
8
Sensor Fusion and Sensor-

Based APIs – The Driving
Event Detection App

This chapter will take your learning beyond the realm of normal sensors. You will learn
new sensor-based android APIs (Activity recognition, Geo-fence, and Fused location). We
will understand sensor fusion and how we can make use of sensors and sensor-based APIs
together to develop real-world applications. We will analyze and process raw accelerometer
and gyroscope data, along with input from sensor-based APIs, to develop the algorithms to
detect risky driving behavior. We will also explore how to connect and use APIs from the
Google Play services library.

The topics you will learn in this chapter are as follows:

How the Activity recognition API works, what sensors it uses, and how to use it
How the Geo-fence API and Fused location API work, and how to use them
How raw sensors and sensor-based APIs (activity recognition, geo-fence, and
fused location) can be used to detect risky driving behavior
Understanding the accelerometer and gyroscope sensors' behavior during hard
braking, hard acceleration, phone distraction, and severe crashes
What is sensor fusion, and how to use data from multiple sensors together to
detect the same event
How to use Google Maps, plot a driving route on the map, and show events
using google map markers
How to develop the infrastructure (service, threads, database) required to process
a high volume of sensor data in the background for longer durations of time

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[2]

Detecting risky driving behavior using
sensors
One of our most common day-to-day activities is driving, and driving safely is very
important for ourselves as well as for others on the road. Most of the time, we carry our
smart phone while driving. We can easily leverage the phone sensors to detect risky driving
behavior. As a learning exercise for this chapter, we will be developing a risky driving
event detection application using the phone sensors, which will help people become safe
drivers and improve their overall driving skills. This application will capture risky driving
events and report back to the driver at the end of the drive. Let's explore the features of the
application in detail.

The driving event detection application
requirements
The following list contains the high-level requirements of the driving event detection
application:

Develop a driving event detection application that works in the background and1.
automatically detects risky driving events.
The driving event detection application should be battery optimized and should2.
not process or use sensors when not driving.
It should automatically detect the drive's starting location and time, and also the3.
drive's ending location and time, without user intervention or input. It should
also provide accurately the vehicle's last parked location.
The driving event detection application should be able to detect the following4.
risky driving events during an active drive:

Hard braking (with location and time)
Hard turning/cornering (with location and time)
Hard accelerating (with location and time)
Driving at high speed (with location and time)
Phone distraction (using the phone) while driving (with location and time)
Any severe crash event (with location and time)

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[3]

It should be able to report all the mentioned risky driving events with the5.
location and time on the map along with the safe driving score. It should also plot
the driving route on the map.

The sensors and APIs used in driving event
detection
The sensors in the latest Android phones have become far better in terms of accuracy and
power consumption compared to the sensors that were in the initial Android phones. The
Android platform has also evolved and now provides a wide variety of sensor APIs and
services to detect common day-to-day events using sensors. Our driving application will
make use of these advanced sensor APIs and services to detect driving events. In this
chapter, we will learn the new sensor-based APIs, that is, the Activity recognition, Geo-
fence, and Fused location APIs. We will also look at how the accelerometer and gyroscope
sensors, combined with these new sensor APIs, can be used to detect driving events. Now,
let's look at these new sensor-based APIs in detail.

The Activity recognition API
Activity recognition is a sensor-based API that is very efficient in detecting the type of
activity a user is involved in at a particular time. The current version (API Level 23)
supports eight different types of activity (driving, walking on foot, running, bicycling,
phone being tilted, phone being still, and unknown). This API works by periodically taking
short bursts of sensor data and processing them using machine learning models. It uses
data from multiple sensors such as the accelerometer, gyroscope, and if required, it can also
use data from the magnetometer and Bluetooth to improve the accuracy of reporting events.
Activity recognition is very battery efficient as it can turn off the processing and reporting
of events when the phone is still for a long time. It reports back the possible types of activity
along with their individual confidence levels. The confidence levels reported are between 0
and 100, and a value above 75 is considered to be a high confidence value. There can be
some delay in processing and reporting the events, depending on the load on the processor.
Some phones have a dedicated processor chip to process the sensors data. We will be using
Activity recognition to detect the start and stop of a drive. We will look at more details and
its code implementation in the coming sections.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[4]

