
1
Bonus Chapter 16 : Virtual
Reality and Extra Features

In this chapter, we will cover the following topics:

Saving screenshots from the game
Saving and loading player data – using static properties
Saving and loading player data – using PlayerPrefs
Loading game data from a text file map
UI Slider to change game quality settings
Pausing the game
Implementing slow motion
Gizmo to show the currently selected object in the scene panel
Editor snap-to grid drawn by Gizmo
Creating a VR project
Adding 360-degree videos to a VR project
Editing VR content inside a VR environment – the XR Editor

Introduction
There are too many features in Unity 2018 to all be covered in a single book. In this
chapter, we will present a set of recipes illustrating VR game development in Unity,
plus a range of additional Unity features that we wanted to include.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[2]

The Big picture
Apart from plain text, there are three sections below will give you an idea of what this
chapter is about.

Virtual reality
VR is about presenting to the player an immersive audio-visual experience, engaging
enough for them to lose themselves in exploring and interacting with the game world
that has been created.

From one point of view, VR simply requires two cameras in order to generate the
images for each eye to give that 3D effect. But effective VR needs content, UI controls,
and tools to help create them. In this chapter, we will explore recipes that work with
360-degree videos, and Unity's XR Editor toolset.

Gizmos
Gizmos are another kind of Unity editor customization. Gizmos are visual aids for
game designers that are provided in the scene panel. They can be useful as setup aids
(to help us know what we are doing), or for debugging (understanding why objects
aren't behaving as expected).

Gizmos are not drawn through Editor scripts, but as part of Monobehaviours, so they
only work for GameObjects in the current scene. Gizmo drawing is usually performed
in two methods:

OnDrawGizmos(): This is executed every frame, for every GameObject in
the hierarchy
OnDrawGizmosSelect(): This is executed every frame, for just the/those
GameObject(s) that are currently selected in the hierarchy

Gizmo graphical drawing makes it simple to draw lines, cubes, and spheres. More
complex shapes can also be drawn with meshes, and you can also display 2D image
icons (located in the Project folder: Assets | Gizmos).

Several recipes in this chapter illustrate how Gizmos can be useful. Often, new
GameObjects created from Editor Extensions will have helpful Gizmos associated
with them.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[3]

Saving/Loading data at runtime
When loading/saving data either locally, it is important to keep in mind the data
types that can be used. When writing C# code, our variables can be of any type
permitted by the language, but when communicated by the web interface, or to a
local storage using Unity's PlayerPrefs class, we are restricted in the types of data that
we can work with. When using the PlayerPrefs class, we are limited to saving and
loading integers, floats, and strings. We provide several recipes illustrating ways to
save and load data at Run-Time, including the use of static variables, PlayerPrefs, and
a public TextAsset containing text-format data for a 2D game level.

Saving screenshots from the game
In this recipe, we will learn how to take in-game snapshots, and save them in an
external file. Better yet, we will make it possible to choose between three different
methods.

This technique only works in the Unity Editor, or when you build to
a standalone Windows or Mac executable (it will not work for Web Player builds, for
example):

Getting ready
To follow this recipe, please import the screenshots package, which is available in
the 16_01 folder, to your project. The package includes a main camera, cube, and
sphere—something to be able to recognize when the screenshot is taken!

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[4]

How to do it...
To save the screenshots from your game, follow these steps:

Create a new 3D project.1.
Import the screenshots package by choosing the following menu: Assets2.
| Import Package | Custom Package...

Open the scene provided in the screenshots package.3.
Create a C# CaptureScreenshot script class and add an instance object as4.
a component to the Main Camera:

using System.Collections;
 using UnityEngine;
 using System.IO;

 public class CaptureScreenshot : MonoBehaviour {
 public string prefix = "Screenshot";
 public enum CaptureMethod {
 SCREENSHOT_PNG,
 READ_PIXELS_PNG,
 READ_PIXELS_JPG
 };
 public CaptureMethod captureMethod =
CaptureMethod.SCREENSHOT_PNG;
 public int screenshotScale = 1;

 // A slider from 0 to 100 from which to set JPG quality
 [Range(0, 100)]
 public int jpgQuality = 75;

 private Texture2D texture;
 string date;

 void Update () {
 if (Input.GetKeyDown (KeyCode.P)){
 TakeShot();
 }
 }

 private void TakeShot() {
 date = System.DateTime.Now.ToString("_d-MMM-yyyy-HH-
mm-ss-f");

 if (CaptureMethod.SCREENSHOT_PNG == captureMethod){
 string fileExtension = ".png";
 string filename = prefix + date + fileExtension;

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[5]

 ScreenCapture.CaptureScreenshot(filename,
screenshotScale);
 } else {
 StartCoroutine(ReadPixels());
 }
 }

 IEnumerator ReadPixels () {
 byte[] bytes;
 yield return new WaitForEndOfFrame();

 int screenWidth = Screen.width;
 int screenHeight = Screen.height;
 Rect screenRectangle = new Rect(0, 0, screenWidth,
screenHeight);
 texture = new Texture2D (screenWidth, screenHeight,
TextureFormat.RGB24, false);
 texture.ReadPixels(screenRectangle, 0, 0);
 texture.Apply();

 switch(captureMethod){
 case CaptureMethod.READ_PIXELS_JPG:
 bytes = texture.EncodeToJPG(jpgQuality);
 WriteBytesToFile(bytes, ".jpg");
 break;

 case CaptureMethod.READ_PIXELS_PNG:
 default:
 bytes = texture.EncodeToPNG();
 WriteBytesToFile(bytes, ".png");
 break;
 }
 }

 void WriteBytesToFile(byte[] bytes, string fileExtension)
{
 Destroy (texture);
 string filename = prefix + date + fileExtension;
 string path = Application.dataPath;
 path = Path.Combine(path, "..");
 path = Path.Combine(path, filename);
 File.WriteAllBytes(path, bytes);
 }
 }

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[6]

With the Main Camera selected in the Hierarchy, in the Inspector access5.
the CaptureScreenshot (Scripted) component. Set Capture
Method as SCREENSHOT_PNG. Change Screenshot Scale to 2.

If you want your image file's name to start with something other than the
word Screenshot, then change it in the Prefix field:

Play the scene. A new screenshot with twice the original size will be saved6.
in your project folder every time you press P.

How it works...
For each frame the Update() methods tests whether the P key has been pressed. If
pressed, the TakeShot() method is invoked.

Method TakeShot() captures an image of the screen is and stores the image as a file
in the main Unity project directory (that is, alongside
the Assets and Library directories, and so on). The public settings of
the CaptureScreenshot (Scripted) of MainCamera determine the properties of the
image file created by the project.

The three types of screenshot image are defined as an enumerated type:

SCREENSHOT_PNG: built-in Unity function CaptureScreenshot(). This is
capable of scaling the original screen size, which can be set by our Capture
Scale public property.
READ_PIXELS_PNG: ReadPixels() function used, encoded to PNG.
READ_PIXELS_JPG: ReadPixels() function used, encoded to JPG.

