block of code: we put a colon at the end of the line, and the following code is indented by another four spaces. This behaves the same way as the Scratch if block. The fourth line contains a single word: break. This is used to escape from loops, which is what we want to do now that we have found a "good" adjective. If you run your code a few times now, you should see that none of the bad adjectives ever appear. Conditionals In the preceding section, we saw a simple use of the if statement to control when some code was executed. Now, we're going to do something a little more complex. Let's say we want to give Alice a good adjective, but give Bob a bad adjective. For everyone else, we don't mind if their adjective is good or bad. The code we already have to choose an adjective is perfect for Alice: we always want a good adjective. We just need to make sure that it only runs if our random phrase generator has chosen Alice as its random person. To do this, we need to put all the code for choosing an adjective within another if statement, as shown here: if name == "Alice":    while True:        adjective = random.choice(adjectives.keys())        if adjectives[adjective] == "good":            break Remember to indent everything inside the if statement by an extra four spaces. Next, we want a very similar piece of code for Bob, but also want to make sure that the adjective is bad: elif name == "Bob":    while True:        adjective = random.choice(adjectives.keys())        if adjectives[adjective] == "bad":           break The only differences between this and Alice's code is that the name has changed to "Bob", the target tag has changed to "bad", and if has changed to elif. The word elif in the code is short for else if. We use this version because we only want to do this test if the first test (with Alice) fails. This makes a lot of sense if we look at the code as a whole: if our random person is Alice, do something, else if our random person is Bob, do something else. Finally, we want some code that can deal with everyone else. This time, we don't want to perform another test, so we don't need an if statement: we can just use else: else:    adjective = random.choice(adjectives.keys()) With this, our program does everything we wanted it to do. It generates random phrases, and we can even customize what sort of phrase each person gets. You can add as many extra elif blocks to your program as you like, so as to customize it for different people. Functions In this section, we're not going to change the behavior of our program at all; we're just going to tidy it up a bit. You may have noticed that when customizing the types of adjectives for different people, you created multiple sections of code, which were almost identical. This isn't a very good way of programming because if we ever want to change the way we choose adjectives, we will have to do it multiple times, and this makes it much easier to make mistakes or forget to make a change somewhere. What we want is a single piece of code, which does the job we want it to do, and then be able to use it multiple times. We call this piece of code a function. We saw an example of a function being created in the comparison with Scratch at the beginning of this article, and we've used a few functions from the random module already. A function can take some inputs (called arguments) and does some computation with them to produce a result, which it returns. Here is a function which chooses an adjective for us with a given tag: def chooseAdjective(tag):    while True:        item = random.choice(adjectives.keys())        if adjectives[item] == tag:            break    return item In the first line, we use def to say that we are defining a new function. We also give the function's name and the names of its arguments in brackets. We separate the arguments by commas if there is more than one of them. At the end of the line, we have a colon to show that we are entering a new code block, and the rest of the code in the function is indented by four spaces. The next four lines should look very familiar to you—they are almost identical to the code we had before. The only difference is that instead of comparing with "good" or "bad", we compare with the tag argument. When we use this function, we will set tag to an appropriate value. The final line returns the suitable adjective we've found. Pay attention to its indentation. The line of code is inside the function, but not inside the while loop (we don't want to return every item we check), so it is only indented by four spaces in total. Type the code for this function anywhere above the existing code, which chooses the adjective; the function needs to exist in the code prior to the place where we use it. In particular, in Python, we tend to place our code in the following order: Imports Functions Variables Rest of the code This allows us to use our functions when creating the variables. So, place your function just after the import statement, but before the lists. We can now use this function instead of the several lines of code that we were using before. The code I'm going to use to choose the adjective now becomes: if name == "Alice":    adjective = chooseAdjective("good") elif name == "Bob":    adjective = chooseAdjective("bad") else:    adjective = random.choice(adjectives.keys()) This looks much neater! Now, if we ever want to change how an adjective is chosen, we just need to change the chooseAdjective function, and the change will be seen in every part of the code where the function is used. Complete