Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Deep Learning with Keras Workshop

You're reading from   The Deep Learning with Keras Workshop Learn how to define and train neural network models with just a few lines of code

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800562967
Length 496 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Matthew Moocarme Matthew Moocarme
Author Profile Icon Matthew Moocarme
Matthew Moocarme
Ritesh Bhagwat Ritesh Bhagwat
Author Profile Icon Ritesh Bhagwat
Ritesh Bhagwat
Mahla Abdolahnejad Mahla Abdolahnejad
Author Profile Icon Mahla Abdolahnejad
Mahla Abdolahnejad
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Machine Learning with Keras 2. Machine Learning versus Deep Learning FREE CHAPTER 3. Deep Learning with Keras 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers 5. Improving Model Accuracy 6. Model Evaluation 7. Computer Vision with Convolutional Neural Networks 8. Transfer Learning and Pre-Trained Models 9. Sequential Modeling with Recurrent Neural Networks Appendix

Data Preprocessing

To fit models to the data, it must be represented in numerical format since the mathematics used in all machine learning algorithms only works on matrices of numbers (you cannot perform linear algebra on an image). This will be one goal of this section: to learn how to encode all the features into numerical representations. For example, in binary text, values that contain one of two possible values may be represented as zeros or ones. An example of this can be seen in the following diagram. Since there are only two possible values, the value 0 is assumed to be a cat and the value 1 is assumed to be a dog.

We can also rename the column for interpretation:

Figure 1.6: A numerical encoding of binary text values

Another goal will be to appropriately represent the data in numerical format - by appropriately, we mean that we want to encode relevant information numerically through the distribution of numbers. For example, one method to encode...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
The Deep Learning with Keras Workshop
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon