
1
Bonus Chapter 11: Working

with Plain Text, XML, and
JSON Text Files

In this chapter, we will cover the following topics:

Loading external text files using the TextAsset public variable
Loading external text files using C# file streams
Saving external text files with C# file streams
Loading and parsing external XML files
Creating XML text data manually using XMLWriter
Saving and Loading XML text data automatically through serialization
Creating XML text files, and saving XML directly to text files with
XMLDocument.Save()
Creating JSON strings from individual objects and lists of objects
Creating individual objects and lists of objects from JSON strings

Introduction
Text-based external data is very common and very useful as it is both computer- and
human- readable. Text files may be used to allow non-technical team members to edit
written content or for recording game performance data during development and
testing. Text-based formats also permit serialization—the encoding of live object data
suitable for transmission, storing, and later retrieval.

Unity treats all of the following (and also C# scripts) as Text Assets:

.txt: Plain text file

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[2]

.html, .htm: HTML page markup (HyperText Markup Language)

.xml: XML data (eXtensible Markup Language)

.bytes: Binary data (accessed through bytes property)

.json: JSON (JavaScript Object Notation)

.csv: CSV (Comma Separate Variable)

.yaml: YAML Ain't Markup Language

.fnt: Bitmap font data (with associated image texture file)

To learn more about Unity Text Assets in the manual pages, click on
the following link:
https://docs.unity3d.com/Manual/class-TextAsset.html.

Many web-based systems use XML for asynchronous communications without
requiring user interaction, leading to the term AJAX: Asynchronous JavaScript XML.
Some modern web-based systems now use JSON for text-based communication. For
this reason, this chapter puts special focus on these two text file formats.

The Big picture
Apart from plain text, there are two common text interchange file formats: XML and
JSON. Each is discussed and illustrated through recipe examples in this chapter.

XML – the eXtensible markup language
XML is a meta-language, that is, a set of rules that allows markup languages to be
created to encode specific kinds of data. Some examples of data-description language
formats using the XML syntax include the following:

.txt: Plain text file

.html, .htm: HTML page markup (HyperText Markup Language)

.xml: XML data (eXtensible Markup Language)
SVG: Scalable Vector Graphics—an open standard method of describing
graphics supported by the Worldwide Web consortium
SOAP: Simple Object Access Protocol for the exchange of messages between
computer programs and web services
X3D: Xml 3D—an ISO standard for representing 3D objects—it is the
successor to VRML (Virtual Reality Modeling Language)

https://docs.unity3d.com/Manual/class-TextAsset.html

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[3]

JSON – the JavaScript object notation
JSON is sometimes referred to as the fat-free alternative to XML—offering similar data
interchange strengths, but being smaller, and simpler, both by not offering
extensibility and using just three characters for formatting:

property : value: the colon character separates a property name form
its value
{ }: braces are for an object
[]: square brackets are for an array of values/objects

You can read more about JSON versus XML at https://www.json.org/xml.html

In Chapter 10, Working with External Resource Files, several methods for loading
external resource files were demonstrated, which work for image, audio, and text
resources. In this chapter, several additional methods for loading text files in
particular are presented.

In Chapter 13, Shader Graphs and Video Players, some recipes illustrate the use of
JSON for a database-driven web leaderboard, and Unity game communication with
that leaderboard.

Loading external text files using the
TextAsset public variable
A straightforward way to store data in text files and then choose between them before
compiling is to use a public variable of the class TextAsset.

This technique is only appropriate when there will be no change to
the data file after game compilation, since the text file data is
serialized (mixed into) the general build resources, and so cannot be
changed after the build has been created.

https://www.json.org/xml.html

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[4]

Getting ready
For this recipe, you'll need a text (.txt) file. In the 11_01 folder, we have provided
two such files:

cities.txt

countries.txt

How to do it...
To load external text files using TextAsset, perform the following steps:

Create a new 2D project.1.
Create a UI TextGameObject, center it on screen with the Rect Transform,2.
and set its horizontal and vertical overflow to overflow.
Import the text file you wish to use into your project (for example,3.
cities.txt)
Create a C# ReadPublicTextAsset script class and attach an instance as a4.
component to your UI Text GameObject:

 using UnityEngine;
 using UnityEngine.UI;

 public class ReadPublicTextAsset : MonoBehaviour {
 public TextAsset dataTextFile;

 private void Start() {
 string textFromFile = dataTextFile.text;
 Text textOnScreen = GetComponent<Text>();
 textOnScreen.text = textFromFile;
 }
 }

With Main Camera selected in the Hierarchy view, drag the cities.txt5.
file into the public string variable dataTextFile in the Inspector.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[5]

How it works...
When the scene starts, the text content of the text file is read into variable
textFromFile. A reference is found to the UI Text component, and the text property
of that UI component is set to be the content of textFromFile. The user can then see
the content of the text file displayed in the middle of the screen.

Loading external text files using C# file
streams
For standalone executable games that both read from and write to (create or change)
text files, .NET data streams are often used for both reading and writing. This recipe
illustrates how to read a text file, while the next recipe illustrates how to write text
data to files.