The image data captured by the ReadPixels function is written to file by the built-in
Unity function WriteAllBytes() in our WriteBytesToFile(...) method.

In all cases, the file created will have the appropriate .png or .jpg file extension, to
match its image file format.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[7]

There's more...
We have included the options using the ReadPixel function as a demonstration of
how to save your images to a disk without using
Unity's CaptureScreenshot() function. One advantage of this method is that it can
be adapted to capture and save only a portion of the screen—if a different-sized
rectangle is defined.

Saving and loading player data – using
static properties
Keeping track of the player's progress and user settings during a game is vital to give
your game a greater feeling of depth and content. In this recipe, we will learn how to
make our game remember the player's score between the different levels (scenes).

Getting ready
We have included a complete project in a Unity package
named game_HigherOrLower in the 16_02 folder. To follow this recipe, we will
import this package as the starting point.

How to do it...
To save and load player data, follow these steps:

Create a new 2D project and import the game_HigherOrLower package.1.
Add each of the scenes to the build in the sequence (scene0_mainMenu,2.
then scene1_gamePlaying, and so on).
Make yourself familiar with the game by playing it a few times and3.
examining the content of the scenes. The game starts on
the scene0_mainMenu scene, inside the Scenes folder.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[8]

Let's create a class to store the number of correct and incorrect guesses4.
made by the user. Create a new C# script called Player with the following
code:

using UnityEngine;

 public class Player : MonoBehaviour {
 public static int scoreCorrect = 0;
 public static int scoreIncorrect = 0;
 }

In the lower-left corner of the scene0_mainMenu scene, create a UI Text5.
GameObject named Text - score, containing the placeholder text Score: 99
/ 99:

Next, attach the following C# script to the UI GameObject Text—score:6.

using UnityEngine;
 using System.Collections;

 using UnityEngine.UI;

 public class UpdateScoreText : MonoBehaviour {
 void Start(){
 Text scoreText = GetComponent<Text>();
 int totalAttempts = Player.scoreCorrect +
Player.scoreIncorrect;
 string scoreMessage = "Score = ";
 scoreMessage += Player.scoreCorrect + " / " +
totalAttempts;

 scoreText.text = scoreMessage;
 }
 }

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[9]

In the scene2_gameWon scene, attach the following C# script to the Main7.
Camera:

using UnityEngine;

 public class IncrementCorrectScore : MonoBehaviour {
 void Start () {
 Player.scoreCorrect++;
 }
 }

In the scene3_gameLost scene, attach the following C# script to the Main8.
Camera:

using UnityEngine;

 public class IncrementIncorrectScore : MonoBehaviour {
 void Start () {
 Player.scoreIncorrect++;
 }
 }

Save your scripts, and play the game. As you progress from level (scene) to9.
level, you will find that the score and the player's name are remembered,
until you quit the application.

How it works...
The Player class uses static (class) properties scoreCorrect and scoreIncorrect to
store the current total number of correct and incorrect guesses. Since these are public
static properties, any object from any scene can access (set or get) these values, since
the static properties are remembered from scene to scene. This class also provides the
public static method called ZeroTotals() that resets both the values to zero.

When the scene0_mainMenu scene is loaded, all the GameObjects with scripts will
have their Start() methods executed. The UI Text GameObject called Text-
score has an instance of the UpdateScoreText class as s script component, so that
the scripts Start() method will be executed, which retrieves the correct and
incorrect totals from the Player class, creates the scoreMessage string about the
current score, and updates the text property so that the user sees the current score.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[10]

When the game is running and the user guesses correctly (higher), then
the scene2_gameWon scene is loaded. So, the Start() method, of
the IncrementCorrectScore script component, of the Main Camera in this scene is
executed, which adds 1 to the scoreCorrect variable of the Player class.

When the game is running and the user guesses wrongly (lower), then the
scene scene3_gameLost is loaded. So, the Start() method, of
the IncrementIncorrectScore script component, of the Main Camera in this scene
is executed, which adds 1 to the scoreIncorrect variable of the Player class.

The next time the user visits the main menu scene, the new values of the correct and
incorrect totals will be read from the Player class, and the UI Text on the screen will
inform the user of their updated total score for the game.

There's more...
There are some details that you don't want to miss.

Hiding the score before the first attempt is
completed
Showing a score of zero out of zero isn't very professional. Let's add some logic so
that the score is only displayed (a non-empty string) if the total number of attempts is
greater than zero:

void Start(){
 Text scoreText = GetComponent<Text>();
 int totalAttempts = Player.scoreCorrect + Player.scoreIncorrect;

 // default is empty string
 string scoreMessage = "";
 if(totalAttempts > 0){
 scoreMessage = "Score = ";
 scoreMessage += Player.scoreCorrect + " / " + totalAttempts;
 }

 scoreText.text = scoreMessage;
 }

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[11]

See also
Refer to the following recipe in this chapter for more information:

Saving and loading player data - using PlayerPrefs

Saving and loading player data – using
PlayerPrefs
While the previous recipe illustrates how the static properties allow a game to
remember values between different scenes, these values are forgotten once the game
application has quit. Unity provides the PlayerPrefs feature to allow a game to
store and retrieve data, between the different game-playing sessions:

Getting ready
This recipe builds upon the previous recipe, so make a copy of that project and work
on the copy.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[12]

How to do it...
To save and load the player data using PlayerPrefs, follow these steps:

Delete the C# script called Player.1.
Edit the C# script called UpdateScoreText by replacing2.
the Start() method  with the following:

void Start(){
 Text scoreText = GetComponent<Text>();

 int scoreCorrect = PlayerPrefs.GetInt("scoreCorrect");
 int scoreIncorrect = PlayerPrefs.GetInt("scoreIncorrect");

 int totalAttempts = scoreCorrect + scoreIncorrect;
 string scoreMessage = "Score = ";
 scoreMessage += scoreCorrect + " / " + totalAttempts;

 scoreText.text = scoreMessage;
 }

Now edit the C# script called IncrementCorrectScore by replacing3.
the Start() method with the following code:

void Start () {
 int newScoreCorrect = 1 +
PlayerPrefs.GetInt("scoreCorrect");
 PlayerPrefs.SetInt("scoreCorrect", newScoreCorrect);
 }

Now edit the C# script called IncrementIncorrectScore by replacing4.
the Start() method with the following code:

void Start () {
 int newScoreIncorrect = 1 +
PlayerPrefs.GetInt("scoreIncorrect");
 PlayerPrefs.SetInt("scoreIncorrect", newScoreIncorrect);
 }

Save your scripts and play the game. Quit from Unity and then restart the5.
application. You will find that the player's name, level, and score are now
kept between the game sessions.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[13]

How it works...
We had no need for the Player class, since this recipe uses the built-in runtime class
called PlayerPrefs, provided by Unity.

Unity's PlayerPrefs runtime class is capable of storing and accessing information
(the string, int, and float variables) in the user's machine. Values are stored in a plist
file (Mac) or the registry (Windows), in a similar way to web browser cookies, and,
therefore, remembered between game application sessions.

Values for the total correct and incorrect scores are stored by the Start() methods in
the IncrementCorrectScore and IncrementIncorrectScore classes. These
methods use the PlayerPrefs.GetInt("") method to retrieve the old total, add 1
to it, and then store the incremented total using
the PlayerPrefs.SetInt("") method.

These correct and incorrect totals are then read each time
the scene0_mainMenu scene is loaded, and the score totals are displayed via the UI
Text object on the screen.

For more information on PlayerPrefs, see Unity's online documentation at http:/ /
docs.unity3d.com/ ScriptReference/ PlayerPrefs. html.

See also
Refer to the following recipe in this chapter for more information:

Saving and loading player data - using static properties

Loading game data from a text file map
Rather than, for every level of a game, having to create and place
every GameObject on the screen by hand, a better approach can be to create the text
files of rows, and columns of characters, where each character corresponds to the type
of GameObject that is to be created in the corresponding location.

http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[14]

In this recipe, we'll use a text file and set of prefab sprites to display a graphical
version of a text data file for a screen from the classic game, NetHack:

Getting ready
In the 16_04 folder, we have provided the following two files for this recipe:

level1.txt (a text file, representing a level)
absurd128.png (a 128 x 128 sprite sheet for NetHack).

The level data came from the NetHack Wikipedia page, and the sprite sheet came
from SourceForge:

http://en.wikipedia.org/wiki/NetHack

http://sourceforge.net/projects/noegnud/files/tilesets_nethack-3.
4.1/absurd%20128x128/

Note that we also included a Unity package with all the prefabs set up, since this can
be a laborious task.

How to do it...
To load game data from a text file map, do the following:

Import text file level1.txt, and image file absurd128.png.1.

http://en.wikipedia.org/wiki/NetHack
http://sourceforge.net/projects/noegnud/files/tilesets_nethack-3.4.1/absurd%20128x128/
http://sourceforge.net/projects/noegnud/files/tilesets_nethack-3.4.1/absurd%20128x128/

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[15]

Select absurd128.png in the Inspector, and set Texture Type to Sprite2.
(2D/uGUI), and Sprite Mode to Multiple.
Edit this sprite in the Sprite Editor, choosing Type as Grid and Pixel3.
Size as 128 x 128, and apply these settings:

In the Project panel, click on the right-facing white triangle to explode the4.
icon, to show all the sprites in this sprite sheet individually:

Drag the Sprite called absurd128_175 on to the scene.5.
Create a new Prefab named corpse_175 in the Project panel, and drag6.
onto this blank prefab Sprite absurd128_175 from the scene. Now delete
the sprite instance from the scene. You have now created
a prefab containing the Sprite 175.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[16]

Repeat this process for the following sprites (that is, create prefabs for each7.
one):

– floor_848
– corridor_849
– horiz_1034
– vert_1025
– door_844
– potion_675
– chest_586
– alter_583
– stairs_up_994
– stairs_down_993
– wizard_287

Select the Main Camera in the Inspector, and ensure that it is set to8.
an Orthographic camera, sized 20, with Clear Flags as Solid
Color and Background as Black.
Attach the following C# code to the Main Camera as the script class9.
called LoadMapFromTextfile:

using UnityEngine;
 using System.Collections;

 using System.Collections.Generic;

 public class LoadMapFromTextfile : MonoBehaviour
 {
 public TextAsset levelDataTextFile;

 public GameObject floor_848;
 public GameObject corridor_849;
 public GameObject horiz_1034;
 public GameObject vert_1025;
 public GameObject corpse_175;
 public GameObject door_844;
 public GameObject potion_675;
 public GameObject chest_586;
 public GameObject alter_583;
 public GameObject stairs_up_994;
 public GameObject stairs_down_993;
 public GameObject wizard_287;

 public Dictionary<char, GameObject> dictionary = new

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[17]

Dictionary<char, GameObject>();

 void Awake(){
 char newlineChar = '\n';

 dictionary['.'] = floor_848;
 dictionary['#'] = corridor_849;
 dictionary['('] = chest_586;
 dictionary['!'] = potion_675;
 dictionary['_'] = alter_583;
 dictionary['>'] = stairs_down_993;
 dictionary['<'] = stairs_up_994;
 dictionary['-'] = horiz_1034;
 dictionary['|'] = vert_1025;
 dictionary['+'] = door_844;
 dictionary['%'] = corpse_175;
 dictionary['@'] = wizard_287;

 string[] stringArray =
levelDataTextFile.text.Split(newlineChar);
 BuildMaze(stringArray);
 }

 private void BuildMaze(string[] stringArray){
 int numRows = stringArray.Length;

 float yOffset = (numRows / 2);

 for(int row=0; row < numRows; row++){
 string currentRowString = stringArray[row];
 float y = -1 * (row - yOffset);
 CreateRow(currentRowString, y);
 }
 }

 private void CreateRow(string currentRowString, float y) {
 int numChars = currentRowString.Length;
 float xOffset = (numChars/2);

 for(int charPos = 0; charPos < numChars; charPos++){
 float x = (charPos - xOffset);
 char prefabCharacter = currentRowString[charPos];

 if (dictionary.ContainsKey(prefabCharacter)){
 CreatePrefabInstance(dictionary[prefabCharacter], x,
y);
 }
 }

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[18]

 }

 private void CreatePrefabInstance(GameObject objectPrefab,
float x, float y){
 float z = 0;
 Vector3 position = new Vector3(x, y, z);
 Quaternion noRotation = Quaternion.identity;
 Instantiate (objectPrefab, position, noRotation);
 }
 }

With the Main Camera selected, drag the appropriate prefabs on to the10.
prefabs slots in the Inspector, for the LoadMapFromTextfile Script
component.
When you run the scene, you will see that a sprite-based Nethack map will11.
appear, using your prefabs.

How it works...
The Sprite sheet was automatically sliced up into hundreds of 128 x 128
pixel Sprite squares. We created the prefab objects from some of these sprites so that
the copies can be created at runtime when needed.

The text file called level1.txt contains the lines of text characters. Each non-space
character represents where a sprite prefab should be instantiated (column = x; row =
y). A C# dictionary variable named dictionary is declared and initialized in
the Start() method to associate the specific prefab GameObjects with some
particular characters in the text file.

The Awake() method splits the string into an array using the newline character as a
separator. So, now, we have stringArray with an entry for each row of the text
data.  The BuildMaze(...) method is called with the stringArray.

