
Table of Contents
Chapter 1: Writing in ECMAScript 2015+ 1

Declaring variables with let and const 2
Block-scoped, local variable declaration with let 3
Declaring constants with const 4
Comparing let and const 4

Providing defaults 5
Destructuring assignment 6

Array-destructuring 7
Use cases for array-destructuring 7

Object-destructuring 9
Use cases for object-destructuring 9

Understanding Rest and Spread 11
Combining Iterables with the Spread Operator 11
Collecting variables with the rest operator 12

Destructuring rest parameters 13
Performing string interpolation with template literals 14

Improving readability with multiline strings 15
Tagging template literals 15

Translations 16
Running asynchronous operations with promises 19

Eventual completion using callbacks 20
Layered callbacks cause callback hell 20

Avoiding callback hell with promises 22
Mechanism of promises 22

What is a promise? 23
Structure of a promise 24
The executor function 24
Generators, observables, thunks, and asynchronous functions 27

Summary 28

Index 29

1
Writing in ECMAScript 2015+

For the rest of this book, we will be using syntax and features introduced in
ECMAScript 2015 (ES6) of JavaScript. This chapter provides a non-comprehensive
run-through of the features we'll be using in the rest of the book. Specifically, we will
cover:

Declaring variables with let and const
Setting defaults
Destructuring assignment
Rest and spread operators
Template literals
Promises

ES6 also added a native implementation of modules, but because
explaining modules in JavaScript requires a lot of context and
history, I've relegated the treatment of ES6 modules to Chapter 4,
Setting Up Development Tools. Also, we have already discussed arrow
functions in Chapter 3, Important concepts in JavaScript, so we won't
revisit them here.

If you see any new ES6 (or newer) syntax that is not covered here,
apart from searching on Google, you may also find the Babel REPL
(http:/ / babeljs. io/ repl/) useful. Babel is a tool that translates
ES6+ code into older versions of JavaScript. Babel's website provides
an online Read–Eval–Print Loop (REPL) tool that evaluates any
code we paste into it and prints out the equivalent ES5 code.

There are other tools similar to the Babel REPL, such as TypeScript
playground (http:/ / www.typescriptlang. org/ play/), Traceur
Transcoding Demo (http:/ /google. github. io/traceur- compiler/
demo/ repl. html), and the Closure Compiler (https:/ / closure-
compiler. appspot. com/ home), although some of these tools do a

http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://babeljs.io/repl/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home
https://closure-compiler.appspot.com/home

Writing in ECMAScript 2015+ Chapter 1

[2]

little more than just simple compilation.

We will cover Babel in much more depth in Chapter 4, Setting Up
Development Tools.

Declaring variables with let and const
Before ES6, the scope of an identifier depended on whether it was declared with
the var keyword or not. var restricts the scope of the identifier to within the function
it is declared in:

(function() {
 globalScoped = 1;
 var functionScoped = 1;
})();

globalScoped; // 0
functionScoped; // undefined

Here, inside the immediately-invoked function expression (IIFE), the
functionScoped identifier is declared within the function; this means any code
inside the function's body, including the inner functions, is able to access the variable.
Anything outside the function body cannot access, or even know about the existence
of, the variable:

(function() {
 var functionScoped = 1;
 functionScoped; // 1
 (function() {
 // functionScoped is available from anywhere
 // within the function block
 // Even inside inner functions
 functionScoped; // 1
 })();
})();

functionScoped; // undefined

Then, we had globalScoped = 1. This is technically not a variable declaration; all
that code is doing is trying to assign the value of 1 to the globalScoped identifier.
But because globalScoped is not declared within the function, the JavaScript engine
will go up one execution context level (into the global context) to try to find the next
level at which globalScoped was declared. In our case, globalScoped was not

Writing in ECMAScript 2015+ Chapter 1

[3]

declared anywhere, and so a new property is added to the global object, window (in
the case of a browser). This explains why, after the function that assigns a value to
globalScoped has been invoked, we can access the globalScoped variable.

So before ES6, we only had one type of variable declaration: function-scoped.

Block-scoped, local variable declaration with
let
While var is scoped inside the function block it is defined in, let is scoped inside any
block it is defined in. In other words, var is function-scoped, let is block-scoped.

In JavaScript, a block is a grouping of zero or more statements that
will be executed together, as if there were just one statement. Blocks
are delimited by curly brackets, {}.

Note that object literals are also enclosed in curly brackets ({}), but
your JavaScript engine will be able to decipher one from the
other—if the curly brackets contain a list of statements, it'll be
interpreted as a block.