The Geo-fence API
Geo-fence is a location services-based API that monitors the phone's approximate location,
relative to a virtual circular fence. It doesn't require GPS to be on all the time, and it reports
the entry or exit events when the phone enters or exits the circular fence. The Geo-fence API
is very battery-efficient as it uses alternate ways, such as cell towers and Wi-Fi to get the
phone's location. The accuracy of Geo-fence increases manifold when the GPS is turned on
and is actively used by any app in the system. When the GPS is not turned on, then there
can be a delay in reporting the events of the geo-fence as the Geo-fence API relies on a cell
tower or Wi-Fi router to determine the location. Until a new Wi-Fi router is connected or a
cell tower network switched, it waits to process the new location. Geo-fence will help our
driving application to detect the starting point of the drive.

The Fused location API
Fused location is a location services-based API that uses (fuses) location data from various
sources, such as the standard GPS built-in chip, a Wi-Fi router, or cell tower, and processes
it to provide the best possible location available. When the phone is outside of any building
under a clear sky, then most of the time, it uses the phone's built-in GPS chip data that is
obtained from satellites. But when not enough GPS satellites are available, or when the
phone is inside any building, then it relies on alternate ways such as cell towers and Wi-Fi
to get the phone's location. The Fuse Location API will provide us with the driving speed,
course, time, and location information required to detect driving events while in active
drive.

Accelerometer
The Accelerometer sensor will be helpful to our driving application for detecting hard
braking, hard acceleration, and severe crashes. Our application will be processing the
accelerometer data at a frequency of 50 Hz, but only when the drive is active.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[5]

Gyroscope
Gyroscope sensor data will help us detect phone distraction (phone being used) events. As
the gyroscope sensor can be a little heavy on consuming battery, we will be using it at a
lower frequency of 50 Hz, and only when the drive is active.

The detection of the driving start event, end
event, and last parked location
In this section, we will be discussing the logic of the start, stop, and last parked location
events. In all the three events, we will use a combination of sensor-based APIs along with
the GPS sensor.

Driving start event detection
The first step in driving event detection is to detect when and where the drive has started.
Driving start detection has to be done in the background automatically without any user's
input and in a battery efficient way. We will use the sensor-based Activity recognition API,
which triggers the driving event whenever the user starts driving. There is usually a delay
in reporting the activities, and we have to also wait for the confidence level to be more than
75, so we will use additional Geo-fence API to make the driving start detection more
accurate and reliable. Our driving start detection algorithm will be a two step process: the
first step will be the trigger for drive start (or we can also call it the potential driving start
event), and the second step will be the confirmation of the drive start event. After the app is
installed, we will start listening to activities reported by the Activity recognition API, and
whenever the reported activity is IN_VEHICLE, and the confidence level is more than 75, we
will consider that as a potential driving start event and will turn on the GPS to confirm the
start of the driving event. We will carry out similar processing for the Geo-fence API. And
after the app installs, we will take the latest location from the Fused location API and set a
geo-fence with a 200 meter radius around the latest location and wait for the exit event of
this geo-fence to be fired by the Geo-fence API. Whenever the geo-fence is broken (exit
event fired), we will consider it as a potential driving start event. Our potential driving start
event can be triggered by two separate APIs (Activity recognition and Geo-fence), and we
will turn on the GPS to confirm the start of the driving event, depending on whichever API
triggered it first.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[6]

The confirmation logic of the start of the driving event from the GPS will be a simple check;
that is, whenever the driving speed goes above 15 miles per hour within 1 minute of
turning on the GPS, it will be considered as confirmation of the driving start event. For our
confirmation logic, we have made an assumption—that the speed of 15 miles per hour
(24.14 km/hour) can only be reached via driving the vehicle—until and unless one is an
olympic-level sprinter! If somehow within 1 minute of turning the GPS on, one is not able to
reach the 15 miles per hour speed threshold, then we consider it as a false positive potential
driving start event. After that, we turn off the GPS and start waiting for the next trigger of
the potential driving start event from any of the two APIs. After every failed potential
driving start event, we remove the old geo-fence and set up a new geo-fence using the latest
location from the Fuse location API. Both of the APIs (Activity recognition and Geo-fence)
are battery-efficient, because of which our driving event app consumes the least amount of
power when the app is in the background, waiting for the driving start event.