The BuildMaze(...) method interrogates the array to find its length (the number of
rows of data for this level), and sets yOffSet to half this value. This is done to allow
the placing of the prefabs half above y = 0, and half below, so (0,0,0) is the center of
the level map. A for-loop is used to read each row's string from the array. It passes it
to the CreateRow(...) method along with the y-value corresponding to the current
row.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[19]

The CreateRow(...) method extracts the length of the string, and sets xOffSet to
half this value. This is done to allow the placing of the prefabs half to the left of x = 0
and half to the right, so (0,0,0) is the center of the level map. A for-loop is used to read
each character from the current row's string, and (if there is an entry in our dictionary
for that character) then the CreatePrefabInstance (...) method is called,
passing the prefab reference in the dictionary for that character, and the x and y value.

The CreatePrefabInstance(...) method instantiates the given prefab at a position of x, y,
z, where z is always zero, and there is no rotation (Quarternion.identity).

UI Slider to change game quality settings
In this recipe, we will show you how the player can control the quality settings by
providing a UI Slider for the player. From this, they can choose from an array of
possible quality settings for the current project:

Getting ready
For this recipe, we have prepared a package named BallGame containing two scenes.
The package is in the 16_05 folder.

How to do it...
To create a player UI to change the game's quality settings, do the following:

Create a new 3D project and import the BallGame package.1.
Open the scene named scene0_ballCourt.2.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[20]

In the scene, create a new UI Panel named Panel-quality by choosing3.
menu: Create | UI | Panel.
With the GameObject Panel-quality selected in the Hierarchy, create a new4.
UI Slider named Slider-quality by choosing menu: Create | UI | Slider.
This GameObject should be childed to Panel-quality.
With Panel-quality selected in the Hierarchy, create a new UI Text5.
GameObject named Text-quality by choosing menu: Create | UI | Text.
This GameObject should be childed to GameObject Panel-quality. In the
Inspector, set its Transform Position Y value to -25.
Create a new C# script class named QualityChooser, and attach an6.
instance object as a component to the First Person Controller:

 using UnityEngine;
 using UnityEngine.UI;
 using System.Collections;

 public class QualityChooser : MonoBehaviour {
 public GameObject panelGo;
 public Slider slider;
 public Text textLabel;

 void Awake () {
 slider.maxValue = QualitySettings.names.Length - 1;
 slider.value = QualitySettings.GetQualityLevel();
 SetQualitySliderActive(true);
 }

 public void SetQualitySliderActive(bool active) {
 Cursor.visible = active;
 panelGo.SetActive(active);
 }

 public void UpdateQuality(float sliderFloat) {
 int qualityInt = Mathf.RoundToInt (sliderFloat);
 QualitySettings.SetQualityLevel (qualityInt);
 textLabel.text = QualitySettings.names [qualityInt];
 }
 }

In the Hierarchy, select the First Person Controller. Then, from the7.
Inspector, access the Quality Chooser component, and populate the
panelGo, Slide, and Text Label public fields with the UI GameObjects
Panel-quality, Slider, and Text:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[21]

From the Hierarchy panel, select Slider. Then, from the Inspector, for the8.
Slider component, find the list named On Value Changed (Single), and
click on the + sign to add a command.
Drag the First Person Controller from the Hierarchy into the Game Object9.
field of the new command. Then, use the function selector to find the
UpdateQuality function in the Dynamic float section (No Function |
QualityChooser | Dynamic float | UpdateQuality):

When you play the scene, you should be able to drag the quality slider to10.
change the quality settings.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[22]

How it works...
You created a panel containing a UI Slider and a UI Text object.

The SetQualitySliderActive(...) method receives a true/false value, and uses
this to show/hide the mouse cursor and the UI Panel.

The UpdateQuality(...) method receives a float value from the Slider OnChange
event. This value is converted to an integer, which is to be the index of the selected
quality setting. This index is used both to select the project quality setting, and also to
update the UI Text label with the name of the currently selected quality setting.

When the Scene begins, in the Awake() method, the UI Slider has its maximum
value set to 1 less then the number of project quality items (for example, if there are
five items, the slider will be from 0 to 4). Also, the UI Slider is moved to the position
corresponding to the current quality level, and
the SetQualitySliderActive(...) method is invoked with the true value in order
to display both the mouse pointer and the UI Panel showing the slide and text label.

There's more...
Here are some ways to go further with this recipe.

Seeing/editing the list of quality settings
You can view and modify the quality settings available for a project by choosing
menu: Edit | Project Settings | Quality:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[23]

Pausing the game
As compelling as your next game will be, you should always let players pause it for a
short break. Sometimes, a game pause is used to let the player rest, but another
reason might be to change some game setting such as volume or graphics quality.

Pausing the game usually involves a combination of freezing a game action, and also
hiding or revealing UI items, to display a message to the player and provide UI
controls to change settings.

In this recipe, we will implement a simple and effective pause screen that hides the
previous recipe's quality settings slide when the game is being played, and reveals it
when the game has been paused.

Getting ready
This recipe builds on the previous one, so make a copy of that and use that copy.

How to do it...
To pause your game upon pressing the Esc key, follow these steps:

Select the First Person Controller, and in the Inspector, enable the1.
following components:

Character Controller
Mouse Look (Script)
Character Motor (Script)
FPS Input Controller (Script)
Shooter (Script)

Add the following C# script called PauseGame to First Person Controller:2.

 using UnityEngine;
 using UnityEngine.UI;
 using System.Collections;

 public class PauseGame : MonoBehaviour {
 private bool isPaused = false;
 private QualityChooser qualityChooser;

 void Start () {
 qualityChooser = GetComponent<QualityChooser>();

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[24]

 }

 void Update () {
 if (Input.GetKeyDown(KeyCode.Escape)) {
 isPaused = !isPaused;
 SetPause ();
 }
 }

 private void SetPause() {
 float timeScale = !isPaused ? 1f : 0f;
 Time.timeScale = timeScale;
 GetComponent<MouseLook> ().enabled = !isPaused;
 qualityChooser.SetQualitySliderActive(isPaused);
 }
 }

Edit the QualityController script class, and, in the Awake() method,3.
change the last line to pass false (not true) to
the SetQualitySliderActive(...) method:

 void Awake () {
 slider.maxValue = QualitySettings.names.Length - 1;
 slider.value = QualitySettings.GetQualityLevel();
 SetQualitySliderActive(false);
 }

When you play the Scene, you should be able to pause/resume the game by4.
pressing the Esc key, which will also display/hide the slider that controls
the game's quality settings.

How it works...
To pause a Unity game with a script, we need to set the game's Time Scale to 0 (and
set it back to 1 to resume). The SetPause() method does these actions according to
the value of the isPaused variable:

isPause= true: Time Scale 0 (pause the game), disable MouseLook
component, and activate the quality slider and mouse cursor
isPause = false: Time Scale 1 (resume the game), enable MouseLook
component, and deactivate the quality slider and mouse cursor:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[25]

In the Update() method, a test is made for each frame, whether or not the Esc key
has been pressed. If pressed, the value of isPaused is toggled, and
the SetPause() method is invoked.