Let's look at an example:

(function () {
 if (true) {
 var functionScoped = 0;
 let blockScoped = 0;
 }
 functionScoped; // 0
 blockScoped; // Uncaught ReferenceError: blockScoped is not defined
})()

The functionScoped variable is accessible from anywhere within the scope of the
function body (it's even accessible before the variable has been declared, due to a
feature called hoisting):

(function () {
 functionScoped; // undefined, but does not throw an error
 if (true) {
 var functionScoped = 0;
 }
 functionScoped; // 0
})()

Writing in ECMAScript 2015+ Chapter 1

[4]

let, however, was defined within the if block, and so is inaccessible from outside
the block.

Declaring constants with const
const is the same as let, except const means the identifier cannot be reassigned to a
different variable. This, however, does not mean the value of the variable cannot be
changed—the value is not immutable—it is the binding between the identifier and the
variable that is immutable. Let's look at a few examples:

const answer = 42;
answer = 50; // Uncaught TypeError: Assignment to constant variable.

const phone = { battery: 78 };
phone = { battery: 77 }; // Uncaught TypeError: Assignment to constant
variable.

Both of the examples here threw an error because we are reassigning the identifiers
(answer and phone in our case) to a new variable; this breaks the binding between
the identifier and the variable.

Note that in our phone example, even if we assign an object that's identical in value to
the previous one, it'll still throw an error because objects are stored and retrieved by
reference, not by value; to JavaScript, they are simply two different objects that happen
to hold the same values:

const phone = { battery: 78 };
phone = { battery: 78 }; // Uncaught TypeError: Assignment to constant
variable.

However, mutating the value of the object itself is fine, because we are not
reassigning a different reference to the identifier, we're just mutating what it
references:

const phone = { battery: 78 }
phone.battery = 77; // OK

If you want a variable to be immutable, check out Immutable.js
(https:/ /github. com/ facebook/ immutable- js) by Facebook, or
Mori (https:/ /github. com/swannodette/ mori); both can impose
immutability on data.

https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori
https://github.com/swannodette/mori

Writing in ECMAScript 2015+ Chapter 1

[5]

Comparing let and const
With ES6, you never have to use var. So the question remains: when should you use
let and when should you use const?

The answer is simple: use const by default, and only use let when you need to
reassign something to the same identifier, such as in a loop.

But why favor const over let? Because other parts of the code might rely on the
identifier to point to their expected value; if that value is reassigned, the code that
relies on it might throw errors. In an extreme example, imagine if someone reassigned
the window identifier to be an empty object:

window = {}; // Bad

That's why you should use const by default, so that each time you need to use let,
you have to think about whether it is really necessary to introduce a variable that you
want to mutate. For example, the following code requires the use of let:

function sumAndDouble(...numbers) {
 let total = 0;
 for (let i = 0; i < numbers.length; i++) {
 total += numbers[i];
 }
 total = total * 2;
 return total;
}

However, this one does not:

function sumAndDouble(...numbers) {
 const sum = numbers.reduce((total, number) => total + number, 0);
 const sumDoubled = sum * 2;
 return sumDoubled;
}

Mutating data, even the binding between identifiers and variables, can lead to errors.
This is why Immutable.js (facebook.github.io/immutable-js/) and similar libraries
have risen in popularity—to minimize errors caused by mutable data:

window.console = {};
console.log("Hello"); // Uncaught TypeError: console.log is not a
function

Writing in ECMAScript 2015+ Chapter 1

[6]

Providing defaults
Providing defaults for function parameters allows you to write more succinct code.
Instead of this:

function addPoint(x, y) {
 x = typeof x === 'undefined' ? 0 : x;
 y = typeof y === 'undefined' ? 0 : y;
 drawPoint(x, y);
}

We can now write this:

function addPoint(x = 0, y = 0) {
 drawPoint(x, y);
}

Let's have another example:

function addRectangle(x = 5, y = 2*x) {
 console.log(x);
 console.log(y);
 drawRectangle(x, y);
}

addRectangle(); // 5, 10
addRectangle(9); // 9, 18
addRectangle(9, 12); // 9, 12

And here's what's happening:

We are able to use y = 2*x as the last function parameter because
parameters that are already defined (such as x) can be used in the default
assignment of subsequent parameters
If neither parameters were provided, x would default to 5, and y would
default to double the value of x, which is 10
If x was provided but y was not, y would still default to double the value
of x, so in our example it would be 18

That's the basics of defaults, but as you'll see in later sections of this chapter, you can
combine using defaults with destructuring assignment to achieve some powerful
shorthands.

Writing in ECMAScript 2015+ Chapter 1

[7]

Destructuring assignment
Destructuring assignment is a new syntax that allows you to unpack the components
of an array or object into distinct variables with just one line:

// Arrays
[x, y] = [0, 1];
x; // 0
y; // 1

// Objects
({ color, margin } = { color: "red", margin: 20 })
color; // "red"
margin; // 20

We had to wrap our object literals with parentheses; otherwise, the
interpreter would interpret them as a block and throw an Uncaught
SyntaxError: Unexpected token = error.