This technique only works when you compile to a Windows or Mac
standalone executable; it will not work for WebGL builds, for
example.

Getting ready
For this recipe, you'll need a text file; two have been provided in the 11_01 folder.

How to do it...
To load external text files using C# file streams, perform the following steps:

Create a new C# script-class FileReadWriteManager:1.

using System;
using System.IO;

 public class FileReadWriteManager {
 public void WriteTextFile(string pathAndName, string
stringData) {
 FileInfo textFile = new FileInfo(pathAndName);
 if(textFile.Exists)
 textFile.Delete();

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[6]

 StreamWriter writer;
 writer = textFile.CreateText();

 writer.Write(stringData);
 writer.Close();
 }

 public string ReadTextFile(string pathAndName) {
 string dataAsString = "";

 try {
 StreamReader textReader = File.OpenText(
pathAndName);

 dataAsString = textReader.ReadToEnd();
 textReader.Close();
 }
 catch (Exception e) {
 return "error:" + e.Message;
 }

 return dataAsString;
 }
 }

Create a C# ReadWithStream script class and attach an instance as a2.
component to your UI Text GameObject:

using UnityEngine;
 using UnityEngine.UI;
 using System.IO;

 public class ReadWithStream : MonoBehaviour {
 private string fileName = "cities.txt";

 private string textFileContents = "(file not found yet)";
 private FileReadWriteManager fileReadWriteManager = new
FileReadWriteManager();

 private void Start () {
 string filePath = Path.Combine(Application.dataPath,
"Resources");
 filePath = Path.Combine(filePath, fileName);

 textFileContents = fileReadWriteManager.ReadTextFile(
filePath);

 Text textOnScreen = GetComponent<Text>();

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[7]

 textOnScreen.text = textFileContents;
 }
 }

Save the current scene and then add this to the list of scenes in the build.3.
Build and run your (Windows, Mac, or Linux) standalone executable.4.
Copy the text file containing your data into your standalone's Resources5.
folder (that is, the filename you set in the first statement in the Start()
method—in our listing, this is the cities.txt file).

You will need to place the files in the Resources folder manually after every
compilation.

For Windows and Linux users: When you create a Windows or
Linux standalone executable, there is a _Data folder that is created
with the executable application file. The Resources folder can be
found inside this data folder.

For Mac users: A Mac standalone application executable looks like a
single file, but it is actually a macOS "package" folder. Right-click on
the executable file and select Show Package Contents. You will then
find the standalone's Resources folder inside the Contents folder.

When you run your built executable, you should see the text file content6.
loaded and displayed in the middle of the application window.

How it works...
When the game runs, the Start() method creates the filePath string and then calls
the ReadTextFile() method from the fileReadWriteManager object, to which it
passes the filePath string. This method reads the content of the file and returns them
as a string, which is stored in the textFileContents variable. Our OnGUI() method
displays the values of these two variables (filePath and textFileContents).

Note the need to use the System.IO package for this recipe. The C# script
FileReadWriteManager.cs contains two general purpose file read and write
methods that you may find useful in many different projects.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[8]

Saving external text files with C# file
streams
This recipe illustrates how to use C# streams to write text data to a text file, either into
the standalone project's Data folder or to the Resources folder.

This technique only works when you compile to a Windows or Mac standalone
executable.

Getting ready
In the 11_02 folder, we have provided a text file containing the completed C# script
class created in the previous recipe:

FileReadWriteManager.cs

How to do it...
To save external text files using C# file streams, follow these steps:

Create a new 2D project.1.
Import the C# FileReadWriteManager.cs script class into your project.2.
Add the following C# SaveTextFile script class to the Main Camera:3.

using UnityEngine;
 using System.IO;

 public class SaveTextFile : MonoBehaviour {
 public string fileName = "hello.txt";
 public string folderName = "Data";
 private string filePath = "(no file path yet)";
 private FileReadWriteManager fileManager;

 void Start () {
 string textData = "hello \n and goodbye";
 fileManager = new FileReadWriteManager();
 filePath = Path.Combine(Application.dataPath,
folderName);
 filePath = Path.Combine(filePath, fileName);
 fileManager.WriteTextFile(filePath, textData);
 }
 }

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[9]

Save the current scene and then add this to the list of scenes in the build.4.
Build and run your (Windows, Mac, or Linux) standalone executable.5.
After running the built executable, you should now find a new text file6.
named hello.txt in the Data folder of your project's standalone files,
containing the lines hello and and goodbye

It is possible to test this when running within the Unity editor (that is, before building
a standalone application). To test this way, you'll need to create a Data folder in your
project panel.

How it works...
When the game runs, the Start() method creates the filePath string from the
public variables fileName and folderName, and then calls the WriteTextFile()
method from the fileReadWriteManager object, to which it passes the filePath
and textData strings. This method creates (or overwrites) a text file (for the given
file path and filename) containing the string data received.