There's more...
Here are some ways to go further with this recipe.

Learning more about quality settings
Our code for changing quality settings is a modification of an example given by
Unity's documentation. If you want to learn more about this subject, check out the
following link: http:/ / docs. unity3d. com/ScriptReference/ QualitySettings. html.

Offering the user further game settings
You could add more UI panels to be activated when the game is paused, for example,
for sound volume controls, save/load buttons, and so on.

http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[26]

Implementing slow motion
Since Remedy Entertainment's Max Payne video game, slow motion, or bullet time,
has become a popular feature in games. For example, Criterion's Burnout series has
successfully explored the slow motion effect in the racing genre. In this recipe, we will
implement a slow motion effect that is triggered by pressing the mouse's right button.

Getting ready
For this recipe, we will use the same package as the previous recipes, BallGame,
which is in the 16_07 folder.

How to do it...
To implement slow motion, follow these steps:

Import the BallGame package into your project and, from the Project1.
panel, open the level named scene1_ballGame.
Create a C# script class called BulletTime, and add an instance object as a2.
component to the First Person Controller GameObject:

 using UnityEngine;
 using UnityEngine.UI;
 using System.Collections;

 public class BulletTime : MonoBehaviour {
 public float slowSpeed = 0.1f;
 public float totalTime = 10f;
 public float recoveryRate = 0.5f;
 public Slider EnergyBar;
 private float elapsed = 0f;
 private bool isSlow = false;

 void Update (){
 if (Input.GetButtonDown ("Fire2") && elapsed < totalTime)
 SetSpeed (slowSpeed);

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[27]

 if (Input.GetButtonUp ("Fire2"))
 SetSpeed (1f);

 if (isSlow) {
 elapsed += Time.deltaTime / sloSpeed;

 if (elapsed >= totalTime)
 SetSpeed (1f);
 } else {
 elapsed -= Time.deltaTime * recoveryRate;
 elapsed = Mathf.Clamp (elapsed, 0, totalTime);
 }

 float remainingTime = (totalTime - elapsed) / totalTime;
 EnergyBar.value = remainingTime;
 }

 private void SetSpeed (float speed) {
 Time.timeScale = speed;
 Time.fixedDeltaTime = 0.02f * speed;
 isSlow = !(speed >= 1.0f);
 }
 }

Add a UI Slider to the scene named Slider-energy by choosing menu:3.
Create | UI | Slider. Please note that it will be created as a child of the
existing Canvas object.
Select Slider-energy and, from the Rect Transform component in the4.
Inspector, set its Anchors as follows:

Min X: 0, Y: 1
Max X: 0.5, Y: 1
Pivot X: 0, Y: 1

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[28]

Select Slider-energy and, from the Rect Transform component in the5.
Inspector, set its Position as follows:

Left: 0
Pos Y: 0
Pos Z: 0
Right: 0
Height: 50:

In the Inspector, set the slider's child GameObject Handle Slide Area as6.
inactive:

Finally, select the First Person Controller from the Hierarchy. Then, find7.
the Bullet Time component, and drag the GameObject Slider-energy from
the Hierarchy into its Energy Bar slot.
Play your game. You should be able to activate slow motion by holding8.
down the right mouse button (or whatever alternative you have set for the
Input axis Fire2). The slider will act as a progress bar that slowly shrinks,
indicating the remaining bullet time you have.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[29]

How it works...
Basically, all we need to do to have the slow motion effect is decrease the
Time.timeScale variable. In our script, we do that by using the slowSpeed
variable. Please note that we also need to adjust the Time.fixedDeltaTime variable,
updating the physics simulation of our game.

In order to make the experience more challenging, we have also implemented a sort
of energy bar to indicate how much bullet time the player has left (the initial value is
given, in seconds, by the totalTime variable). Whenever the player is not using
bullet time, he/she has his/her quota filled according to the recoveryRate variable.

Regarding the UI Slider, we have used the Rect Transform settings to place it on the
top-left corner and set its dimensions to half of the screen's width and 50 pixels tall.
Also, we have hidden the handle slide area to make it similar to a traditional energy
bar. Finally, instead of allowing direct interaction from the player with the slider, we
have used the BulletTime script to change the slider's value.

There's more...
Some suggestions on how you can improve your slow motion effect even further are
described in the following subsections.

Customizing the slider
Don't forget that you can personalize the slider's appearance by creating your own
sprites, or even by changing the slider's fill color based on the slider's value.

Try adding the following lines of code to the end of the Update function:

 GameObject fill = GameObject.Find("Fill").gameObject;
 Color sliderColor =  Color.Lerp(Color.red, Color.green,
remainingTime);
 fill.GetComponent<Image> ().color = sliderColor;

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[30]

Adding Motion Blur
Motion Blur is an image effect that's frequently identified with slow motion. Once
attached to the camera, it can be enabled or disabled depending on the speed float
value. For more information on the Motion Blur post-processing image effect, refer to
the following links:

https://github.com/Unity-Technologies/PostProcessing/wiki/Motion-
Blur

https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/ma
nual/Motion-Blur.html

https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/ma
nual/Manipulating-the-Stack.html

Creating sonic ambience
Max Payne famously used a strong, heavy heartbeat sound as sonic ambience. You
could also try lowering the sound effects volume to convey the character's focus when
in slow motion. Plus, using audio filters on the camera could be an interesting option.

Using Gizmo to show the currently
selected object in a scene panel
Gizmos are visual aids that are provided to game designers in the scene panel. In this
recipe, we'll highlight the GameObject that is currently selected in the Hierarchy in
the Scene panel:

https://github.com/Unity-Technologies/PostProcessing/wiki/Motion-Blur
https://github.com/Unity-Technologies/PostProcessing/wiki/Motion-Blur
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/manual/Motion-Blur.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/manual/Motion-Blur.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/manual/Manipulating-the-Stack.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.0/manual/Manipulating-the-Stack.html

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[31]

How to do it...
To create a Gizmo to show the selected object in the Scene panel, follow these steps:

Create a new 3D project.1.
Create a 3D cube by choosing menu: Create | 3D Object | Cube.2.
Create a C# script class called GizmoHighlightSelected, and add an3.
instance object as a component to the 3D Cube:

 using UnityEngine;

 public class GizmoHighlightSelected : MonoBehaviour {
 public float radius = 5.0f;

 void OnDrawGizmosSelected() {
 Gizmos.color = Color.red;
 Gizmos.DrawWireSphere(transform.position, radius);

 Gizmos.color = Color.yellow;
 Gizmos.DrawWireSphere(transform.position, radius - 0.1f);

 Gizmos.color = Color.green;
 Gizmos.DrawWireSphere(transform.position, radius - 0.2f);
 }
 }

Make lots of duplicates of the 3D Cube, distributing them randomly4.
around the scene.
When you select one cube in the Hierarchy, you should see three colored5.
wireframe spheres drawn around the selected GameObject in the Scene
panel.