We'll talk about array-destructuring first, and then object-destructuring.

Array-destructuring
In array-destructuring, the variable assignment would start from the left of the array,
working its way to the right, until it runs out of values (in which case, undefined
would be used):

const [a, b, c] = [1, 2]
a; // 1
b; // 2
c; // undefined

You can also combine array-destructuring with other new features of ES6, such as
defaults and the rest operator:

// Using defaults
const [x = 9, y = 8] = [1]
x; // 1
y; // 8

Writing in ECMAScript 2015+ Chapter 1

[8]

Use cases for array-destructuring
Array-destructuring is often used to collect grouped matches from regular
expressions (RegEx). For example, you might want to write a function that breaks
down different portions of a URL, such as this scheme:

const URL_REGEX = /([a-zA-Z]*):\/\/(?:([a-zA-Z]*):([a-zA-Z]*)@)([A-Za-
z0-9]*)\.([a-zA-Z]*)(?::(\d{1,5}))?(?:\/([a-zA-Z0-9\/]*))(?:\?([a-zA-
Z0-9=&]*))?(?:#([a-zA-Z0-9-]*))?/;
const urlFragments =
URL_REGEX.exec("protocol://username:password@hostname.ext:30000/a/path
/?a=1&b=2#hash");

Here, urlFragments would be an array:

// urlFragments
[
"protocol://username:password@hostname.ext:30000/a/path/?a=1&b=2#hash"
,
 "protocol",
 "username",
 "password",
 "hostname",
 "ext",
 "30000",
 "a/path/",
 "a=1&b=2",
 "hash"
]

To assign a variable to each of the groups, we can painstakingly list them all out and
assign each, one by one:

const url = urlFragments[0];
const protocol = urlFragments[1];
const username = urlFragments[2];
const password = urlFragments[3];
const hostname = urlFragments[4];
const ext = urlFragments[5];
const port = urlFragments[6];
const path = urlFragments[7];
const query = urlFragments[8];
const hash = urlFragments[9];

Or, we can use array-destructuring to extract the values from the array:

[url, protocol, username, password, hostname, ext, port, path, query,
hash] = urlFragments;

Writing in ECMAScript 2015+ Chapter 1

[9]

Object-destructuring
Object-destructuring acts in a similar manner to array-destructuring, but since object
keys are not ordered, we must pass in the keys we want to extract from the object:

const { color, fontSize } = { color: "red", fontSize: 16 };
color; // "red"
fontSize: // 16

You can also reassign the key name to your own variable name using a colon (:):

const res = { points: 68 };
const { points: score } = res;

score; // 68
points; // Uncaught ReferenceError: points is not defined

You can extract values from nested objects and combine them with array-
destructuring:

const user = {
 username: "d4nyll",
 settings: {
 public: true
 },
 emails: [{
 email: "dan@danyll.com",
 verified: true
 }, {
 email: "dan@brew.com.hk",
 verified: false
 }]
}

const {
 username, // Normal object destructuring
 settings: { public } // Extracting nested object
 emails: [{email:primaryEmail}, {email:secondaryEmail}], // Nested
object with array destructuring
} = user;

username; // "d4nyll"
public; // true
primaryEmail; // "dan@danyll.com"
secondaryEmail; // "dan@brew.com.hk"

Writing in ECMAScript 2015+ Chapter 1

[10]

Use cases for object-destructuring
Object-destructuring is often used to extract option values from the parameters of a
function. Often, when an API's endpoints can accept many options (some of which
may be optional), instead of having them written in a long list, you can pass in an
options object instead.

For example, if an API method has the following syntax:

SomeAPI.method(requiredA, requiredB[, optionalC, [optionalD,
[optionalE, [optionalF]]]]);

Then, if we want to pass in the requiredA, requiredB, and optionalF options,
we'd have to write this:

// Passing in arguments as a list
SomeAPI.method(requiredA, requiredB, undefined, undefined, undefined,
optionalF);

Instead, we can pass in an options object, which allows us to specify only the data
we want:

// Passing in arguments as an object
SomeAPI.method({
 requiredA: requiredA,
 requiredB: requiredB,
 optionalF: optionalF
});

// Passing in arguments as an object, using property value shorthand
SomeAPI.method({ requiredA, requiredB, optionalF });

I'm sure you'll agree with me that for methods with many parameters, passing in a
single object containing all the options is neater.

