Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning Engineering  with Python
Machine Learning Engineering  with Python

Machine Learning Engineering with Python: Manage the lifecycle of machine learning models using MLOps with practical examples , Second Edition

eBook
€20.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning Engineering with Python

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • This second edition delves deeper into key machine learning topics, CI/CD, and system design
  • Explore core MLOps practices, such as model management and performance monitoring
  • Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools

Description

The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.

Who is this book for?

This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.

What you will learn

  • Plan and manage end-to-end ML development projects
  • Explore deep learning, LLMs, and LLMOps to leverage generative AI
  • Use Python to package your ML tools and scale up your solutions
  • Get to grips with Apache Spark, Kubernetes, and Ray
  • Build and run ML pipelines with Apache Airflow, ZenML, and Kubeflow
  • Detect drift and build retraining mechanisms into your solutions
  • Improve error handling with control flows and vulnerability scanning
  • Host and build ML microservices and batch processes running on AWS

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 31, 2023
Length: 462 pages
Edition : 2nd
Language : English
ISBN-13 : 9781837634354
Vendor :
Apache
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Aug 31, 2023
Length: 462 pages
Edition : 2nd
Language : English
ISBN-13 : 9781837634354
Vendor :
Apache
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 117.97
Machine Learning with PyTorch and Scikit-Learn
€41.99
50 Algorithms Every Programmer Should Know
€37.99
Machine Learning Engineering  with Python
€37.99
Total 117.97 Stars icon

Table of Contents

11 Chapters
Introduction to ML Engineering Chevron down icon Chevron up icon
The Machine Learning Development Process Chevron down icon Chevron up icon
From Model to Model Factory Chevron down icon Chevron up icon
Packaging Up Chevron down icon Chevron up icon
Deployment Patterns and Tools Chevron down icon Chevron up icon
Scaling Up Chevron down icon Chevron up icon
Deep Learning, Generative AI, and LLMOps Chevron down icon Chevron up icon
Building an Example ML Microservice Chevron down icon Chevron up icon
Building an Extract, Transform, Machine Learning Use Case Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.6
(36 Ratings)
5 star 88.9%
4 star 0%
3 star 0%
2 star 5.6%
1 star 5.6%
Filter icon Filter
Top Reviews

Filter reviews by




hawkinflight Sep 11, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have experience as a statistician, data scientist, software engineer, programmer, and I would say a little bit as an ML engineer. In Chapter 1, the author talks about the different roles, so I look forward to reading that to compare against my experience! haha. I don't have any experience using tools to build pipelines, so I am looking forward to reading about that. I like the content and structure of the book, and with only 9 chapters it's not overwhelming. I feel like I could get up to speed really quickly. I have familiarity with many parts, but not everything. I am interested in reading the section about "Choosing a style" - OOP or FP. I am also interested in exploring the "standard ML patterns" - data lakes, microservices, event-based designs and batching. I am interested in learning more about using AWS, so it's great that that's covered. The chapter on scaling is definitely interesting, as is the chapter on LLMs. I have watched interviews with the OpenAI and MSFT folks on the GPT models and I have interacted with ChatGPT. The LLMs look fun to try and the python code in the book looks very easy to read.I like this book a lot. It concisely convers all the points in moving from concept to solution, including what tools can be used. I think it will be a great starting point for me. I can't wait to try it out!
Amazon Verified review Amazon
Ishan Dutta Oct 30, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The width of topics covered along with the code provided makes this a great book! I liked how it started with basics of ML pipelines and went all the way to different LLMOps and so on. The explanation along with the provided diagrams make it easy to understand and retain. I highly recommend this book.
Amazon Verified review Amazon
zeroKelvin Sep 09, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
There are a lot of books out there that walk you through the steps of putting together a complex ML model using ideal data in a closed setting. This is not one of those books. ML engineering with Python is instead a comprehensive guide to the way machine learning works in practice at most companies.The book does a great job of explaining the MLops tools that almost all businesses today rely on to train, deploy, serve, and iterate on models. In my opinion, the concepts in this book are far more valuable than understanding how to use specific ML frameworks to solve problems. Simply understanding that these tools exist, and knowing how they are used will give engineers a leg up, and lead to more revenue generating impact than any gold medal kaggle model could produce on its own.
Amazon Verified review Amazon
Richard Apr 21, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I recently had the pleasure of reviewing "Machine Learning Engineering with Python - Second Edition" by Andrew McMahon. As a NASA data analyst deeply engaged with the operational side of machine learning, I found this book to be a valuable resource for professionals dedicated to mastering MLOps and managing the lifecycle of ML models. Andrew effectively uses practical examples and a thorough examination of contemporary tools and methodologies to advance this field.One of the standout features of this book is McMahon's approach to integrating Python code to clarify the mechanics behind ML algorithms. While I chose not to run the scripts verbatim, I found them incredibly useful as references, enhancing both my existing projects and new initiatives. This method greatly assisted me in understanding the intricacies of ML pipelines and applying these insights across various applications.A suggestion for future readers would be to approach the first chapter last. The book begins with advanced topics that are more comprehensible after navigating through the foundational material presented in subsequent chapters. This adjustment could help flatten the learning curve and not become discouraged at the advanced material.That said, there are areas where the book could improve. The chapter dedicated to generative AI and large language models, for instance, would benefit from additional case studies that demonstrate their practical applications within industry. Moreover, a deeper focus on the ethical considerations of deploying AI systems at scale is necessary, given the increasing importance of ethics in our field.In conclusion, Andrew McMahon’s second edition is a comprehensive guide that I highly recommend to MLOps practitioners, ML engineers, and data scientists. Its depth of content, combined with practical, real-world applications, positions it as a critical read for professionals aiming to stay at the forefront of technology. If you're in the field, this book is undoubtedly a valuable addition to your professional toolkit.
Amazon Verified review Amazon
Rajesh Sathya Kumar Apr 04, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have been reading this book by Andy McMahon and just completed it. The book provided excellent coverage of ML Ops concepts, encompassing a wide range of ideas for building ML-powered apps.The Second Edition of this book also covers concepts from LLM and LLMOps. It also includes deeper content in every chapter. The amount of AI developments from 2021 (First edition) to 2023 (Second edition) is very evident from this book and makes it more exciting about the future.It also covers practical examples and applications built using scikit-learn, Spark, Airflow, Kubernetes, Keras, AWS, etc., and lists the key points discussed in each chapter.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.

Modal Close icon
Modal Close icon