🔵 Q2 2025 AI Hypercomputer updates: Google Cloud’s AI Hypercomputer is redefining scale: powering Gemini, Veo 3, and serving 980T+ tokens monthly. Highlights this quarter include Dynamic Workload Scheduler, Cluster Director upgrades, llm-d v0.2, and MaxText/MaxDiffusion improvements. Explore open frameworks, TPU/GPU scaling, and claim $300 free credit to simplify AI deployment and boost performance.
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
🔵 How to Test an OpenAI Model Against Single-Turn Adversarial Attacks Using deepteam? Learn how to red team OpenAI models with deepteam, an open-source toolkit offering 10+ single-turn adversarial attacks including prompt injection, jailbreaking, leetspeak, Base64, and more. This hands-on guide shows how to install dependencies, set up your API key, define vulnerabilities, and test GPT-4o-mini against real-world adversarial prompts.
🔵 Salesforce AI Releases Moirai 2.0: Salesforce’s Latest Time Series Foundation Model Built on a Decoder‑only Transformer Architecture. Salesforce AI Research introduces Moirai 2.0, a decoder-only transformer that tops GIFT-Eval benchmarks for time series forecasting. It’s 44% faster, 96% smaller, yet more accurate than Moirai_large. With multi-token prediction, advanced filtering, and diverse training data, it enables scalable forecasting across IT ops, sales, demand, and supply chain planning.
🔵 Transform your data to Amazon S3 Tables with Amazon Athena: Amazon Athena now supports CTAS with S3 Tables, enabling serverless SQL-based data transformation with built-in Iceberg optimization, ACID transactions, and automatic maintenance. Easily migrate datasets (CSV, Parquet, JSON, etc.) into analytics-ready tables. The tutorial demonstrates transforming customer review data into S3 Tables, unlocking faster queries, simplified ETL, and robust enterprise-scale analytics.
🔵 Estimating from No Data: Deriving a Continuous Score from Categories. This blog is about how to derive a continuous, fine-grained score from categorical outcomes when only labeled categories are available for training. It explains why standard classifiers fail to produce meaningful scores, and demonstrates how low-capacity networks with a linear bottleneck and category approximator head can generate interpretable, ordered risk scores.