There's more...
The following are some details you don't want to miss.

Choosing the Data or the Resources folder
Standalone build applications contain both a Data folder and a Resources folder.
Either of these can be used for writing (or some other folder, if desired). We generally
put read-only files into the Resources folder and use the Data folder for files that are
to be created from scratch or that have had their content changed.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[10]

Before you build your executable, you can specify a different file and folder name (for
example, Resources instead of Data). Ensure the Main Camera GameObject is
selected in the Hierarchy, and then change the values in those public variables in the
Inspector component Save text File (Script).

Loading and parsing external XML
It is useful to be able to parse (process the content of) text files and strings containing
data in the XML format. C# offers a range of classes and methods to make such
processing straightforward, which we'll explore in this recipe.

Getting ready
You'll find player name and score data in XML format in the playerScoreData.xml
file in the 11_04 folder. The content of this file is as follows:

<scoreRecordList>
 <scoreRecord>
 <player>matt</player>
 <score>2200</score>
 <date>
 <day>1</day>
 <month>Sep</month>
 <year>2012</year>
 </date>
 </scoreRecord>
 <scoreRecord>
 <player>jane</player>
 <score>500</score>
 <date>
 <day>12</day>
 <month>May</month>
 <year>2012</year>
 </date>
 </scoreRecord>
 </scoreRecordList>

The data is structured by a root element named scoreRecordList, which contains a
sequence of scoreRecord elements. Each scoreRecord element contains a player
element (which contains a player's name), a score element (which has the integer
content of the player's score), and a date element, which itself contains three child
elements – day, month, and year.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[11]

How to do it...
To load and parse external XML files, follow these steps:

Create a C# PlayerScoreDate script class containing the following:1.

 public class PlayerScoreDate
 {
 private string playerName;
 private int score;
 private string date;

 public void SetPlayerName(string playerName)
 { this.playerName = playerName; }

 public void SetScore(int score)
 { this.score = score; }

 public void SetDate(string date)
 { this.date = date; }

 override public string ToString()
 {
 return "Player = " + this.playerName + ",
 score = " + this.score + ", date = " + this.date;
 }
 }

Create a C# ParseXML script class and attach an instance as a component to2.
the Main Camera:

using UnityEngine;
 using System;
 using System.Xml;
 using System.IO;

 public class ParseXML : MonoBehaviour {
 public TextAsset scoreDataTextFile;
 private PlayerScoreDate[] playerScores = new
PlayerScoreDate[999];

 private void Start() {
 string textData = scoreDataTextFile.text;
 int numberObjects = ParseScoreXML(textData);

 for (int i = 0; i < numberObjects; i++)
 print(playerScores[i]);
 }

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[12]

 private int ParseScoreXML(string xmlData) {
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.Load(new StringReader(xmlData));

 string xmlPathPattern =
"//scoreRecordList/scoreRecord";
 XmlNodeList myNodeList = xmlDoc.SelectNodes(
xmlPathPattern);

 int i = 0;
 foreach(XmlNode node in myNodeList){
 playerScores[i] = NodeToPlayerScoreObject(node);
 i++;
 }

 return i;
 }

 private PlayerScoreDate NodeToPlayerScoreObject(XmlNode
node) {
 XmlNode playerNode = node.FirstChild;
 string playerName = playerNode.InnerXml;

 XmlNode scoreNode = playerNode.NextSibling;
 string scoreString = scoreNode.InnerXml;
 int score = Int32.Parse(scoreString);

 XmlNode dateNode = scoreNode.NextSibling;
 string date = NodeToDateString(dateNode);

 PlayerScoreDate playerObject = new PlayerScoreDate();
 playerObject.SetPlayerName(playerName);
 playerObject.SetScore(score);
 playerObject.SetDate(date);

 return playerObject;

 }

 private string NodeToDateString(XmlNode dateNode) {
 XmlNode dayNode = dateNode.FirstChild;
 XmlNode monthNode = dayNode.NextSibling;
 XmlNode yearNode = monthNode.NextSibling;

 return dayNode.InnerXml + "/" + monthNode.InnerXml +
"/" + yearNode.InnerXml;
 }
 }

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[13]

Run the scene, and the output of the print() statements should be visible3.
in the Console window:

How it works...
The PlayerScoreDate script class simply contains the three pieces of data for
player-dated scores:

The player's name (string)
The player's score (integer)
The date the score was recorded (string—to keep this recipe short...)

Note the need to use the System, System.Xml and System.IO packages for the C#
ParseXML script class.

The text property of the TextAsset variable scoreDataTextFile provides the
content of the XML file as a string, which is passed to the ParseScoreXML(...)
method.

This ParseScoreXML(...) method creates a new XmlDocument variable with the
content of this string. The XmlDocument class provides the SelectNodes() method,
which returns a list of node objects for a given element path. In this example, a list of
scoreRecord nodes is requested. A for-each statement loops for each scoreRecord,
passing the current node to method NodeToPlayerScoreObject(...), and storing
the returned object into the next slot in the playerScores array.