code listing Here is the final code you should have when you have completed this article. You can use this code listing to check that you have everything in the right order, or look for other problems in your code. Of course, you are free to change the contents of the lists and dictionaries to whatever you like; this is only an example: import random   def chooseAdjective(tag):    while True:        item = random.choice(adjectives.keys())        if adjectives[item] == tag:            break    return item   names = ["Alice", "Bob", "Carol", "Dave"] adjectives = {"fast":"good", "slow":"bad", "pretty":"good", "smelly":"bad"} nouns = ["dog", "car", "face", "foot"]   name = random.choice(names) #adjective = random.choice(adjectives) noun = random.choice(nouns)   if name == "Alice":    adjective = chooseAdjective("good") elif name == "Bob":    adjective = chooseAdjective("bad") else:    adjective = random.choice(adjectives.keys())   print name, "has a", adjective, noun Summary In this article, we learned about the Python programming language and how it can be used to create random phrases. We saw that it shared lots of features with Scratch, but is simply presented differently. Resources for Article: Further resources on this subject: Develop a Digital Clock [article] GPS-enabled Time-lapse Recorder [article] The Raspberry Pi and Raspbian [article]
Read more
  • 0
  • 0
  • 13476

article-image-debugging-applications-pdb-and-log-files
Packt
23 Sep 2015
13 min read
Save for later

Debugging Applications with PDB and Log Files

Packt
23 Sep 2015
13 min read
 In this article by Dan Nixon of the book Getting Started with Python and Raspberry Pi, we will learn more about how to debug Python code using the Python Debugger (PDB) tool and how we can use the Python logging framework to make complex applications written in Python easier to debug when they fail. (For more resources related to this topic, see here.) We will also look at the technique of unit testing and how the unittest Python module can be used to test small sections of a Python application to ensure that it is functioning as expected. These techniques are commonly used in applications written in other languages and are good skills to learn if you are often going to be developing applications. The Python debugger PDB is a tool that allows real time debugging of running Python code. It can help to track down issues with the logic of a program to help find the cause of a crash or unexpected behavior. PDB can be launched with the following command: pdb2.7 do_calculaton.py This will open a new PDB shell, as shown in the following screenshot: We can use the continue command (which can be shortened to c) to execute the next section of the code until a breakpoint is hit. As we are yet to declare any breakpoints, this will run the script until it exits normally, as shown in the following screenshot: We can set breakpoints in the application, where the program will be stopped, and you will be taken back to the PDB shell in order to debug the control flow of the program. The easiest way to set a breakpoint is by giving a specific line in a file, for example: break Operation.py:7 This command will add a breakpoint on line 7 of Operation.py. When this is added, PDB will confirm the file and the line number, as shown in the following screenshot: Now, when we run the application, we will see the program stop each time the breakpoint is reached. When a breakpoint is reached, we can resume the program using the c command: When paused at a breakpoint, we can view the details of the local variables in the current scope. For example, in the breakpoint we have added, there is a variable named name, which we can see the value of by using the following command: p name This outputs the value of the variable, as shown in the following screenshot: When at a breakpoint, we can also get a stack trace of the functions that have been called so far. This is done using the bt command and gives output like that shown in the following screenshot: We can also modify the values of the variables when paused at a breakpoint. To do this, simply assign a value to the variable name as you would in a regular Python script: name = 'subtract' In the following screenshot, this was used to change the first operation in the do_calculation.py script from add to subtract; the effect on the calculation is seen in the different result value: When at a breakpoint, we can also use the l command to see the current line the program is paused at. An example of this is shown in the following screenshot: We can also setup a series of commands to be executed when we hit a breakpoint. This can allow debugging to be automated to an extent by automatically recording or modifying the values of the variables at certain points in the program's execution. This can be demonstrated using the following commands on a new instance of PDB with no breakpoints set (first, quit PDB using the q command, and then re-launch it): break Operation.py:7 commands p name c This gives the following output. Note that the commands are entered on a terminal prefixed (com) rather than the PDB terminal prefixed (pdb). This set of commands tells PDB to print the value of the name variable and continue execution when the last added breakpoint was hit. This gives the output shown in the following screenshot: Within PDB, you can also use the ? command to get a full list of the available commands and help on using them, as shown in the following screenshot: Further information and full documentation on PDB is available at