
What's New in Node.js 10.x and
NPM 6.x?

Development in today's age is super speedy. Everyone wants to upgrade. It was only 6
months ago, when I started this book, that Node.js was running on 9.XX, and now we have
a new release focusing on current aspects such as HTTP2, security, and wider scope.

The Node.js project updated to version 10.0.0 and NPM Inc. updated to version 6.0, the
JavaScript package manager. Both of these releases had a particular focus on security
upgradations and enhancements. Node.js updated to OpenSSL version 1.1.0, and NPM
included a new update of automatically detecting insecure dependencies. Node.js included
new features with HTTP/2 support and a new programming API, N Chakra. We will look
at all of these features in this section. Furthermore, we will look at VS Code tips and tricks
and the necessary extensions that will make our life easier. So let's get started.

Node.js 10 features
The release of Node.js 10.X majorly focused on security and NextGen support. The major
new features of this release are as follows:

HTTP/2 support out of the box
N-API support
TDD support for generators and asyncfunctions
V8 upgrade

The full release list can be found at https:/ ​/​nodejs. ​org/​en/ ​blog/ ​release/ ​v10.​0. ​0/​. In
this section, we will look at some of the most prominent features.

Encouraging modern cryptography
Node.js 10 gets a major upgrade to OpenSSL v1.1.0. Node.js now also has ChaCha20
cipher (meant for better performance with cryptography) and Poly1305 authenticator (the
RFC protocol used to verify data integrity and authenticity).

https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/
https://nodejs.org/en/blog/release/v10.0.0/

What's New in Node.js 10.x and NPM 6.x?

[2]

According to the official OpenSSL website (https:/ ​/​www. ​openssl. ​org/ ​),
OpenSSL is a robust, commercial-grade, and full-featured toolkit for
the Transport Layer Security (TLS) and Secure Sockets Layer (SSL)
protocols. It is one of the means to have secure communication over the
open network. According to the IETF document (https:/ ​/​tools. ​ietf.
org/​html/ ​rfc7539), ChaCha20 is a high-speed cipher (higher performance
compared to traditional AES, which is not sensitive to timing attacks) and
Poly1305 is a high-speed messaging authentication code with easy
implementation.

Node.js now has cutting-edge cryptography added to its ecosystem.

Updated JavaScript language features in V8
Node.js just upgraded its internal V8 library version to 6.6. This means, we have more
flexible JavaScript features. The following are the major features that are included in
Node.js 10.x:

The Function.prototype.toString() method now gives out the exact slices
of source, including white spaces and comments. This will preserve everything;
consider the following function for example:

function /*this is demo comment*/ tsms (){
 console.log(“hello from typescript microservices”);
}
console.log(tsms.toString());

The console output will be the exact version of the definition, that is, the white
space after tsms and the comment before it.

The catch clause of try statements no longer needs a required parameter to
catch for. We have a generic catch clause that can catch anything. We can
simply write something like this:

try{
 trySomeDoubtfulCodeWhichMightThrowError()
}catch{ //here i am not doing anything
 handleDoubtfulCodeAndNotLetItSpread()
}

https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539

What's New in Node.js 10.x and NPM 6.x?

[3]

Backward compatibility support for the trimLeft() and trimRight() methods
by adding them as aliases for newly implemented
String.prototype.trimStart() and
String.prototype.trimEnd() functions to ensure backward compatibility.
With the introduction of V8's new Ignition bytecode interpreter, V8 6.6 now has
enabled the feature for the compilation of JavaScript source code to a bytecode on
a background thread out of the box so that more work can be performed on the
main thread and we get better I/O efficiency.
There are huge asynchronous performance improvements for promises and
asynchronous functions. You can check the V8 blogsite (https:/ ​/​v8project.
blogspot. ​in/ ​2018/ ​03/ ​v8- ​release- ​66. ​html) for benchmarks.
More protocols are introduced to prevent side channel vulnerabilities or
information leaks (prevents attacks that are possible when a process is reverse
engineered).
This is the first version that officially ships without GYP files.

Full support for N-API
The experimental N-API is now no longer experimental and is fully supported, but you
must be wondering what is N-API anyway?

N-API is an API that allows anyone to create native Addons (an added library that boosts
the Node.js computational efficiency). JavaScript is not always a solution when it comes to
high efficiency. Node.js or JavaScript is usually a solution for higher I/O, but when it comes
to computational efficiency, we need some external tool. Node.js Addon runs separately
from JavaScript runtime and is executed as part of Node.js itself through Node scripts that
invoke native commands. It gives us an interface between JavaScript running in Node.js V8
and C/C++ libraries (the power of high I/O and high computational efficiency). The power
is such that we can use this interface to make objects in C++ which can be loaded in the
Node.js application through a require() or import function.