The NodeToPlayerScoreObject(...) method relies on the ordering of the XML
elements to retrieve the player's name, score, and data strings. The score string is
parsed into an integer, and the date node is converted to a date string using method
NodeToDateString(...). A new PlayerScoreDate object is created, and the
name, score and date stored in it, and then that object is returned.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[14]

The NodeToDateString(...) method creates a date string as a slash-separated
string by parsing the node containing the three date components.

There's more...
The following are some details you don't want to miss.

Retrieving XML data files from the web
You can use the WWW Unity class if the XML file is located on the web rather than in
your Unity project.

Creating XML text data manually using
XMLWriter
One way to create XML data structures from game objects and properties is by hand-
coding a method to create each element and its content, using the XMLWriter class.

How to do it...
To create XML text data using XMLWriter, follow these steps:

Create a C# CreateXMLString script class to add an instance as a1.
component to the Main Camera:

using UnityEngine;
 using System.Xml;
 using System.IO;

 public class CreateXMLString : MonoBehaviour {

 private void Start () {
 string output = BuildXMLString();
 print(output);
 }

 private string BuildXMLString() {
 StringWriter str = new StringWriter();
 XmlTextWriter xml = new XmlTextWriter(str);

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[15]

 // start doc and root element
 xml.WriteStartDocument();
 xml.WriteStartElement("playerScoreList");

 // data element
 xml.WriteStartElement("player");
 xml.WriteElementString("name", "matt");
 xml.WriteElementString("score", "200");
 xml.WriteEndElement();

 // data element
 xml.WriteStartElement("player");
 xml.WriteElementString("name", "jane");
 xml.WriteElementString("score", "150");
 xml.WriteEndElement();

 // end root and document
 xml.WriteEndElement();
 xml.WriteEndDocument();

 return str.ToString();
 }
 }

The XML text data should be visible in the Console panel when the scene is2.
run, and should look as follows (some newline characters have been added
to make the output more human-readable...):

<?xml version="1.0" encoding="utf-16"?>
 <playerScoreList>
 <player>
 <name>matt</name>
 <score>200</score>
 </player>
 <player>
 <name>jane</name>
 <score>150</score>
 </player>
 </playerScoreList>

How it works...
The Start() method calls BuildXMLString() and stores the returned string in the
output variable. This output text is then printed to the Console debug panel.

The BuildXMLString() method creates a StringWriter object, into which

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[16]

XMLWriter builds the string of XML elements. The XML document starts and ends
with the WriteStartDocument() and WriteEndDocument() methods. Elements
start and end with WriteStartElement() and WriteEndElement(). String
content for an element is added using WriteElementString().

There's more...
Here are some details that you won't want to miss.

Adding new lines to make XML strings more human
readable.
After every instance of the WriteStartElement() and WriteElementString()
methods, you can add a newline character using WriteWhiteSpace(). These are
ignored by XML parsing methods, but if you intend to display the XML string for a
human to see, the presence of the new line's characters makes it much more readable:

xml.WriteWhitespace("\n ");

Making data class responsible for creating XML
from list
The XML to be generated is often from a list of objects, all of the same class. In this
case, it makes sense to make the class of the objects responsible for generating the
XML for a list of those objects.

The CreateXMLFromArray class simply creates an instance of List<T> containing
PlayerScore objects, and then calls the (static) method ListToXML(), passing in
the list of objects.

The following should be a single block of code:

using UnityEngine;
using System.Collections.Generic;

public class CreateXMLFromArray : MonoBehaviour {
 private List<PlayerScore> playerScoreList;

 private void Start () {
 playerScoreList = new List<PlayerScore>();

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[17]

 playerScoreList.Add (new PlayerScore("matt", 200));
 playerScoreList.Add (new PlayerScore("jane", 150));

 string output = PlayerScore.ListToXML(playerScoreList);
 print(output);
 }
}

All the hard work is now the responsibility of the PlayerScore class. This class has
two private variables for the player's name and score and a constructor that accepts
values for these properties. The public static method ListToXML() takes a List
object as an argument, and uses XMLWriter to build the XML string, looping through
each object in the list and calling the object's ObjectToElement() method. This
method adds an XML element to the XMLWriter argument received for the data in
that object:

using System.Collections.Generic;
using System.Xml;
using System.IO;

public class PlayerScore {
 private string _name;
 private int _score;

 public PlayerScore(string name, int score) {
 _name = name;
 _score = score;
 }

 static public string ListToXML(List<PlayerScore> playerList) {
 StringWriter str = new StringWriter();
 XmlTextWriter xml = new XmlTextWriter(str);
 xml.WriteStartDocument();
 xml.WriteStartElement("playerScoreList");
 foreach (PlayerScore playerScoreObject in playerList) {
 playerScoreObject.ObjectToElement(xml);
 }

 xml.WriteEndElement();
 xml.WriteEndDocument();
 return str.ToString();
 }

 private void ObjectToElement(XmlTextWriter xml) {
 // data element
 xml.WriteStartElement("player");
 xml.WriteElementString("name", _name);

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[18]

 string scoreString = "" + _score; // make _score a string
 xml.WriteElementString("score", scoreString);
 xml.WriteEndElement();
 }
 }

Saving and loading XML text data
automatically through serialization
Another way to work with XML data structures from game objects and properties is
by serializing the content of an object automatically. This technique automatically
generates XML for all the public properties of an object. This recipe uses the
XmlSerializer class that can be found in the standard System.Xml C# package.