Driving stop event detection
Driving stop event detection is simpler than driving start event detection because we have
an additional GPS sensor on all the time. Similar to the driving start detection algorithm, the
driving stop detection algorithm will also work as a two-step process: the first step will be
the trigger for the drive's stop (or we will call it potential driving stop event), and the second
step will be the confirmation of the driving stop event. The logic of the potential driving stop
event using the GPS location data will be a simple check, that is, whenever the driving speed
becomes 0 miles per hour, it is considered a potential driving stop event. In real-world driving,
there can be many false positive instances of a potential driving stop event with a 0 miles per
hour speed, such as stopping at a red light or stop sign, traffic jam, and so on. Whenever we
get any potential driving stop event with a 0 miles per hour speed, we add them to a potential
event stop array for further processing. The second step in the process, which is the
confirmation of the drive stop, is done using the time and input from the Activity
recognition API. If within 5 minutes of finding the first potential drive stop event, the
driving speed goes above 8 miles per hour, then we consider it to be a false positive event
and assume that the user is back in the drive. We also clear off any old events from the
potential event stop array. But, if the speed never goes above 8 miles per hour within 5
minutes of finding the first potential drive stop event, then we consider it to be a
confirmation of the driving stop event.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[7]

In order to increase the accuracy of detection of the driving stop event, we also take input
from the Activity recognition API. After finding any recent potential drive stop event in the
potential event stop array, if we get any walking or on foot reading with high confidence
(above 75) activity from the Activity recognition API, then we consider it a confirmation of
the driving stop event and don't wait for 5 minutes to confirm the driving stop event. In a
real-world scenario, this is most likely to happen when after parking any vehicle, one will
start walking to the final destination, which is a very likely scenario. This walking event
should be picked up easily by the Activity recognition API. After the driving stop event, we
perform one last step in which we take the last drive stop location and set up a new geo-
fence using the Geo-fence API so that it can be ready to detect the next drive.

Last vehicle parked location detection
Theoretically, the driving stop location and the last vehicle parked location should be the
same, but in practical scenarios, they are not the same. So, in order to find the accurate
vehicle parked location, we have to add additional logic to our drive stop logic. In our
driving stop event detection logic, by the time the second step of the process occurs (which
is the confirmation of the drive stop event happening), the user would have walked away
from the parking location. For most real-world scenarios, the parking location would be the
first location of the potential stop event array, where the driving speed would be 0
miles/hour for the first time. This is when a user has parked the vehicle and achieved
a speed of 0 miles/hour for the first time, and after that, has started walking to the final
destination. So, the last location given by the driving stop event detection algorithm will be
used to set up a new geo-fence, while the first location of the potential driving stop event
will be used as the parked location for the vehicle.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[8]

Time for action – the driving start point, end
point, and last parked location
In this section, we will implement the logic discussed in the previous section to detect the
drive's start point, end point, and the vehicle's last parked location. We will also learn how
to use the Activity recognition, Geo-fence, and Fused location APIs. The implementation of
the logic is done using four classes.The following is a class diagram:

This is the explanation of the classes:

AutoDriveDetectionService: This is an instance Android service that will1.
stay in the background and listen to the callbacks (intents) of Activity recognition
and Geo-fence APIs. It is the main class for our implementation that has some
business logic, and it will control the flow of data between the following inner
classes.
ActivityRecognitionHelper: This is an inner class inside2.
the AutoDriveDetectionService class and is used to request activities updates
and has the implementation of the Activity recognition API.
GeofenceHelper: This is also an inner class inside the3.
AutoDriveDetectionService class and is used to set up and remove the geo-
fences. It implements the Geo-fence API.
GPSHelper: This is also an inner class and is used to get location updates and has4.
the implementation of the Fused-location API. Most of the driving start and stop
event logic is also present inside this class.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[9]

Now, let's look at each class in detail:

We will start by implementing the Activity recognition API inside1.
the ActivityRecognitionHelper class. The Activity recognition API is a part
of the Google play service library. This library is provided and maintained by
Google and has a lot of commonly used APIs. In order to use any API from the
Google play service library, we have to use it through the GoogleApiClient
class and also implement the ConnectionCallbacks
and OnConnectionFailedListener interfaces, which are nested interfaces of
the GoogleApiClient class. The first step is to create the object of
the GoogleApiClient class using the builder syntax shown in the following
code. We have to add the ActivityRecognition.API, connection successful,
and failed callbacks using the same builder syntax. After the creation of
the GoogleApiClient class object, we have to connect using the connect()
method of this class. After the connection of the GoogleApiClient object is
established with the Google Play service library, it is notified using
the onConnected() callback:

 public class ActivityRecognitionHelper implements
 ConnectionCallbacks, OnConnectionFailedListener{
 private GoogleApiClient mGoogleApiClientActivity;

 public void startActivityUpdates() {
 mGoogleApiClientActivity = new
 GoogleApiClient.Builder(getApplicationContext())
 .addApi(ActivityRecognition.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();
 mGoogleApiClientActivity.connect();
 }