https://docs.python.org/2/library/pdb.html. Writing log files The next technique we will look at is having our application output a log file. This allows us to get a better understanding of what was happening at the time an application failed, which can provide key information into finding the cause of the failure, especially when the failure is being reported by a user of your application. We will add some logging statements to the Calculator.py and Operation.py files. To do this, we must first add the import for the logging module (https://docs.python.org/2/library/logging.html) to the start of each python file, which is simply: import logging In the Operation.py file, we will add two logging calls in the evaluate function, as shown in the following code: def evaluate(self, a, b): logging.getLogger(__name__).info("Evaluating operation: %s" % (self._operation)) logging.getLogger(__name__).debug("RHS: %f, LHS: %f" % (a, b)) This will output two logging statements: one at the debug level and one at the information level. There are in total five unique levels at which messages can be output. In increasing severity, they are: debug() info() warning() error() critical() Log handlers can be filtered to only process the log messages of a certain severity if required. We will see this in action later in this section. The logging.getLogger(__name__) call is used to retrieve the Logger class for the current module (where the name of the module is given by the __name__ variable). By default, each module uses its own Logger class identified by the name of the module. Next, we can add some debugging statements to the Calculator.py file in the same way. Here, we will add logging to the enter_value, enter_operation, evaluate, and all_clear functions, as shown in the following code snippet: def enter_value(self, value): if len(self._input_list) > 0 and not isinstance(self._input_list[-1], Operation): raise RuntimeError("Must enter an operation next") logging.getLogger(__name__).info("Adding value: %f" % (value)) self._input_list.append(float(value)) def enter_operation(self, operation_name): if len(self._input_list) == 0 or isinstance(self._input_list[-1], Operation): raise RuntimeError("Must enter a value next") logging.getLogger(__name__).info("Adding operation: %s" % (operation_name)) self._input_list.append(Operation(operation_name)) def evaluate(self): logging.getLogger(__name__).info("Evaluating calculation") if len(self._input_list) % 2 == 0: raise RuntimeError("Input length mismatch") self._result = self._input_list[0] for idx in range(1, len(self._input_list), 2): operation = self._input_list[idx] next_value = self._input_list[idx + 1] logging.getLogger(__name__).debug("Next function: %f %s %f" % ( self._result, str(operation), next_value)) self._result = operation.evaluate(self._result, next_value) logging.getLogger(__name__).info("Result is: %f" % (self._result)) return self._result def all_clear(self): logging.getLogger(__name__).info("Clearing calculator") self._input_list = [] self._result = 0.0 Finally, we need to configure a handler for the log messages. This is what will handle the messages sent by each logger and output them to a suitable destination; for example, the standard output or a file. We will configure this in the do_conversion.py file. First, we will configure a basic handler that will print all the log messages to the standard output so that they appear on the terminal. This can be achieved with the following code: logging.basicConfig(level=logging.DEBUG) We will also add the following line to the end of the script. This is used to close any open log handlers and should be included at the very end of an application (the logging framework should not be used after calling this function). logging.shutdown() Now, we can see the effects by running the script using the following command: python do_calculation.py This will give an output to the terminal, as shown in the following screenshot: We can also have the log output written to a file instead of printed to the terminal by adding a filename to the logger configuration. This helps to keep the terminal free of unnecessary information. logging.basicConfig(level=logging.DEBUG, filename='calc.log') When executed, this will give no additional output other than the result of the calculation, but will have created an additional file, calc.log, which contains the log messages, as shown in the following screenshot: Unit testing Unit testing is a technique for automated testing of small sections ("units") of code to ensure that the components of a larger application are working as intended, independently of each other. There are many frameworks for this in almost every language. In Python, we will be using the unittest module, as this is included with the language and is the most common framework used in the Python applications. To add unit tests to our calculator module, we will create an additional module in the same directory named test. Inside that will be three files: __init__.py (used to denote that a directory is a Python package), test_Calculator.py, and test_Operation.py. After creating this additional module, the structure of the code will be the same as shown in the following image: Next, we will modify the test_Operation.py file to include a test case for the Operation class. As always, this will start with the required imports for the modules we will be using: import unittest from calculator.Operation import Operation We will be creating a class, test_Operation, which inherits from the TestCase class provided by the unittest