This recipe has been adapted from this 2013 (still works!) Unify
Community Wiki article:
http://wiki.unity3d.com/index.php?title=Saving_and_Loading_
Data:_XmlSerializer

Getting ready
In the 11_06 folder, you'll find two XML data files, allowing you to test the reader
with different XML text file data files.

How to do it...
To create XML text data through serialization, perform the following steps:

Create a C# PlayerScore script class:1.

 using System.Xml.Serialization;

 [System.Serializable]
 public class PlayerScore
 {
 [XmlElement("Name")]
 public string name;

 [XmlElement("Score")]
 public int score;

http://wiki.unity3d.com/index.php?title=Saving_and_Loading_Data:_XmlSerializer
http://wiki.unity3d.com/index.php?title=Saving_and_Loading_Data:_XmlSerializer

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[19]

 [XmlElement("Version")]
 public string version;
 }

Create a C# PlayerScoreCollection scrip class: 2.

 using System.Xml.Serialization;
 using System.IO;

 [XmlRoot("PlayerScoreCollection")]
 public class PlayerScoreCollection
 {
 [XmlArray("PlayerScores"), XmlArrayItem("PlayerScore")]
 public PlayerScore[] playerScores;

 public void Save(string path) {
 var serializer = new
XmlSerializer(typeof(PlayerScoreCollection));
 using (var stream = new FileStream(path,
FileMode.Create)) {
 serializer.Serialize(stream, this);
 }
 }
 }

Create a C# XmlWriter script class and attach an instance as a component3.
to the Main Camera:

 using UnityEngine;
 using System.IO;

 public class XmlWriter : MonoBehaviour {
 public string fileName = "playerData.xml";
 public string folderName = "Data";

 private void Start() {
 string filePath = Path.Combine(Application.dataPath,
folderName);
 filePath = Path.Combine(filePath, fileName);

 PlayerScoreCollection psc =
CreatePlayScoreCollection();
 psc.Save(filePath);
 print("XML file should now have been created at: " +
filePath);
 }

 private PlayerScoreCollection CreatePlayScoreCollection()

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[20]

{
 PlayerScoreCollection playerScoreCollection = new
PlayerScoreCollection();

 // make 2 slot array
 playerScoreCollection.playerScores = new
PlayerScore[2];

 playerScoreCollection.playerScores[0] = new
PlayerScore();
 playerScoreCollection.playerScores[0].name = "matt";
 playerScoreCollection.playerScores[0].score = 22;
 playerScoreCollection.playerScores[0].version =
"v0.5";

 playerScoreCollection.playerScores[1] = new
PlayerScore();
 playerScoreCollection.playerScores[1].name =
"joelle";
 playerScoreCollection.playerScores[1].score = 5;
 playerScoreCollection.playerScores[1].version =
"v0.9";

 return playerScoreCollection;
 }
 }

You can quickly test the scene in the Unity Editor if you create4.
a Data folder in the Project panel and then run the scene. After 10-20
seconds, you should now find that text file playerData.xml has been
created in the Data folder.
Save the current scene and then add this to the list of scenes in the build.5.
Build and run your (Windows, Mac, or Linux) standalone executable.6.
You should now find a new text file named playerData.xml in the Data7.
folder of your project's standalone files, containing the XML data for the
three players.
The content of the playerData.xml file should be the XML player list8.
data, that is:

 <?xml version="1.0" encoding="us-ascii"?>
 <PlayerScoreCollection
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <PlayerScores>
 <PlayerScore>

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[21]

 <Name>matt</Name>
 <Score>22</Score>
 <Version>v0.5</Version>
 </PlayerScore>
 <PlayerScore>
 <Name>joelle</Name>
 <Score>5</Score>
 <Version>v0.9</Version>
 </PlayerScore>
 </PlayerScores>
 </PlayerScoreCollection>

How it works...
The Start() method of class XmlWriter defines the file path
(Data/playerData.xml) and creates a new PlayerScoreCollection object psc,
by invoking the method CreatePlayScoreCollection(). The Save(...) method of
the PlayerScoreCollection object is then invoked, passing the file path.

The CreatePlayScoreCollection() method of class XmlWriter creates a new
PlayerScoreCollection, and inserts into this an array of two PlayerScore objects
with name/score/version values as follows:

 matt, 22, v0.5
 joelle, 5, v.09

The Save(...) method of class PlayerScoreCollection creates a new
XmlSerializer for the class type, and uses a FileStream to tell C# to serialize the
content of the PlayerScoreCollection object (that is, its array of PlayerScore
objects) as text to that file.