Once we are connected, we request the requestActivityUpdates() method of2.
the ActivityRecognitionApi interface to send us the regular activity updates
at the specified interval using the syntax shown in the following code. For
the requestActivityUpdates() method, we have to pass three parameters: the
first is the current GoogleApiClient object, second is the time interval (in
milliseconds) at which we are expecting the activity updates, and the third is the
object of pending intent. Through the pending intent, we tell the API to process
the activities and return the results (intents) to
our AutoDriveDetectionService class.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[10]

For our driving event detection, we supply a time interval of 60 seconds, but
the ActivityRecognitionApi might choose its own time interval, depending
on the state of the phone. If the phone is still for a very long duration, then
the ActivityRecognitionApi might turn off its processing and delay any
reporting of events until the phone is back in motion. After requesting the Activity
recognition updates, we disconnect the GoogleApiClient object from the Google
play services. When the app is installed for the first time, we create an object for
the ActivityRecognitionHelper class and call
its startActivityUpdates()method, which will start the process of requesting
activity recognition from the Google play services:

 @Override
 public void onConnected(Bundle connectionHint) {

 Intent intent = new Intent(getApplicationContext(),
 AutoDriveDetectionService.class);
 PendingIntent pendingIntent =
 PendingIntent.getService(getApplicationContext(), 0,
 intent, PendingIntent.FLAG_UPDATE_CURRENT);
 //ACTIVITY_RECOGNITION_REQUEST_INTERVAL is 60 seconds
 ActivityRecognition.ActivityRecognitionApi
 .requestActivityUpdates(mGoogleApiClientActivity,
 Constants.ACTIVITY_RECOGNITION_REQUEST_INTERVAL, pendingIntent);
 mGoogleApiClientActivity.disconnect();
 }

After Activity recognition, we will discuss the use and implementation of the3.
Geo-fence API, which is done inside the GeofenceHelper class. It is an inner
class inside the AutoDriveDetectionService class. It has two major objectives:
first to create a new geo-fence for a given location, and the second is to remove
the last geo-fence created. This is done using public methods of the
GeofenceHelper class, createNewGeoFence(), and removeLastGeoFence(),
and these methods are called from the AutoDriveDetectionService class. The
implementation of the geo-fence API is done in a very similar manner to the
Activity recognition API. We have to follow the same steps of connecting to the
Google Play services, as discussed in the previous section.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[11]

The first step in the implementation is exactly the same, in which we will create an
object of the GoogleApiClient class and implement the ConnectionCallbacks
and OnConnectionFailedListener interfaces to receive callbacks upon the
success or failure of connection attempts. We will add
the LocationService.API using the builder syntax because the geo-fence API is
a part of the LocationService.API. After it's connected to the Google Play
services, we will either create a new geo-fence or remove the old one, depending
on the state of the boolean variable createNewGeofence, which is set inside the
public createNewGeoFence()or removeLastGeoFence()methods. The creation
and setup of new geo-fence is a four-step process. The four steps are listed as
follows:

The creation of the new geo-fence object: To set up any geo-fence, we have to1.
create a geo-fence object using the location API's builder class to create geo-fence
objects. There are four major properties that need to be set for the creation of geo-
fence. The first is the request id string that uniquely identifies the geo-fence. We
add this unique request id string to the mGeofencedIDList string array list,
which will be used later on to remove this geo-fence. The second is the type of
transition, which informs the geo-fence API on when the geo-fence event should
be triggered (either on entering or exiting the geo-fence). The third property is the
center point of the geo-fence, for which we have to supply to the latitude and
longitude for the center point, and the fourth property is the radius of the geo-
fence in meters. All these properties are set using the builder syntax, which is
shown in the code after these bullet points.