How it works...
When an object is selected in a scene, if it contains a scripted component that includes
the OnDrawGizmosSelected() method, then that method is invoked. Our method
draws three concentric wireframe spheres in three different colors around the selected
object.

You can learn more from the Gizmos Unity manual entry at https:/ / docs. unity3d.
com/Manual/GizmosMenu. html.

https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosMenu.html

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[32]

Editor snap-to grid drawn by Gizmo
If the positioning of objects needs to be restricted to specific increments, it is useful to
have a grid drawn in the scene panel to help ensure that new objects are positioned
based on those values, and also code to snap objects to that grid.

In this recipe, we'll use Gizmos to draw a grid with a customizable grid size, color,
number of lines, and line length. The result of following this recipe will be as follows:

How to do it...
To create a Gizmo to show the selected object in the Scene panel, follow these steps:

Create a new 3D project.1.
For the Scene panel, turn off the Skybox view (or simply toggle off all the2.
visual settings) so that you have a plain background for your grid work:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[33]

The display, and updating the child objects, will be performed by a script3.
class called GridGizmo. Create a new C# script class
called GridGizmo which contains the following:

 using System.Collections;
 using System.Collections.Generic;
 using UnityEngine;

 public class GridGizmo : MonoBehaviour {
 [SerializeField]
 public int grid = 2;

 public void SetGrid(int grid) {
 this.grid = grid;
 SnapAllChildren();
 }

 [SerializeField]
 public Color gridColor = Color.red;

 [SerializeField]
 public int numLines = 6;

 [SerializeField]
 public int lineLength = 50;

 private void SnapAllChildren() {
 foreach (Transform child in transform)
 SnapPositionToGrid(child);
 }

 void OnDrawGizmos() {
 Gizmos.color = gridColor;

 int min = -lineLength;
 int max = lineLength;

 int n = -1 * RoundForGrid(numLines / 2);
 for (int i = 0; i < numLines; i++) {
 Vector3 start = new Vector3(min, n, 0);
 Vector3 end = new Vector3(max, n, 0);
 Gizmos.DrawLine(start, end);

 start = new Vector3(n, min, 0);
 end = new Vector3(n, max, 0);
 Gizmos.DrawLine(start, end);

 n += grid;

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[34]

 }
 }

 public int RoundForGrid(int n) {
 return (n/ grid) * grid;
 }

 public int RoundForGrid(float n) {
 int posInt = (int) (n / grid);
 return posInt * grid;
 }

 public void SnapPositionToGrid(Transform transform) {
 transform.position = new Vector3 (
 RoundForGrid(transform.position.x),
 RoundForGrid(transform.position.y),
 RoundForGrid(transform.position.z)
);
 }
 }

Let's use an Editor script to add a new menu item to the GameObject4.
menu. Create a folder named Editor, and in that folder, create a new C#
script class called EditorGridGizmoMenuItem, which contains the
following:

 using UnityEngine;
 using UnityEditor;
 using System.Collections;

 public class EditorGridGizmoMenuItem : Editor {
 [MenuItem("GameObject/Create New Snapgrid", false, 10000)]
 static void CreateCustomEmptyGameObject(MenuCommand
menuCommand) {
 GameObject gameObject = new GameObject("___snap-to-
grid___");

 gameObject.transform.parent = null;
 gameObject.transform.position = Vector3.zero;
 gameObject.AddComponent<GridGizmo>();
 }
 }

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[35]

Now, let's add another Editor script for a custom Inspector display (and5.
updater) for the GridGizmo components. Also, in your Editor folder, create
a new C# script class called EditorGridGizmo, which contains the
following:

 using UnityEngine;
 using UnityEditor;
 using System.Collections;

 [CustomEditor(typeof(GridGizmo))]
 public class EditorGridGizmo : Editor {
 private GridGizmo gridGizmoObject;
 private int grid;
 private Color gridColor;
 private int numLines;
 private int lineLength;

 private string[] gridSizes = {
 "1", "2", "3", "4", "5"
 };

 void OnEnable() {
 gridGizmoObject = (GridGizmo)target;
 grid = serializedObject.FindProperty("grid").intValue;
 gridColor =
serializedObject.FindProperty("gridColor").colorValue;
 numLines =
serializedObject.FindProperty("numLines").intValue;
 lineLength =
serializedObject.FindProperty("lineLength").intValue;
 }

 public override void OnInspectorGUI() {
 serializedObject.Update ();

 int gridIndex = grid - 1;
 gridIndex = EditorGUILayout.Popup("Grid size:",
gridIndex, gridSizes);
 gridColor = EditorGUILayout.ColorField("Color:",
gridColor);
 numLines = EditorGUILayout.IntField("Number of grid
lines", numLines);
 lineLength = EditorGUILayout.IntField("Length of grid
lines", lineLength);

 grid = gridIndex + 1;
 gridGizmoObject.SetGrid(grid);

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[36]

 gridGizmoObject.gridColor = gridColor;
 gridGizmoObject.numLines = numLines;
 gridGizmoObject.lineLength = lineLength;
 serializedObject.ApplyModifiedProperties ();
 sceneView.RepaintAll();
 }
 }

Add a new GizmoGrid GameObject to the scene by choosing menu:6.
GameObject | Create New Snapgrid. A new GameObject named
___snap-to-grid___ should be added to the Hierarchy:

Select GameObject ___snap-to-grid___, and modify some of its properties7.
in the Inspector. You can change the grid size, the color of the grid lines,
the number of lines, and their length:

Create a 3D Cube by choosing menu: Create | 3D Object | Cube. Now,8.
drag the 3D Cube into the Hierarchy and child it to GameObject ___snap-
to-grid___.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[37]

We now need a small script class so that, each time the GameObject is9.
moved (in Editor mode), it asks for its position to be snapped by the parent
scripted component SnapToGizmoGrid. Create a C# script class
called SnapToGizmoGrid and add an instance object as a component to the
3D Cube:

 using System.Collections;
 using System.Collections.Generic;
 using UnityEngine;

 [ExecuteInEditMode]
 public class SnapToGridGizmo : MonoBehaviour {
 public void Update()
 {
 #if UNITY_EDITOR
transform.parent.GetComponent<GridGizmo>().SnapPositionToGrid(transfor
m);
 #endif
 }
 }

Make lots of duplicates of the 3D cube, distributing them randomly around10.
the scene—you'll find that they snap to the grid.
Select GameObject ___snap-to-grid___ again, and modify some of its11.
properties in the Inspector. You'll see that the changes are instantly visible
in the scene, and that all child objects that have a scripted component of
SnapToGizmoGrid are snapped to any new grid size changes.