There's more...
Here are some details you don't want to miss.

Defining the XML node names
We can use compiler statements to define the XML element name that will be used to
encode each object property. For example, we have defined element Name (with a
capital letter N) for the name property of each PlayerScore:

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[22]

 [XmlElement("Name")]
 public string name;

If this hadn't been declared, then the XML Serializer would have defaulted to the
lowercase property name name for these data elements.

Loading data objects from XML text
We can write static (class) methods for class PlayerScoreCollection that use the
XMLSerializer to load XML data and create data objects from that loaded data.

Here is a method to load from a filepath:

 public static PlayerScoreCollection Load(string path) {
 var serializer = new
XmlSerializer(typeof(PlayerScoreCollection));
 using (var stream = new FileStream(path, FileMode.Open)) {
 return serializer.Deserialize(stream) as
PlayerScoreCollection;
 }
 }

Another method can be written to load from a text string:

 public static PlayerScoreCollection LoadFromString(string text) {
 var serializer = new
XmlSerializer(typeof(PlayerScoreCollection));
 return serializer.Deserialize(new StringReader(text)) as
PlayerScoreCollection;
 }

For example, you could create a public TextAsset variable, and then create a
PlayerScoreCollection object by invoking this static method, then loop through
and print out the loaded objects with code such as the following:

 public TextAsset dataAsXmlString;

 private void Start()
 {
 PlayerScoreCollection objectCollection =
 PlayerScoreCollection.LoadFromString(dataAsXmlString.text);

 foreach(PlayerScore playerScore in
objectCollection.playerScores){
 print("name = " + playerScore.name + ", score = " +
playerScore.score + ",

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[23]

 version = " + playerScore.version);
 }
 }

Creating XML text files – saving XML
directly to text files with
XMLDocument.Save()
It is possible to create an XML data structure and then save that data directly to a text
file using the XMLDocument.Save() method; this recipe illustrates how.

How to do it...
To save XML data to text files directly, perform the following steps:

Create a new C# PlayerXMLWriter script class:1.

 using System.Xml;
 using System.IO;

 public class PlayerXMLWriter {
 private string filePath;
 private XmlDocument xmlDoc;
 private XmlElement elRoot;

 public PlayerXMLWriter(string filePath) {
 this.filePath = filePath;
 xmlDoc = new XmlDocument();

 if(File.Exists (filePath)) {
 xmlDoc.Load(filePath);
 elRoot = xmlDoc.DocumentElement;
 elRoot.RemoveAll();
 }
 else {
 elRoot =
xmlDoc.CreateElement("playerScoreList");
 xmlDoc.AppendChild(elRoot);
 }
 }

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[24]

 public void AddXMLElement(string playerName, string
playerScore) {
 XmlElement elPlayer =
xmlDoc.CreateElement("playerScore");
 elRoot.AppendChild(elPlayer);

 XmlElement elName = xmlDoc.CreateElement("name");
 elName.InnerText = playerName;
 elPlayer.AppendChild(elName);

 XmlElement elScore =
xmlDoc.CreateElement("score");
 elScore.InnerText = playerScore;
 elPlayer.AppendChild(elScore);
 }

 public void SaveXMLFile() {
 xmlDoc.Save(filePath);
 }
 }

Create a C# CreateXMLTextFile script class and attach an instance as a2.
component to the Main Camera:

 using UnityEngine;
 using System.IO;

 public class CreateXMLTextFile : MonoBehaviour {
 public string fileName = "playerData.xml";
 public string folderName = "Data";

 private void Start() {
 string filePath = Path.Combine(
Application.dataPath, folderName);
 filePath = Path.Combine(filePath, fileName);

 PlayerXMLWriter playerXMLWriter = new
PlayerXMLWriter(filePath);
 playerXMLWriter.AddXMLElement("matt", "55");
 playerXMLWriter.AddXMLElement("jane", "99");
 playerXMLWriter.AddXMLElement("fred", "101");
 playerXMLWriter.SaveXMLFile();

 print("XML file should now have been created at:
" + filePath);
 }
 }

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[25]

You can quickly test the scene in the Unity Editor if you create3.
a Data folder in the Project panel and then run the scene. After 10-20
seconds, you should now find that text file playerData.xml has been
created in the Data folder.
Save the current scene and then add this to the list of scenes in the build.4.
Build and run your (Windows, Mac, or Linux) standalone executable.5.
You should now find a new text file named playerData.xml in the Data6.
folder of your project's standalone files, containing the XML data for the
three players:
The content of the playerData.xml file should be the XML player list7.
data:

How it works...
The Start() method creates playerXMLWriter, a new object of the
PlayerXMLWriter class, to which it passes the new, required XML text file
filePath as an argument. Three elements are added to the PlayerXMLWriter
object, which store the names and scores of three players. The SaveXMLFile()
method is called and a debug print() message is displayed.