The creation of a new geo-fence request object: The way to input a geo-fence to2.
the geo-fence API is by creating the object of the GeofencingRequest class and
adding the geo-fence object in the GeofencingRequest class object using the
builder syntax shown in the code after these bullet points. We also create the
object of intent and pending intent, which instructs the geo-fence API to provide
the geo-fence events into the AutoDriveDetectionService class.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[12]

The addition of the geo-fence request to the geo-fence API: The final step is to3.
add the geo-fence to be monitored by the geofencing services, which is done
using the addGeofences() method of the GeofencingApi. This method accepts
the GeofencingRequest object, the object of the GoogleApiClient class, and
the pending intent object.

The removal of geo-fence: After the creation of the geo-fence using the public4.
createNewGeoFence()method, the next step is to remove the geo-fence.
Removal of geo-fence is a much simpler process than creation. After the
connection is established with Google Play services, a geo-fence can be removed
by just supplying the unique identifier in the geo-fence removal API. The
removal API can remove multiple geo-fences together and accept an array of geo-
fence identifiers, which are to be removed. We provide the mGeofencedIDList
identifier string array, which contains the unique request id of the geo-fence. The
geo-fence removal API also requires the current object of the GoogleApiClient
class as an input along with the unique identifier string array:

 class GeofenceHelper implements ConnectionCallbacks,
 OnConnectionFailedListener{

 private GoogleApiClient mGoogleApiClient;
 private GeofencingRequest mGeofencingRequest;
 private ArrayList<String> mGeofencedIDList = new
 ArrayList<String>();
 private Geofence mGeofence;
 private Location mLocation;
 private boolean createNewGeoFence = false;

 public void createNewGeoFence(Location location) {
 createNewGeoFence = true;
 this.mLocation = location;
 connectToGeofenceService();
 }

 public void removeLastGeoFence() {
 createNewGeoFence = false;
 connectToGeofenceService();
 }

 private void connectToGeofenceService() {

 if (mGoogleApiClient == null) {
 mGoogleApiClient = new
 GoogleApiClient.Builder(getApplicationContext())
 .addApi(LocationServices.API)

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[13]

 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();
 }

 if(!mGoogleApiClient.isConnected()) {
 mGoogleApiClient.connect();
 }
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 //create new geofence
 if(createNewGeoFence){
 //Step 1
 //GEOFENCE_RADIUS is 200 meters
 mGeofencedIDList.add(Constants.GEOFENCE_NAME);
 mGeofence = new Geofence.Builder().setRequestId
 (mGeofencedIDList.get(0)).setTransitionTypes
 (Geofence.GEOFENCE_TRANSITION_EXIT)
 .setCircularRegion(mLocation.getLatitude(),
 mLocation.getLongitude(), Constants.GEOFENCE_RADIUS)
 .setExpirationDuration(Geofence.NEVER_EXPIRE).build();

 //Step 2
 mGeofencingRequest = new GeofencingRequest
 .Builder().addGeofence(mGeofence).build();
 Intent intent = new Intent(getApplicationContext(),
 AutoDriveDetectionService.class);
 PendingIntent pendingIntent = PendingIntent.getService
 (getApplicationContext(), 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 //Step 3
 LocationServices.GeofencingApi.addGeofence
 (mGoogleApiClient, mGeofencingRequest, pendingIntent);
 } else {
 //remove old geofence
 LocationServices.GeofencingApi.removeGeofences
 (mGoogleApiClient, mGeofencedIDList);
 mGeofencedIDList.clear();
 }
 mGoogleApiClient.disconnect();
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[14]

The next important class in the implementation is GPSHelper. It implements the4.
fused location API and also contains the business logic for the confirmation of the
drive start and drive stop events. The fused location API is part of the Google
Play services library. Getting location updates from the fused location API is a
three-step process. The first step is to connect to Google Play services using
the GoogleApiClient class, which is done exactly in the same way as discussed
in the previous two sections. The second step is to create the object of
the RequestLocation class and set the required location properties. The third
and final step is to connect to the fused location API by passing
the RequestLocation object, the GoogleApiClient object, and
the LocationListener interface object to the requestLocationUpdates()
method of the FusedLocationApi class. There are three important properties of
the RequestLocation object (setPriority(), setInterval(),
and setFastestInterval()) that we should set every time, we connect to the
fused location API. The first property is setPriority(), which has the
following four possible constant values and purpose:

 PRIORITY_HIGH_ACCURACY: This priority is set when the accuracy of a location
is most important to us, and we don't care about the power. The fused location
API tries to give the best possible accuracy. It uses GPS as its main source for
location updates.
 PRIORITY_BALANCED_POWER_ACCURACY: This priority is set when the accuracy
of the location and saving power are both equally important. The fused location
API tries to give block level accuracy, which is approximately 100 meters. It uses
cell towers (if available) as its the main source of location updates; otherwise, it
relies on GPS.
 PRIORITY_LOW_POWER: This priority is set when saving power is more
important than the accuracy of the location. The fused location API tries to give
city-level accuracy, which is approximately 10 kilometers. It uses Wi-Fi (if
available) as its main source of location updates; otherwise, it relies on cell
towers.
 PRIORITY_NO_POWER: This priority is set when the app doesn't want to consume
any power at all. The fused location API will not return any location unless a
different client has requested location updates, in which case, this request will act
as a passive listener to those locations.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[15]

The second important property for the RequestLocation class is setInterval(long
milliseconds). It is the desired interval between any two active location updates in
milliseconds. This interval is inexact, as we may not receive updates at all (if no location
sources are available), or we may receive them slower than requested. We may also receive
them faster than requested (if other applications are requesting the location at a faster
interval). The fastest rate at which we will receive updates can be controlled by our third
important property, that is, setFastestInterval(long milliseconds). This parameter
is exact. Our application will never receive updates faster than this value.

All the location updates given by the fused location API is received in the
onLocationChanged() method. This onLocationChanged()is a method of the
LocationListener interface, which has to be implemented in the class in which we want
to receive the location updates (which, in our case, is the GPSHelper class). The location
updates are received in the form of objects of the Location class, which contain location
information such as latitude, longitude, speed, accuracy, time of location update, bearing
angle, and altitude. The GPSHelper class uses the location updates to achieve the following
three important tasks:

Get the single location for setting the initial geo-fence: When the app is
installed for the first time, we need to make it ready to detect the start of the
driving event, and in order to do that, we need the current location to set up the
geo-fence. We get the current location by calling the public
method, getSingleLocationForGeoFence(), of the GPSHelper class from
the AutoDriveDetectionService class. To get the current location, we connect
to the fused location API using the three-step process explained in the previous
paragraph. This is done in the startLocationUpdates()method, which is
called from the getSingleLocationForGeoFence()method. After getting a
single location in the onLocationChanged() method, we turn off the location
updates in the stopLocationUpdates() method. This logic of turning off
location updates after getting the single location is maintained by using
the getSingleLocation Boolean variable, which is set to true,
inside getSingleLocationForGeoFence(), and after getting a single location,
it is set to false, and stopLocationUpdates() is called. The new single location
is passed to the onNewLocationFoundForGeoFence() method of
the AutoDriveDetectionService class, where it is further passed to
the createNewGeoFence() method of the GeofenceHelper class to set up a
new geo-fence.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[16]

Check for a potential drive start event confirmation or failure: Whenever we get
a potential driving start event, triggered by either breaking a geo-fence or an in-
vehicle activity being detected by the Activity recognition API, then we have to
check for confirmation of the drive start event. This confirmation of the drive
start event is initiated by calling the handlePotentialStartDriveTrigger()
method from the AutoDriveDetectionService class. From the same method,
we call the startLocationUpdates() method, which connects to the fused
location API and starts the location updates and sets
the isDriveCheckInProgress Boolean variable to true.
The isDriveCheckInProgress Boolean variable is used in
the AutoDriveDetectionService class to avoid calling
the handlePotentialStartDriveTrigger() method again when the potential
drive start event condition checks are already in progress. After getting regular
location updates in the onLocationChanged() method, we pass all the locations
to the checkForPotentialStartEvent() method to check the drive start
confirmation condition. Inside the checkForPotentialStartEvent() method,
we first add the location object in the mPotentialStartList ArrayList and
then check for the driving speed. Whenever the driving speed goes above 6.7
meters per second (15 miles per hour), then we confirm the drive start event by
calling the confirmStartDrivingEvent() method. It sets
the isDriveCheckInProgress boolean variable to false
and isDriveInProgress to true, and after that, it
notifies AutoDriveDetectionService by calling its onStartDrivingEvent()
method and passes the first location object of the mPotentialStartList array
list, and finally, it also clears the array. If the driving speed never goes above 6.7
meters per second for the next 60 seconds, then we assume that it was a false
positive event and call the confirmStartDriveFailed()method, where it
stops the location updates. It also sets the isDriveCheckInProgress Boolean
variable to false and further notifies AutoDriveDetectionService by calling
its onStartDriveFailed()method and passing the latest location, which will
be used to set up a new geo-fence. We also clear the mPotentialStartList
array list inside the confirmStartDriveFailed() method.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[17]

