Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
C++ in Embedded Systems

You're reading from   C++ in Embedded Systems A practical transition from C to modern C++

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781835881149
Length 402 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Amar Mahmutbegović Amar Mahmutbegović
Author Profile Icon Amar Mahmutbegović
Amar Mahmutbegović
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface
1. Part I: Introduction to C++ in Embedded Development
2. Debunking Common Myths about C++ FREE CHAPTER 3. Challenges in Embedded Systems with Limited Resources 4. Embedded C++ Ecosystem 5. Setting Up the Development Environment for a C++ Embedded Project 6. Part II: C++ Fundamentals
7. Classes – Building Blocks of C++ Applications 8. Beyond Classes – Fundamental C++ Concepts 9. Strengthening Firmware – Practical C++ Error Handling Methods 10. Part III: C++ Advanced Concepts
11. Building Generic and Reusable Code with Templates 12. Improving Type-Safety with Strong Types 13. Writing Expressive Code with Lambdas 14. Compile-Time Computation 15. Part IV: Applying C++ to Solving Embedded Domain Problems
16. Writing C++ HAL 17. Working with C Libraries 18. Enhancing Super-Loop with Sequencer 19. Practical Patterns – Building a Temperature Publisher 20. Designing Scalable Finite State Machines 21. Libraries and Frameworks 22. Cross-Platform Development 23. Other Books You May Enjoy
24. Index

Compile-Time Computation

Compile-time computation refers to the ability of a compiler to execute functions at compile time, instead of converting them to machine code. This means that the results of complex operations can be calculated by the compiler and stored in variables that are used at runtime. A compiler can execute a function at compile time only if all arguments of the function are known at compile time.

We can use compile-time computation in C++ firmware to calculate complex math operations, generate lookup tables and arrays in general, and use the generated values at runtime. Performing these operations at compile time will save valuable memory and processor (space and time) resources and make them available for other, more important operations.

The goal of this chapter is to learn how to use compile-time computation in C++ to shift complex operations at compile time and save valuable resources. In this chapter, we’re going to cover the following main topics...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
C++ in Embedded Systems
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon