Machine Learning for Time-Series with Python: Use Python to forecast, predict, and detect anomalies with state-of-the-art machine learning methods
, Second Edition
Explore popular and state-of-the-art machine learning methods, including the latest online and deep learning algorithms
Learn to increase the accuracy of your predictions by matching the right model to your problem
Master time series in Python via real-world case studies on operations management, digital marketing, finance, and healthcare
Description
The Python time-series ecosystem is a huge and challenging topic to tackle, especially for time series since there are so many new libraries and models. Machine Learning for Time Series, Second Edition, aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and helping you build better predictive systems.
This fully updated second edition starts by re-introducing the basics of time series and then helps you get to grips with traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will gain a deeper understanding of loading time-series datasets from any source and a variety of models, such as deep learning recurrent neural networks, causal convolutional network models, and gradient boosting with feature engineering. This book will also help you choose the right model for the right problem by explaining the theory behind several useful models. New updates include a chapter on forecasting and extracting signals on financial markets and case studies with relevant examples from operations management, digital marketing, and healthcare.
By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time series.
Who is this book for?
This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.
What you will learn
Visualize time series data with ease
Characterize seasonal and correlation patterns through autocorrelation and statistical techniques
Get to grips with classical time series models such as ARMA, ARIMA, and more
Understand modern time series methods including the latest deep learning and gradient boosting methods
Choose the right method to solve time-series problems
Become familiar with libraries such as Prophet, sktime, statsmodels, XGBoost, and TensorFlow
Understand both the advantages and disadvantages of common models
Machine Learning for Time-Series with Python, Second Edition: Use Python to forecast, predict, and detect anomalies with state-of-the-art machine learning methods
instead of
```from pandas as read_csv
should be
from pandas import rad_csv
Subscriber review
ManishJun 10, 2024
1
Poorly written. - "machine learning methods on tabular data is that the data is that the data" what the heck is this? ARIMA - gives the acronym but doesn't say what it is? barely explains the examples.
Subscriber review
About the author
Ben Auffarth
Ben Auffarth
Ben Auffarth is a full-stack data scientist with more than 15 years of work experience. With a background and Ph.D. in computational and cognitive neuroscience, he has designed and conducted wet lab experiments on cell cultures, analyzed experiments with terabytes of data, run brain models on IBM supercomputers with up to 64k cores, built production systems processing hundreds and thousands of transactions per day, and trained language models on a large corpus of text documents. He co-founded and is the former president of Data Science Speakers, London.
A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content
How can I cancel my subscription?
To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.
What are credits?
Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.
What happens if an Early Access Course is cancelled?
Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.
Where can I send feedback about an Early Access title?
If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team.
Can I download the code files for Early Access titles?
We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.
When we publish the book, the code files will also be available to download from the Packt website.
How accurate is the publication date?
The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.
How will I know when new chapters are ready?
We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.
I am a Packt subscriber, do I get Early Access?
Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.
How is Early Access delivered?
Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.
How do I buy Early Access content?
Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.
What is Early Access?
Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.