Node.js Addons are treated the same as regular Node.js modules, but they have an in-built
performance boost for any requirements that need high-computational loads. By using this,
we can also communicate with the operating system through lower level APIs of the
operating system. However, developing these Addons needs core and fundamental
knowledge of different components of Node.js: V8, libuv, C++, and other linked libraries,
such as OpenSSL, as we are making something which involves everything.

https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html
https://v8project.blogspot.in/2018/03/v8-release-66.html

What's New in Node.js 10.x and NPM 6.x?

[4]

N-APIs ease up the processes carried out by libraries or modules by offering an API to
build native Addons that have the capabilities that we mentioned earlier. The goal of
creating N-API modules is to make these components so stable that it can easily run across
multiple versions of Node.js with just one compilation. This is achieved by ensuring that N-
API is Application Binary Interface (ABI) stable. One more new term added to our
vocabulary. We all know API, but what is ABI?

We can define an API as a definitive contract between a caller and a sender to process a
service request. An ABI is something similar and is a contract between pieces of binary
code. It defines the mechanisms by which functions are invoked, including how parameters
are passed between the consumer and the provider, how values returned from a service
function are ultimately provided to consumer, how the library is implemented, how code is
generated, and how everything is loaded into memory.

Node.js Time-Travel
The Node.js 10.x version comes with Node-ChakraCore, which gives the usage of Time-
Travel innovation through the NodeChakra Time-Travel Debug VS Code extension
(https:/​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ttd-​trace- ​tools. ​node-
chakracore-​time- ​travel- ​debugger#overview). This extension gives power to the user to
step back in execution to debug code that was already run:

https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview
https://marketplace.visualstudio.com/items?itemName=ttd-trace-tools.node-chakracore-time-travel-debugger#overview

What's New in Node.js 10.x and NPM 6.x?

[5]

To enable Time-Travel, you need to install the extension from the preceding link and enable
Time-Travel by adding the following debug configuration:

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit:
https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Time-Travel Live",
 "type": "node-chakracore-time-travel-debugger",
 "request": "launch",
 "program": "${workspaceRoot}/dist/index.js",
 "cwd": "${workspaceFolder}",
 "smartStep": true,
 "outFiles": [
 "../dist/**/*.js"
]
 }
]
}

Better error handling
Until now, Node.js only had messages associated with predefined errors thrown. This
made handling errors globally a challenging and error-prone task, as we manually needed
to compare the error message string returned by the function to any predefined values to
determine what kind of error needs to be thrown and what kind of preventive measures are
needed to handle the error. This made it difficult to manage errors in the code base.

To solve this particular problem and get better flexibility to improve error messages while
upgrading to any new release, Node.js added an error code for every error object thrown by
the Node.js API. These error messages can be backported to previous versions by enabling
easy management of internationalization of applications.

Experimental fs/promise functions
The experimental fs/promises API provides an alternate modern solution to
asynchronous filesystem methods that return a Promise object rather than going with
traditional callbacks. We can access this API through the fs/promises package.

What's New in Node.js 10.x and NPM 6.x?

[6]

The absence of callbacks makes code simple, clean, elegant, readable, and easy to manage.
We don't need a try/catch block; we can just attach a catch function, as follows:

WhateverIWantToDo().catch(console.error)

HTTP/2 support
The http2 module now provides support for the HTTP/2 protocol without the need of any
external libraries. It can be accessed by running the following:

const http2 = require('http2');

Alternatively, it can be accessed through this:

import * as http2 from {http2} //provided appropriate types are imported

The http2 core API is more symmetric and performance efficient between client and server
as compared to the HTTP API. For example, most events such as error, connect, and
stream can be emitted by any client-side or server-side code. More information on the
HTTP API can be found here (https:/ ​/ ​nodejs. ​org/​api/ ​http2. ​html).

NPM 6 features
NPM 6 gives protection against insecure code, which is used by more than 10 million
JavaScript developers across the world to download more than 900 million packages of
reusable modular code per day. The new protection methods include automatic alerts if
anyone attempts to use open source code with known security issues and an option for npm
audit, which is a command that allows developers to analyze complex and interdependent
code, to pinpoint specific vulnerabilities in the code. Whenever you install npm, you will get
the following alert if there is a security issue:

https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/http2.html

What's New in Node.js 10.x and NPM 6.x?

[7]

Whenever you run npm audit afterward, you will get a detailed report like this:

As we learned in Chapter 10, Hardening Your Application, Node.js 6.0 brings security out of
the box. Whatever new idea we have, we already see someone implementing it to be
standardized in the language. This is how the growth in the technology is right now. Now,
due to this feature, every developer will know whether the code is safe to use or not. In case
of an error, a developer can then easily resolve it by creating a PR to the code repository.

That's it from my end. I hope you have a great journey in the world of microservices
through Node.js and TypeScript!

	Table of Contents
	What's New in Node.js 10.x and NPM 6.x?
	Index

