Application using text2vec examples
In this section, we will analyze the performance of logistic regression on various examples of text2vec.
How to do it...
Here is how we apply text2vec:
- Load the required packages and dataset:
library(text2vec)
library(glmnet)
data("movie_review") - Function to perform Lasso logistic regression, and return the train and test
AUCvalues:
logistic_model <- function(Xtrain,Ytrain,Xtest,Ytest)
{
classifier <- cv.glmnet(x=Xtrain, y=Ytrain,
family="binomial", alpha=1, type.measure = "auc",
nfolds = 5, maxit = 1000)
plot(classifier)
vocab_test_pred <- predict(classifier, Xtest, type = "response")
return(cat("Train AUC : ", round(max(classifier$cvm), 4),
"Test AUC : ",glmnet:::auc(Ytest, vocab_test_pred),"\n"))
} - Split the movies review data into train and test in an 80:20 ratio:
train_samples <- caret::createDataPartition(c(1:length(labels[1,1])),p = 0.8)$Resample1 train_movie <- movie_review[train_samples,] test_movie <- movie_review...