How it works...
The EditorGridGizmoMenuItem script class adds a new item to the GameObject
menu. When selected, a new GameObject is added to the Hierarchy named ___snap-
to-grid___, positioned at (0, 0, 0), and containing an instance object component of
the GridGizmo script class.

GridGizmo draws a 2D grid based on public properties for grid size, color, number of
lines, and line length. Regarding the SetGrid(...) method, as well as updating the
integer grid size variable grid, it also invokes the SnapAllChildren() method, so
that each time the grid size is changed, all child GameObjects are snapped into the
new grid positions.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[38]

The SnapToGridGizmo script class includes an Editor attribute
[ExecuteInEditMode] so that it will receive Update() messages when its
properties are changed at design time in the Editor. Each time Update() is invoked,
it calls the SnapPositionToGrid(...) method in its parent GridGizmo instance
object so that its position is snapped based on the current settings of the grid. To
ensure this logic and code is not compiled into any final build of the game, the
contents of Update() are wrapped in an #if UNITY_EDITOR compiler test. Such
content is removed before a build is compiled for the final game.

The EditorGridGizmo script class is a custom Editor Inspector component. This
allows for both control of which properties are displayed in the Inspector, how they
are displayed, and it allows actions to be performed when any values are changed.
So, for example, after changes have been saved, the sceneView.RepaintAll()
statement ensures that the grid is re-displayed, since it results in an OnDrawGizmos()
message being sent.

Creating a VR project
In this recipe, we will go through the steps for setting up a basic VR scene in Unity,
using the Vive VR headset on a Windows computer.

Getting ready
You need Steam VR with the Standing Only or Room-scale set up. If you have not
done so yet, then follow these steps to set up your Vive headset so that it's ready for
Unity game development:

Install Steam1.
Install Steam VR2.
Plug in your Vive headset3.
From the Steam application window, run Steam VR (click VR at top right of4.
the Steam app window):

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[39]

Steam VR should run. Then, choose the Run Room Setup menu item:5.

Position your Light Houses to cover the space in the room that you want to6.
use.
From the Room Setup screen, choose your room setup: Standing Only or7.
Room-Scale:

Standing Only:
Use the headset to set the center
Use the headset to locate the floor

Room-Scale:
Position your Light Houses to cover the space you
want to use
Calibrate the floor by putting hand controllers on
the floor
Walk around room, using hand controllers with
the trigger to trace the space you can safely move
around

You can now explore Steam VR Home.8.

How to do it...
To create a basic VR Unity project, follow these steps:

Start a new 3D project.1.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[40]

Either work with a new 3D Unity project, or make a backup of any
project to which you are about to add VR features to, since you will
be adding a package that makes changes to many settings, and it
could mess up settings in an existing project.

Delete the Main Camera from the Scene.2.
Display the Unity Player settings in the Inspector by choosing menu: Edit |3.
Project Settings | Player.
Check the Virtual Reality Supported option near the bottom of4.
the Inspector:

Ensure that you are logged into your Unity Account (before accessing the5.
Asset Store).
Visit the Asset Store and search for Steam VR from the Valve Corporation:6.

Download and import the package (you'll be warned about having made a7.
backup before importing...).

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[41]

Choose your preferred options from any pop-up about builds:8.

Drag into the Scene a clone of the [CameraRig] prefab from folder: Project9.
| SteamVR | Prefabs. You'll see a 3D space representing your room setup
(our examples show the rectangular-based space from the Standing only
room setup):

Run the Scene, put on your VR headset, and pick up your hand controllers.10.
You should see 3D representations of the position, trigger settings, and so
on of your hand controllers in the virtual space.
Import/create 3D Objects in your scene - for example, add a 3D Cube to the11.
scene inside the room space of the CameraRig.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[42]

Run the Scene, and try moving a virtual hand controller to collide with12.
your 3D cube:

Test the physics by adding a Rigid Body component to the 3D Cube (and13.
turn off gravity), adding/making the Box Collider to the GameObject
Controller (right) smaller.
Run the scene - you should be able to push the 3D Cube with the virtual14.
hand controller.

How it works...
You've learned to set up Vive and locate and install the Steam VR package.

This package contains prefabs so that the headset and handset work in the
standing/room space you set up.

You created a Unity project with the Vive prefabs. You then added a 3D Cube to the
scene and interacted with it by adding colliders to the cube and a hand controller
GameObject.

This was tested with Unity 2017.4.9 LTS, since it wasn't fully
working with a 2018 version at the time of writing.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[43]

There's more...
Here are some suggestions for taking this recipe further.

Exploring free VR/XR samples/tutorials
Some good sources of free sample VR projects to explore include the following:

Unity Technologies VR Samples: https:/ /assetstore. unity. com/
packages/ essentials/ tutorial- projects/ vr-samples- 51519:

A good tutorial on Vive and Unity from Ray Wenderlick:
https://www.raywenderlich.com/792-htc-vive-tutorial-for-unity

Valve Lab Renderer on the Unity Asset Store:
https://assetstore.unity.com/packages/tools/the-lab-renderer-6314
1

Vive input utility on the Unity Asset Store:
https://assetstore.unity.com/packages/tools/integration/vive-inpu
t-utility-64219

Setup with Oculus Rift
The Oculus Rift setup is similar to that with the Vive, although it actually integrates a
little better with Unity. You need to do the following:

Install the Oculus runtime.1.
Setup for room/standing for the Infrared Cameras.2.
There is no need download any package, and no need to remove the Main3.
Camera.

You can learn more about this at the Oculus Rift Unity documentation site: https:/ /
developer.oculus. com/ documentation/ unity/ latest/ concepts/ book- unity- gsg/.

https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-samples-51519
https://www.raywenderlich.com/792-htc-vive-tutorial-for-unity
https://assetstore.unity.com/packages/tools/the-lab-renderer-63141
https://assetstore.unity.com/packages/tools/the-lab-renderer-63141
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/
https://developer.oculus.com/documentation/unity/latest/concepts/book-unity-gsg/

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[44]

Using a Single Pass if working with the Lightweight
Rendering Pipeline
If you're using the Lightweight Rendering Scripted Pipeline, then you need to
choose Single Pass for the Stereo RenderingMethod* property when setting up XR
in the settings, having chosen menu: Edit | Project Settings | Player:

Adding 360-degree videos to a VR project
Google Earth VR is great fun! This screenshot from a live VR session shows the
virtual hand controller, and a virtual screen menu showing photos and text about 6
suggested locations to visit:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[45]

Affordable, 360-degree cameras means that it's easy to create your own, or find free
online 360-degree images and video clips. In this recipe, we'll learn how to add a 360-
degree video clip as a Skybox in a VR project. You will also learn how the 360-degree
video clips can be played on the surface of 3D objects, including the inside of a
sphere—a bit like Google Earth VR mode when you raise the sphere to your head to
view its 360-degree image contents:

Getting ready
For this recipe, we have provided a short Snowboarding_Polar.mp4 video in the
16_07 folder. This project builds on the previous one (a basic VR project), so make a
copy of that and work on the copy.