Now, where object-destructuring fits in is in the extraction of values from these
parameter objects:

SomeAPI.addText = function (options) {
 { text, color, fontFamily, fontSize } = options;
}

We can even combine object-destructuring with function defaults to provide default
values for the options:

addText = function (options) {
 const { text = "", color = "red", fontFamily = "'Lato', sans-serif",

Writing in ECMAScript 2015+ Chapter 1

[11]

fontSize = 16 } = options;
 console.log(text);
 console.log(color);
 console.log(fontFamily);
 console.log(fontSize);
}

addText({
 text: "Hello World!",
 fontSize: 20
}); // "Hello World!", "red", "'Lato', sans-serif", 20

Or, we can even eliminate the use of the options variable:

addText = function ({ text = "", color = "red", fontFamily = "'Lato',
sans-serif", fontSize = 16 } = {}) {
 console.log(text);
 console.log(color);
 console.log(fontFamily);
 console.log(fontSize);
}

Understanding Rest and Spread
Defaults and destructuring-assignment allow you to keep your code more concise
and readable; the rest and spread operators do the same.

At the time of writing, the rest and spread operators only work on arrays, but there is
a stage-four proposal to expand them to objects, which you can follow
at github.com/tc39/proposal-object-rest-spread. We will examine the use of
these operators for both arrays and objects, but just remember that to use rest/spread
on an object will require a polyfill, such as the @babel/plugin-proposal-object-
rest-spread plugin.

Both operators use the ... syntax, so it can be confusing at the beginning to
remember which is which; at the end of this chapter, I'll give you some tips on how to
remember their names. But first, let's look at the spread operator.

Combining Iterables with the Spread Operator
The spread operator spreads its elements out into its containing iterable:

const teachers = ["ann", "bob", "carol"];

https://github.com/tc39/proposal-object-rest-spread
https://www.npmjs.com/package/@babel/plugin-proposal-object-rest-spread
https://www.npmjs.com/package/@babel/plugin-proposal-object-rest-spread

Writing in ECMAScript 2015+ Chapter 1

[12]

const support = ["yasmin", "zach"];
const staff = [...teachers, "sam", ...support]; // "sam" is the
receptionist
staff; // ["ann", "bob", "sam", "carol", "yasmin", "zach"]

The elements of the teachers and admins arrays have been copied into the staff
array, at the position where they were specified.

This is a common use case for spread operators: to combine/concatenate arrays in a
concise manner. To express this logic without spread operators, we'd have to do
something like this:

const staff = [].concat(teachers, ["sam"], support);

This is more bloated and harder to read. You can do the same for objects as well (with
a polyfill). Here's an example that uses spread operators to style a button:

const buttonBase = {
 borderColor: "#ff6600",
 borderStyle: "solid",
 borderWidth: "1px",
}
const roundButton = {
 ...buttonBase,
 borderRadius: "50%"
}

const myButton = {
 ..roundButton,
 borderColor: "#8711e4"
}

The roundButton object will contain all the properties of the buttonBase object,
plus the additional borderRadius property; likewise, myButton will contain all the
properties of roundButton, plus the borderColor property, which will override the
borderColor property defined in the buttonBase object.

This pattern means styles don't have to be duplicated and allows you to compose new
styles by combining multiple base styles.

Collecting variables with the rest operator
While the spread operator spreads its elements out, the rest operator collects multiple
elements and "condenses" them into one variable. Let's start with an example:

Writing in ECMAScript 2015+ Chapter 1

[13]

// Using rest operator to collect the rest of the array
const [a, b, ...c] = [1, 2, 3, 4, 5, 6];
a; // 1
b; // 2
c; // [3, 4, 5, 6]

This is commonly used in function parameters where the function can act on an
indefinite number of parameters. Without the rest operator, you'll have to iterate
through the arguments object:

function add() {
 let total = 0;
 for (let i = 0; i < arguments.length; i++) {
 total = total + arguments[i];
 }
 return total;
}
add(1, 2, 3); // 6

It might look like the arguments object is already an array, and we
can just use the .reduce function on it, but in fact, it's just
a special array-like object with length (and other) properties,
and where the rest of the keys are integers.

Using console.log on the arguments object would give you
something like this: {"0":1,"1":2,"2":3}.

With the rest operator, however, it can become much cleaner and more concise:

function add(...numbers) {
 return numbers.reduce((total, num) => total + num, 0);
}

add(1, 2, 3); // 6

Destructuring rest parameters
You can combine the rest operator with destructuring. There are many use cases for
this; we will outline just one here.

Let's say we have a publishing/blogging platform, and we have exposed a method
that allows users to change the content of their posts. We want to give them a lot of
freedom, so they can change anything they want, but we want to make sure they
don't change the id and createdAt fields. We can implement something such as this:

Writing in ECMAScript 2015+ Chapter 1

[14]

const updatePost = function (newPost) {
 const { id, createdAt, ...sanitizedPost } = newPost;
 console.log(sanitizedPost);
 collection.update(id, sanitizedPost);
}

const newPost = {
 id: "521",
 createdAt: 1498160284666,
 title: "New title",
 description: "New description"
};

updatePost(newPost); // {title: "New title", description: "New
description"}

We used destructuring assignment to pull out the id and createdAt properties,
collected the rest of the properties with the rest operator, and placed it in the
sanitizedPost variable.