module. This contains the logic required to run the functions of the class as individual unit tests. class test_Operation(unittest.TestCase): Now, we will define four tests to test the creation of a new Operation instance for each of the operations that are supported by the class. Here, the assertEquals function is used to test for equality between two variables; this determines if the test passes or not. def test_create_add(self): op = Operation('add') self.assertEqual(str(op), 'add') def test_create_subtract(self): op = Operation('subtract') self.assertEqual(str(op), 'subtract') def test_create_multiply(self): op = Operation('multiply') self.assertEqual(str(op), 'multiply') def test_create_divide(self): op = Operation('divide') self.assertEqual(str(op), 'divide') In this test we are checking that a RuntimeError is raised when an unknown operation is given to the Operation constructor. We will do this using the assertRaises function. def test_create_fails(self): self.assertRaises(ValueError, Operation, 'not_a_function') Next, we will create four tests to ensure that each of the known operations evaluates to the correct result: def test_add(self): op = Operation('add') result = op.evaluate(5, 2) self.assertEqual(result, 7) def test_subtract(self): op = Operation('subtract') result = op.evaluate(5, 2) self.assertEqual(result, 3) def test_multiply(self): op = Operation('multiply') result = op.evaluate(5, 2) self.assertEqual(result, 10) def test_divide(self): op = Operation('divide') result = op.evaluate(5, 2) self.assertEqual(result, 2) This will form the test case for the Operation class. Typically, the test file for a module should have the name of the module prefixed by test, and the name of each test function within a test case class should start with test. Next, we will create a test case for the Calculator class in the test_Calculator.py file. This again starts by importing the required modules and defining the class: import unittest from calculator.Calculator import Calculator class test_Operation(unittest.TestCase): We will now add two test cases that test the correct handling of errors when operations and values are entered in the incorrect order. This time, we will use the assertRaises function to create a context to test for RuntimeError being raised. In this case, the error must be raised by any of the code within the context. def test_add_value_out_of_order_fails(self): with self.assertRaises(RuntimeError): calc = Calculator() calc.enter_value(5) calc.enter_value(5) calc.evaluate() def test_add_operation_out_of_order_fails(self): with self.assertRaises(RuntimeError): calc = Calculator() calc.enter_operation('add') calc.evaluate() This test is to ensure that the all_clear function works as expected. Note that, here, we have multiple test assertions in the function, and all assertions have to pass for the test to pass. def test_all_clear(self): calc = Calculator() calc.enter_value(5) calc.evaluate() self.assertEqual(calc.get_result(), 5) calc.all_clear() self.assertEqual(calc.get_result(), 0) This test ensured that the evaluate() function works as expected and checks the output of a known calculation. Note, here, that we are using the assertAlmostEqual function, which ensures that two numerical variables are equal within a given tolerance, in this case 13 decimal places. def test_evaluate(self): calc = Calculator() calc.enter_value(5.0) calc.enter_operation('multiply') calc.enter_value(2.0) calc.enter_operation('divide') calc.enter_value(5.0) calc.enter_operation('add') calc.enter_value(18.0) calc.enter_operation('subtract') calc.enter_value(5.0) self.assertAlmostEqual(calc.evaluate(), 15.0, 13) self.assertAlmostEqual(calc.get_result(), 15.0, 13) These two tests will test that the errors are handled correctly when the evaluate() function is called, when there are values missing from the input or the input is empty: def test_evaluate_failure_empty(self): with self.assertRaises(RuntimeError): calc = Calculator() calc.enter_operation('add') calc.evaluate() def test_evaluate_failure_missing_value(self): with self.assertRaises(RuntimeError): calc = Calculator() calc.enter_value(5) calc.enter_operation('add') calc.evaluate() That completes the test case for the Calculator class. Note that we have only used a small subset of the available test assertions over our two test classes. A full list of all the test assertions is available in the unittest module documentation at https://docs.python.org/2/library/unittest.html#test-cases. Once all the tests are written, they can be executed using the following command in the directory containing both the calculator and tests directories: python -m unittest discover -v Here, we have the unit test framework discover all the tests automatically (which is why following the expected naming convention of prefixing names with "test" is important). We also request verbose output with the -v parameter, which shows all the tests executed and their results, as shown in the following screenshot: Summary In this article, we looked at how the PDB tool can be used to find faults in Python code and applications. We also looked at using the logging module to have Python code output a log file during execution and how this can make debugging the failures easier, as well as automated unit testing for portions of the application. Resources for Article: Further resources on this subject: Basic Image Processing[article] IRemote Desktop to Your Pi from Everywhere[article] Scraping the Data [article]
Read more
  • 0
  • 0
  • 13393
Modal Close icon
Modal Close icon