The constructor method of the PlayerXMLWriter class works as follows: when a
new object is created, the provided file path string is stored in a private variable; at
the same time, a check is made to see whether any file already exists. If an existing file
is found, the content elements are removed; if no existing file is found, then a new
root element, playerScoreList, is created as the parent for child data nodes. The
method AddXMLElement() appends a new data node for the provided player name

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[26]

and score. The method SaveXMLFile() saves the XML data structure as a text file for
the stored file path string.

Creating JSON strings from individual
objects and lists of objects
The JsonUtility class allows us to easily create JSON strings from individual
objects, and also Lists of objects.

How to do it...
To create JSON strings from individual and Lists of objects perform the following
steps:

Create a new C# script class named PlayerScore:1.

 using UnityEngine;

 [System.Serializable]
 public class PlayerScore {
 public string name;
 public int score;

 public string ToJson() {
 bool prettyPrintJson = true;
 return JsonUtility.ToJson(this, prettyPrintJson);
 }
 }

Create a new C# script class named PlayerScoreList:2.

 using UnityEngine;
 using System.Collections.Generic;

 [System.Serializable]
 public class PlayerScoreList {
 public List<PlayerScore> list = new
List<PlayerScore>();

 public string ToJson() {
 bool prettyPrint = true;
 return JsonUtility.ToJson(this, prettyPrint);

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[27]

 }
 }

Create a C# ToJson script class and attach an instance as a component to3.
the Main Camera:

 using UnityEngine;

 public class ToJson : MonoBehaviour {
 private PlayerScore playerScore1 = new PlayerScore();
 private PlayerScore playerScore2 = new PlayerScore();
 private PlayerScoreList playerScoreList = new
PlayerScoreList();

 private void Awake() {
 playerScore1.name = "matt";
 playerScore1.score = 800;

 playerScore2.name = "joelle";
 playerScore2.score = 901;

 playerScoreList.list.Add(playerScore1);
 playerScoreList.list.Add(playerScore2);
 }

 void Start() {
 ObjectToJson();
 CollectionToJson();
 }

 public void ObjectToJson() {
 string objectAsString = playerScore1.ToJson();
 print("1: Object to JSON \n" + objectAsString);
 }

 public void CollectionToJson() {
 string objectListAsString =
playerScoreList.ToJson();
 print("2: List of objects to JSON \n" +
objectListAsString);
 }
 }

Run the scene. Two messages should be output to the Console panel:4.

 1: Object to JSON
 {
 "name": "matt",

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[28]

 "score": 800
 }

These should be followed by this:

 2: List of objects to JSON
 {
 "list": [
 {
 "name": "matt",
 "score": 800
 },
 {
 "name": "joelle",
 "score": 901
 }
]
 }

How it works...
The PlayerScore scrip class declares two public properties: name and score. It also
defines a public method ToJson() that returns a string containing the values of the
properties encoded in JSON via the JsonUtility.ToJson(...) method.

The PlayerScoreList script class declares a single public property list , which is a
C# List<> of PlayerScore obejcts. So, we can store zero, one, or any number of
PlayerScore objects in our list. Also declared is a single public method ToJson()
that returns a string containing the values of the content of
the list property encoded in JSON via the JsonUtility.ToJson(...) method.

It also defines a public ToJson() method that returns a string containing the values
of the properties encoded in JSON via the JsonUtility.ToJson(...) method.

The Awake() method creates two PlayerScore objects, with some demo data in
objects playerScore1 and playerScore2. It also creates an instance-object of class
PlayerScoreList, and adds references to the two objects to this list.

The Start() method first invokes the ObjectToJson() method, then it invokes
the CollectionToJson().

Method ObjectToJson() invokes the ToJson() method of object playerScore1,
which returns a string, which is then printed to the Console panel.

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[29]

Method CollectionToJson() invokes the ToJson() method of object list
playerScoreList which returns a string, which is then printed to the Console
panel.

As we can see, both PlayerScore and PlayerScoreList classes define a ToJson()
method, which makes use of the JsonUtiltyToJson() method. In both cases, their
ToJson() method returns a string that is the JSON representation of the object's data.

The PlayerScore class's ToJson() method outputs a JSON object string in this
form:

 { "name": "matt", "score": 800 }.

The ToJson() method of the PlayerScoreList class outputs a JSON array string in
this form:

 {
 "list": [
 { "name": "matt", "score": 800 },
 { "name": "joelle", "score": 901 }
]
 }

As we can see, the JsonUtility class's ToString() method is capable of serializing
individual objects, and C# Lists of objects into a storable string.

Creating individual objects and Lists of
objects from JSON strings
The JsonUtility class allows us to easily parse (process) JSON strings and extract
individual objects, and also Lists of objects.