Performing string interpolation with
template literals
Template literals, also known as template strings in earlier versions of ES6, allow
you to interpret variables inside a string while keeping it easy to read.

The syntax of the template literal encloses a string inside backticks (`, or the grave
accent), as opposed to single (') or double quotes ("). Then, inside the template literal,
you can define placeholders with ${}, and any expressions between the curly
brackets are interpreted as JavaScript; this is known as string interpolation:

var name = "Daniel";
var getLocation = function() { return "Hong Kong"; };

// equivalent to "My name is Daniel and I am from Hong Kong!"
`My name is ${name} and I am from ${getLocation()}!`

You can only put expressions inside the curly brackets; statements are not allowed.

In JavaScript, expressions evaluate to a value. For example, 1 + 2 is
an expression, as it produces the value of 3; a function call is also an
expression, as the function will always return a value, even if it's an
implicit undefined.

Writing in ECMAScript 2015+ Chapter 1

[15]

Statements perform an action. For example, control flow constructs,
such as loops or conditions, are examples of statements.

Some common statements have an expression equivalent. For
example, a simple if/else can be expressed as a ternary operator.

Before template literals were introduced, you had to painstakingly concatenate the
strings together:

var name = "Daniel";
var origin = "Hong Kong"

// ES5 with concatenation
'My name is ' + name + ' and I am from ' + origin + '!'

// ES6 with template literal
`My name is ${name} and I am from ${origin}!`

Although it is subjective, most would agree that the template literal format is more
readable.

While string interpolation is new to JavaScript, it is already a long-established feature
for other programming languages, such as Python and C#:

Python
'My name is %s and I am from %s!' % ('Daniel', 'Hong Kong')

/// C#.NET
string.Format("My name is {0} and I am from {1}!", "Daniel", "Hong
Kong");

Improving readability with multiline strings
Another aspect in the readability of template literals is multiline strings. Instead of
having to write \n each time you want a new line, you can simply create a new line:

// ES5 with `\n`
var bio = "I like dogs.\nI also like cats.\nBut not so much spiders!";

// ES6 with template literals
var bio = `I like dogs.
I also like cats.
But not so much spiders!`;

Writing in ECMAScript 2015+ Chapter 1

[16]

Tagging template literals
The last feature of template literals is a little more complicated, and requires passing
the template literal into a function for it to be evaluated. It'll be clearer with an
example:

function translate(a, b, c, d) {
 console.log(a); // Array of ["My name is ", " and I am from ", "!"]
 console.log(b); // "Daniel"
 console.log(c); // "Hong Kong"
 console.log(d); // undefined
}

var name = "Daniel";
var origin = "Hong Kong";

// "My name is Daniel and I am from Hong Kong!"
translate`My name is ${name} and I am from ${origin}!`;

As you can see here, we tagged our template literal with the translate function.
This passes, as the first argument, an array of strings that compose the template
literal, splitting the strings where the placeholders are:

`My name is ${name} and I am from ${origin}!`

["My name is ", " and I am from ", "!"]

Then, subsequent arguments are passed the values of the placeholders, in the order
they appear in the template literal.

While this sounds strange and esoteric, this is actually how template literals work in
the first place, just that instead of specifying a function, a default function is
used—one that simply concatenates the strings in order.

Tagged template literals are commonly used in some specific areas. In the remainder
of this section, we will highlight one use case: translations.

Tagged template literals are also used in frontend development to
create styled components. Read more about them
at github.com/styled-components/styled-components.

https://github.com/styled-components/styled-components

Writing in ECMAScript 2015+ Chapter 1

[17]

Translations
Many platforms are internationalized, meaning they cater to audiences from different
locales who understand different languages. Part of the internationalization (i18n)
process is localization (l10n), or translation.

There are many libraries and services that help with translation, such as gettext and
Weblate. Most of them separate translations into files, one for each language, and
store the strings in a key-value format:

This works fine for single words or phrases, but what if you want to store complete
sentences with placeholders for variables? You'd have to break down your sentence
and store each part individually:

Your delivery will arrive between X and Y!

