This chapter will introduce unsupervised applications of deep learning using autoencoders. In this chapter, we will cover the following topics:
- Setting up autoencoders
 - Data normalization
 - Setting up a regularized autoencoder
 - Fine-tuning the parameters of the autoencoder
 - Setting up stacked autoencoders
 - Setting up denoising autoencoders
 - Building and comparing stochastic encoders and decoders
 - Learning manifolds from autoencoders
 - Evaluating the sparse decomposition