How to do it...
To create individual objects and Lists of objects from JSON strings, perform the
following steps:

Create a new C# script class named PlayerScore:1.

 using UnityEngine;

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[30]

 [System.Serializable]
 public class PlayerScore {
 public string name;
 public int score;

 public static PlayerScore FromJSON(string jsonString)
{
 return
JsonUtility.FromJson<PlayerScore>(jsonString);
 }
 }

Create a new C# script class named PlayerScoreList:2.

 using UnityEngine;
 using System.Collections.Generic;

 [System.Serializable]
 public class PlayerScoreList {
 public List<PlayerScore> list = new
List<PlayerScore>();

 public static PlayerScoreList FromJSON(string
jsonString) {
 return
JsonUtility.FromJson<PlayerScoreList>(jsonString);
 }
 }

Create a C# ToJson script class and attach an instance as a component to3.
the Main Camera:

 using UnityEngine;

 public class FromJson : MonoBehaviour {
 private void Start() {
 JsonToObject();
 JsonToList();
 }

 public void JsonToObject() {
 string playerScoreAsString = "{
\"name\":\"matt\", \"score\":201}";
 PlayerScore playerScore =
PlayerScore.FromJSON(playerScoreAsString);

 print(playerScore.name + ", " +
playerScore.score);

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[31]

 }

 public void JsonToList() {
 string playerScorelistAsString = "";

 playerScorelistAsString += "{";
 playerScorelistAsString += "\"list\": [";
 playerScorelistAsString += " {";
 playerScorelistAsString += " \"name\":
\"matt\",";
 playerScorelistAsString += "
\"score\": 800";
 playerScorelistAsString += " },";
 playerScorelistAsString += " {";
 playerScorelistAsString += " \"name\":
\"joelle\",";
 playerScorelistAsString += "
\"score\": 901";
 playerScorelistAsString += " }";
 playerScorelistAsString += "]";
 playerScorelistAsString += "}";

 PlayerScoreList playerScoreList =
PlayerScoreList.FromJSON(playerScorelistAsString);

 foreach (var playerScore in playerScoreList.list)
{
 print("from list :: " + playerScore.name + ",
" + playerScore.score);
 }
 }
 }

Run the scene. Three messages should be output to the Console panel:4.

 matt, 201

They should be followed by this:

 from list :: matt, 800
 from list :: joelle, 901

How it works...
The Start() method first invokes method JsonToObject(), and then it invokes

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[32]

method JsonToList().

The method JsonToObject() declares a string that defines one PlayerScore object:
{name:matt, score:201}. The string is created using escaped double-quote
characters for property names and text data (quotes aren't needed for the numeric
data). The JSON string contains the following:

{
 "name":"matt",
 "score":201
}

Using escaped double-quote characters for property names and text data (quotes
aren't needed for the numeric data). The static method FromJSON(...) of the class
PlayerScore is then invoked with this JSON data string as its argument. The
method returns a PlayerScore object, whose value is then printed to the Console
panel.

The static method FromJSON(...) of class PlayerScore invokes the FromJson()
method of the JsonUtility class, and provides the class type PlayerScore.

The method JsonToList() declares a string that defines a list of two PlayerScore
objects: {name:matt, score:800} and {name:joelle, score:901}. The JSON
string contains the following:

{
 "list": [
 {
 "name": "matt",
 "score": 800
 },
 {
 "name": "joelle",
 "score": 901
 }
]
}

The static method FromJSON(...) of the class PlayerScoreList is then invoked
with this JSON data string as its argument. The method returns a PlayerScoreList
object. A foreach loop extracts each PlayerScore object from the list property of
the PlayerScoreList object. Each object's name and score values are printed out to
the Console panel, prefixed with the text from the list.

The static method FromJSON(...) of class PlayerScoreList invokes the

Bonus Chapter 11: Working with Plain Text, XML, and JSON Text
Files Chapter 1

[33]

FromJson() method of the JsonUtility class, and provides the class type
PlayerScoreList.

As we can see, the JsonUtility class's FromJson() method is capable of
deserializing data into individual objects, and C# Lists of objects inside repository
objects, such as PlayerScoreList.

	Bonus Chapter 11: Working with Plain Text, XML, and JSON Text Files
	Introduction
	The Big picture
	XML – the eXtensible markup language
	JSON – the JavaScript object notation

	Loading external text files using the TextAsset public variable
	Getting ready
	How to do it...
	How it works...

	Loading external text files using C# file streams
	Getting ready
	How to do it...
	How it works...

	Saving external text files with C# file streams
	Getting ready
	How to do it...
	How it works...
	There's more...
	Choosing the Data or the Resources folder

	Loading and parsing external XML
	Getting ready
	How to do it...
	How it works...
	There's more...
	Retrieving XML data files from the web

	Creating XML text data manually using XMLWriter
	How to do it...
	How it works...
	There's more...
	Adding new lines to make XML strings more human readable.
	Making data class responsible for creating XML from list

	Saving and loading XML text data automatically through serialization
	Getting ready
	How to do it...
	How it works...
	There's more...
	Defining the XML node names
	Loading data objects from XML text

	Creating XML text files – saving XML directly to text files with XMLDocument.Save()
	How to do it...
	How it works...

	Creating JSON strings from individual objects and lists of objects
	How to do it...
	How it works...

	Creating individual objects and Lists of objects from JSON strings
	How to do it...
	How it works...