This sentence might be implemented like so (where we use t() as a library-agnostic
function to translate a string):

// en-gb.json
{
 "deliveryMessage1": "Your delivery will arrive between ",
 "deliveryMessage2": " and ",
 "deliveryMessage3": "!"
}

// main.js
var start = "X";
var end = "Y";
var message = t("deliveryMessage1") + start + t("deliveryMessage2") +
end + t("deliveryMessage3");

However, with template strings, you can store the complete sentence as a single string
and use eval() to evaluate the string as code, converting our string into a template
literal:

https://www.gnu.org/software/gettext/gettext.html
https://weblate.org/en-gb/

Writing in ECMAScript 2015+ Chapter 1

[18]

// en-gb.json
{
 "deliveryMessage": "Your delivery will arrive between ${start} and
${end}!"
}

// main.js
var start = "X";
var end = "Y";
var template = t("deliveryMessage");
var message = eval("`" + template + "`");

However, using eval() might not be the best option, because it runs whatever code
it is passed, so a malicious user can inject malicious code into our program. I hope
this goes without saying, but that's very bad for security. Furthermore, you cannot
debug code that is executed inside the eval call. Instead, we can do something like
this:

Although it requires a bit more logic to implement the translate function, it has
several benefits:

The structure of the entire sentence is stored in the language file, giving the
translator more context
Better readability using the tagged template literal

Writing in ECMAScript 2015+ Chapter 1

[19]

Deals with languages that have different sentence structures—more
specifically, differences in how they order components of a sentence. For
example, our string, "Your delivery will arrive between X and Y!", might be
translated to " " in Chinese.

Literally translating the Chinese text without rearranging the order of the phrases, we
get "Your products will at Y and Z between arrive":

So, you might end up with two translation files that look like this:

// en-gb.json
{
 "deliveryMessage1": "Your delivery will arrive between ",
 "deliveryMessage2": " and ",
 "deliveryMessage3": "!"
}
// zh-hk.json
{
 "deliveryMessage1": "Your products will at ",
 "deliveryMessage2": " and ",
 "deliveryMessage3": " between arrive!"
}

Obviously, "Your products will at" shouldn't be translated using the same key
as "Your delivery will arrive between", but that's what you'll have to do
with string concatenation.

Running asynchronous operations with
promises
Lastly, we will look at promises. Promises are a long-established pattern in the
JavaScript ecosystem, long before it was standardized as part of ECMAScript.
Bluebird, (https:/ / github. com/ petkaantonov/ bluebird) arguably the most popular
library to implement promises, was first released in 2013. We'll begin this section by
discussing the problems promises are trying to solve, the way promises solve them,
and how promises actually work. So, let's start with some code:

const getProfile = function (id) {
 const profile = ExternalAPI.retrieveProfileSync(id);
 return profile;

https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird

Writing in ECMAScript 2015+ Chapter 1

[20]

}
const profile = getProfile(324);
displayProfile(profile);

This code is written in a synchronous style, where an operation is only executed after
the previous one has completed; in other words, unless the preceding statement has
completed, any downstream statements cannot be executed.

JavaScript is single-threaded, which means only one operation can occur at any one
time. So, when the engine is waiting for the external API to return with the results,
nothing else can be executed. This means synchronous code is blocking.

Eventual completion using callbacks
The way JavaScript deals with this is through introducing asynchronous features. The
most primitive one is a callback, which is simply a function that'll be called after a
certain function has occurred. We can change the previous getProfile function to
execute asynchronously by incorporating a callback into it:

const getProfile = function () {
 ExternalAPI.retrieveProfile(324, function(error, profile) {
 if(error) { throw new Error(error.message);}
 displayProfile(profile);
 });
}

Instead of returning the profile object and then running a function to display the
profile, you pass a callback into the retrieveProfile function, which will be called
as soon as the server has returned with the results. This means you can still define
logic that depends on other pieces of information, but without blocking the execution
of the rest of the code.

Callbacks are very common in JavaScript; you've probably used callbacks when
defining event listeners:

const button = document.getElementById("cta");
button.addEventListener('click', function() {
 // ...
});

Here, we passed a callback function into the addEventListener method.

Writing in ECMAScript 2015+ Chapter 1

[21]

Layered callbacks cause callback hell
We only had one callback in our previous example, but it's not uncommon to have
many layers of callbacks. In the following example, we demonstrate a three-layered
set of callbacks:

const getFeed = function () {
 ExternalAPI.getFollowing(function(error, followings) {
 if (error) { throw new Error(error.message) }
 const followingIds = followings.map(following => following.id);
 ExternalAPI.getPostsOfUsers(followingIds, function(error, posts) {
 if (error) { throw new Error(error.message) }
 const postIds = posts.map(post => post.id);
 ExternalAPI.getComments(postIds, function(error, comments) {
 if (error) { throw new Error(error.message) }
 displayProfile();
 });
 });
 });
};

In the example, we first call an endpoint to retrieve a list of users our user is
following; then, we get the posts from those users; lastly, we get all the comments
from those posts. This code is very hard to read, for the following reasons:

There are many levels of indentation, making it difficult to elucidate, at first
glance, which level a particular line of code belongs to
Because of the indentation, the length of each line can get very long (the
longest line here is 71 characters, with a two-space indentation style)
It's hard to keep track of all the open/close brackets
There is a lot of repetition regarding how the errors are handled