Special thanks to Kris Szczurowski for permission to use his
snowboarding 360-degree video clip, and for his help with these VR
project recipes. Good luck with the PhD!

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[46]

How to do it...
To add 360-degree videos to a VR project, follow these steps:

Import your 360-degree polar format video clip into your Unity project (in1.
our example, this is Snowboarding_Polar.mp4).
Select the video asset in the Project panel, and in the Inspector, make a2.
note of its resolution (we'll need this later), for example, 2,560 x 1,280:

Create a new empty GameObject named video-player by choosing menu:3.
Create | Empty.
Select video-player in the Hierarchy, and in the Inspector, add a4.
component Video Player component by choosing: Add Component |
Video | Video Player.
From the Project panel, drag your video asset file, for5.
example, Snowboarding_Polar, into the Video Clip property of the
Video Player component.
Create a new Render Texture asset file named VideoRenderTexture by6.
choosing menu: Create | Render Texture.
Set the Resolution of the VideoRenderTexture to match the video asset7.
resolution, for example, 2,560 x 1,280:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[47]

In the Hierarchy, select GameObject video-player, and for the Video8.
Player component, set the target texture to be VideoRenderTexture.
Create a new Material named video_m by choosing menu: Create |9.
Material.
With video_m selected in the Project panel, change its Shader to Skybox |10.
Panoramic:

In the Inspector, for the Spherical HDR property, click the Select button11.
and choose Texture VideoRenderTexture:

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[48]

Open the Lighting Settings panel, choose menu: Window | Rendering |12.
Lighting Settings. In the Inspector, set the Skybox Material to video_m:

Play the Scene, put on your VR headset, and you should see the 360-degree13.
video playing all around you.

How it works...
You have created a GameObject with a Video Player component, and made it play
your 360-degree video. You made this component render to a Render Texture of the
same dimensions as your video.

You created a Skybox-panomaric Material, and selected your Render Texture as the
Texture for this Material. You then set this Material as the Skybox for the Lighting
Settings.

This was tested with Unity 2017.4.9 LTS, since it wasn't fully
working with a 2018 version at the time of writing.

There's more...
Here are some suggestions for taking this recipe further.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[49]

Playing 360-degree videos on the surface of a 3D
object
To play 360-degree videos on the surface of a 3D object, perform the aforementioned
steps, but do not set the Skybox to video_m. Instead, set the Material of the Mesh
Renderer component of your 3D object to video_m:

This works for 3D objects with inverted normals, for example, a hollow 3D Sphere
that you can look at from the inside.

Working with VR content inside a VR
environment – the XR Editor
An exciting project from Unity is the XR-Editor, which is a VR environment that
allows you to edit a scene in VR. The project provides great examples of VR UI
elements, including 3D menus and laser pointer selectors. It allows you to see
Console reports in the environment and interact with the Hierarchy of GameObjects:
In this screenshot we can see the main Workspace menu displayed on the virtual left
hand controller, and the virtual right hand controller is being presented as a rotary
menu for actions that can be performed on the currently selected GameObject.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[50]

The 'Select Parent' option is currently selected in this rotary menu:

In this recipe, we will set up the XR-Editor for use in a Unity project.

Getting ready
Start this recipe with a copy of the Basic VR project created in the recipe before the
previous one.

How to do it ...
To work with VR content inside a VR environment in the XR Editor, do the following:

Install the TextMeshPro package, choosing menu: Window | Package1.
Manager, and selecting Text Mesh Pro.
Download the Editor XR package from the links on the Unity blog page:2.

http://rebrand.ly/EditorVR-package

https://blogs.unity3d.com/2016/12/15/editorvr-experiment
al-build-available-today/

Import the EditorXR-package package into your project.3.

http://rebrand.ly/EditorVR-package
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[51]

Agree to the prompt on-screen about patching the Input Manager settings:4.

There should be a new item on the Window Menu, Window | EditorXR.5.
Choose this menu item:

A new, floating EditorXR application window should now be created:6.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[52]

Put on your VR headset and start creating. Do NOT run the scene—Editor7.
XR works at Design Time, not Run-Time, so do NOT play the Scene.
You display the main menu by directing the laser pointer of one virtual8.
hand controller onto the menu bar on the other hand controller:

You'll then get a cube-like, multi-sided, rotatable main menu, from which9.
you can choose items with the laser pointer. For example on the
Workspaces side of the menu object there are options to display the
Console, Hierarchy, Inspector, Locked Objects, MiniWorld and Profiler
panels:

You can choose the Primatives menu where you can create new 3D objects:10.

Bonus Chapter 16 : Virtual Reality and Extra Features Chapter 1

[53]

With a GameObject selected, a wheel-menu offers actions, such as deleting11.
or selecting the parent, and so on:

How it works...
In this recipe, you learned how to install and start interacting with Unity's Editor-XR.

This was tested with Unity 2017.4.9 LTS, since it wasn't fully
working with a 2018 version at the time of writing.

You can learn more about Editor XR/VR at the Unity blog at https:/ /blogs.
unity3d.com/2016/ 12/ 15/ editorvr- experimental- build- available- today/ .

https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/

	Bonus Chapter 16 : Virtual Reality and Extra Features
	Introduction
	The Big picture
	Virtual reality
	Gizmos
	Saving/Loading data at runtime

	Saving screenshots from the game
	Getting ready
	How to do it...
	How it works...
	There's more...

	Saving and loading player data – using static properties
	Getting ready
	How to do it...
	How it works...
	There's more...
	Hiding the score before the first attempt is completed

	See also

	Saving and loading player data – using PlayerPrefs
	Getting ready
	How to do it...
	How it works...
	See also

	Loading game data from a text file map
	Getting ready
	How to do it...
	How it works...

	UI Slider to change game quality settings
	Getting ready
	How to do it...
	How it works...
	There's more...
	Seeing/editing the list of quality settings

	Pausing the game
	Getting ready
	How to do it...
	How it works...
	There's more...
	Learning more about quality settings
	Offering the user further game settings

	Implementing slow motion
	Getting ready
	How to do it...
	How it works...
	There's more...
	Customizing the slider
	Adding Motion Blur
	Creating sonic ambience

	Using Gizmo to show the currently selected object in a scene panel
	How to do it...
	How it works...

	Editor snap-to grid drawn by Gizmo
	How to do it...
	How it works...

	Creating a VR project
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exploring free VR/XR samples/tutorials
	Setup with Oculus Rift
	Using a Single Pass if working with the Lightweight Rendering Pipeline

	Adding 360-degree videos to a VR project
	Getting ready
	How to do it...
	How it works...
	There's more...
	Playing 360-degree videos on the surface of a 3D object

	Working with VR content inside a VR environment – the XR Editor
	Getting ready
	How to do it ...
	How it works...