This is such a common problem that developers have termed it callback hell. There
are several ways to mitigate this; one way is to separate each of these into different,
named functions:

function getFeed () {
 ExternalAPI.getFollowing(function(error, followings) {
 if(error) { throw new Error(error.message);}
 const followingIds = followings.map(following => following.id);
 getPosts(followingIds);
 });
};

function getPosts (userIds) {
 ExternalAPI.getPostsOfUsers(userIds, function(error, posts) {

Writing in ECMAScript 2015+ Chapter 1

[22]

 if(error) { throw new Error(error.message);}
 const postIds = posts.map(post => post.id);
 getComments(postIds);
 });
};

function getComments (postIds) {
 ExternalAPI.getComments(postIds, function(error, comments) {
 if(error) { throw new Error(error.message);}
 displayProfile();
 });
};

While this code solves the issue of having too many levels of indentation, there's still
a lot of repetition. Furthermore, someone reading the code has to jump from one
place to the next in order to follow the logic. So, while it might be an improvement,
it's certainly not ideal.

Avoiding callback hell with promises
Instead, we can implement the same function using promises, avoiding callback hell:

const getFeed = function () {
 WrapperAPI.getFollowing()
 .then((users) => users.map(user => user.id))
 .then(WrapperAPI.getPostsOfUsers)
 .then((posts) => posts.map(post => post.id))
 .then(WrapperAPI.getComments)
 .then(comments => displayProfile())
 .catch(error => throw new Error(error.message))
}

We'll go into how promises work shortly, but you can see that the code is already
much more readable. Furthermore, we've stopped repeating our error-handling
function and have defined it only once at the end.

Mechanism of promises
So how does a promise work? Let's start at the top:

const getFeed = function () {
 WrapperAPI.getFollowing()
 .then((followings) => {
 return followings.map(following =>following.id);

Writing in ECMAScript 2015+ Chapter 1

[23]

 })
 ...

First, ExternalAPI.getFollowing uses a callback, but we want the method to
return a Promise; therefore, we must first wrap the ExternalAPI methods using the
Promise object's constructor:

WrapperAPI.getFollowing() {
 return new Promise(function (resolve, reject) {
 ExternalAPI.getFollowing(function(error, followings) {
 if(error) { reject(error); }
 const followingIds = followings.map(following => following.id);
 resolve(followingIds);
 });
 });
}

In our wrapper function, we wrapped the ExternalAPI.getFollowing method,
which uses a callback, and returned a Promise object. We can repeat this wrapping
for any function that uses a callback and doesn't support promises.

But what is a promise? What are the resolve and reject parameters?

What is a promise?
The best description for the Promise object comes from the Promises page on Mozilla
Developer Network
(developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Pro
mise), which states:

"The Promise object represents the eventual completion (or failure) of an
asynchronous operation, and its resulting value."

With a callback, nothing is returned, which means you must nest callbacks or break
each callback into its own function; as we have demonstrated, this is bad for
readability (and thus maintainability).

But what can you return? We can't return the value of the operation, because we don't
know what it is! But, we know that the asynchronous operation will eventually return,
either successfully or with an error. So, we can return an object that represents this
future result, and that object is the Promise.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise

Writing in ECMAScript 2015+ Chapter 1

[24]

You may think of a Promise as being a promise that a result will be
provided in the future.

Structure of a promise
Let's look inside a Promise object and see its properties:

{
 [[PromiseStatus]]: "pending",
 [[PromiseValue]]: undefined,
 __proto__: { // inherits from Promise.prototype
 catch: function () { ... },
 constructor: function () { ... },
 then: function () { ... },
 Symbol(Symbol.toStringTag): "Promise"
 }
}

First of all, we can see that a Promise has its own internal
properties: [[PromiseValue]] and [[PromiseStatus]]. [[PromiseStatus]]
represents the status of the asynchronous operation, and can be in one of three states:

pending: The asynchronous operation has been dispatched, but no results
have been returned
fulfilled: The operation has returned successfully
rejected: The operation has returned with an error

When a promise is fulfilled or rejected, it is settled and will remain in that
state permanently, meaning we cannot subsequently resolve a rejected promise, or
reject a resolved promise. Some may also refer to this settled state as a resolved state.

[[PromiseValue]] is the value that'll eventually be returned. If the operation is
successful, it'll be the result that's been returned; if the operation resulted in an error,
it'll contain the Error object that was returned.

The executor function
When we create a Promise, we must pass into it a single function accepting two
arguments: resolve and reject. This function is known as the executor function,
and is executed at the point when the promise is created. The JavaScript engine passes

Writing in ECMAScript 2015+ Chapter 1

[25]

in two native functions, internal to the engine, as arguments for the resolve and
reject parameters.

When either of these internal functions is called, it will find the Promise object that it
is linked to, and update its status and value; that is, its [[PromiseStatus]] and
[[PromiseValue]] properties, respectively. After these values have been updated,
it'll then call the then or catch methods of the same Promise object.

The then and catch methods are in the __proto__ property of the
Promise instance, which is inherited from the Promise.prototype
object.

The following diagram illustrates the flow of how a promise moves from a pending
state to a settled state:

The then and catch methods accept a function, which is the handler function to call
if the results are returned successfully or unsuccessfully, respectively. This handler
function is itself automatically wrapped inside another function that guarantees the
return of a Promise.

Confused? Here's an example implementation of the then method:

Writing in ECMAScript 2015+ Chapter 1

[26]

const then = function (onResolved) {
 const results = onResolved();

 // If results is a promise, then simply return it
 if(results && typeof results.then === "function") {
 return results;
 }

 // Otherwise, wrap the result in a promise and return it
 else {
 return new Promise(function(resolve) {
 resolve(results);
 })
 }
}

Writing in ECMAScript 2015+ Chapter 1

[27]

This code shows that regardless of whether the expression inside the then method
returned is synchronous and returns a value, or it returns a promise, the then
method will always ensure a promise is returned. This allows promises to be chained
one after the other:

const getFeed = function () {
 WrapperAPI.getFollowing()
 .then((users) => users.map(user => user.id))
 .then(WrapperAPI.getPostsOfUsers)
 .then((posts) => posts.map(post => post.id))
 .then(WrapperAPI.getComments)
 .then(comments => displayProfile())
 .catch(error => throw new Error(error.message))
}

The chaining mechanism might be more clearly explained when expressed with some
temporary variables:

const getFeed = function () {
 try {
 const promise1 = WrapperAPI.getFollowing();
 const promise2 = promise1.then((users) => users.map(u => u.id));
 const promise3 = promise2.then((ids) =>
WrapperAPI.getPostsOfUsers(ids));
 const promise4 = promise3.then((posts) => posts.map(post =>
post.id));
 const promise5 = promise4.then((postIds) =>
WrapperAPI.getComments(postIds));
 const promise6 = promise5.then(comments => displayProfile());
 } catch (error) {
 throw new Error(error.message));
 }
}

A benefit of using the promise chain syntax rather than storing each promise in a
temporary variable is that you can specify a single exception-handler for all previous
operations, whereas with the latter you must wrap it inside a try/catch block,
making it less readable.

With the promise chain, whenever an exception is thrown, the program will look
down the promise chain, identify the first catch block, and call its handler. This is
known as error propagation.

Writing in ECMAScript 2015+ Chapter 1

[28]

Generators, observables, thunks, and
asynchronous functions
Using promises is a way to make asynchronous statements much more readable.
There are more advanced features of promises that we have not covered, such as
Promise.all and Promise.race, which I encourage you to study for your own
pleasure.

Promises are not the only alternative to callbacks; asynchronous functions (or
async/await) were introduced in ES8, and have been available since
Node 7.6.0, Chrome 55, Firefox 52, Safari 10.1, and all versions of Edge. There are also
other constructs that can work with, and alongside, promises, such as generators,
observables, and thunks. Again, they are fascinating topics and you should study
those patterns, so you'll be able to pick the best pattern for the situation.

Summary
In this chapter, we went through some of the most common ES6 syntax used today.
We chose ES6 because it was the most significant version and introduces the most
new syntax. However, ECMA plans to introduce a new version every year, and so I
encourage you to keep a close eye on new proposals and releases at https:/ /github.
com/tc39/ecma262.

It's easy to start writing in ES6, since ES5 syntax is still valid in ES6, so you can
convert your source code incrementally without breaking anything. You may want to
try a tool called Lebab (https:/ /lebab. io/), which allows you to transpile your ES5
code into ES6 (or even ES7/8) syntax.

In the next chapter, we will learn how to set up and keep a history of our application
using a Version Control System (VCS) called Git.

https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
https://lebab.io/
https://lebab.io/
https://lebab.io/
https://lebab.io/
https://lebab.io/
https://lebab.io/
https://lebab.io/
https://lebab.io/

Index

	Table of Contents
	Writing in ECMAScript 2015+
	Declaring variables with let and const
	Block-scoped, local variable declaration with let
	Declaring constants with const
	Comparing let and const

	Providing defaults
	Destructuring assignment
	Array-destructuring
	Use cases for array-destructuring

	Object-destructuring
	Use cases for object-destructuring

	Understanding Rest and Spread
	Combining Iterables with the Spread Operator
	Collecting variables with the rest operator
	Destructuring rest parameters

	Performing string interpolation with template literals
	Improving readability with multiline strings
	Tagging template literals
	Translations

	Running asynchronous operations with promises
	Eventual completion using callbacks
	Layered callbacks cause callback hell

	Avoiding callback hell with promises
	Mechanism of promises
	What is a promise?
	Structure of a promise
	The executor function
	Generators, observables, thunks, and asynchronous functions

	Summary

	Index