 Check for potential drive stop event confirmation or failure: Once the drive has
started, we start monitoring for the drive stop event. This is done inside
the checkForPotentialStopEvent() method. We send all the location
received inside onLocationChanged() to this method, where we check if the
driving speed is zero, then we consider this as a potential drive stop event and
add the zero speed location object to the mPotentialStopList array. If the
speed is above zero, then we do nothing. Once we get a potential drive stop
event, which is checked using the size of the mPotentialStopList array, and if
the size is greater than zero, it means we already have a potential drive stop
event in progress. Then we check for the confirmation of the drive stop event. The
confirmation of potential drive stop based on two conditions: the first is if the
potential drive stop event remains active for 5 minutes without going back to
active drive, and the second is if we get a high confidence walking or on foot
activity from the activity recognition API. If either of these two conditions are
satisfied, we confirm the drive stop event by calling
the confirmStopDrivingEvent() method. The walking or on foot activity
input is received from AutoDriveDetectionService and processed inside
the handleWalkingActivityDuringDrive() method. Inside
the confirmStopDrivingEvent() method, we set the Boolean variable, i
sDriveInProgress, to true and stop the location updates. We also clear
the mPotentialStopList array and notify AutoDriveDetectionService by
calling its onStopDrivingEvent() method and passing the latest location
object, which will be used to set up the new geo-fence. Inside
the confirmStopDrivingEvent() method, we also pass the parking location
(where the speed went zero for the first time) to AutoDriveDetectionService.
If we get the driving speed to above 8 mph, while the potential drive stop event is
still active, then we assume that it was a false positive potential drive stop event
and declare the failure of the potential drive stop event by clearing
the mPotentialStopList array:

 public class GPSHelper implements ConnectionCallbacks,
 OnConnectionFailedListener, LocationListener {

 private GoogleApiClient mGoogleApiClient;
 private LocationRequest mLocationRequest;
 private boolean getSingleLocation = false;
 private ArrayList<Location> mPotentialStartList = new
 ArrayList<Location>();
 private ArrayList<Location> mPotentialStopList = new
 ArrayList<Location>();

 public void getSingleLocationForGeoFence() {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[18]

 getSingleLocation = true;
 startLocationUpdates();
 }

 public void handlePotentialStartDriveTrigger() {
 Constants.isDriveCheckInProgress = true;
 startLocationUpdates();
 }

 public void handleWalkingActivityDuringDrive() {
 //If not in Drive and Walking/OnFoot with high Confidence
 if(mPotentialStopList.size()>0) {
 confirmStopDrivingEvent();
 }
 }

 public void startLocationUpdates() {
 if(mGoogleApiClient == null) {
 mGoogleApiClient = new GoogleApiClient
 .Builder(getApplicationContext()).addApi(LocationServices.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();
 }

 if(!mGoogleApiClient.isConnected()) {
 mLocationRequest = LocationRequest.create();
 mLocationRequest.setPriority
 (LocationRequest.PRIORITY_HIGH_ACCURACY);
 //GPS_INTERVAL is 1 second
 mLocationRequest.setInterval(Constants.GPS_INTERVAL);
 mLocationRequest.setFastestInterval(Constants.GPS_INTERVAL);
 mGoogleApiClient.connect();
 }
 }

 public void stopLocationUpdates() {
 if(mGoogleApiClient != null) {
 if (mGoogleApiClient.isConnected()) {
 LocationServices.FusedLocationApi
 .removeLocationUpdates(mGoogleApiClient, this);
 mGoogleApiClient.disconnect();
 }
 }
 }

 @Override
 public void onLocationChanged(Location location) {
 if(Constants.isDriveInProgress) {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[19]

 checkForPotentialStopEvent(location);
 } else {
 if(getSingleLocation) {
 onNewLocationFoundForGeoFence(location);
 stopLocationUpdates();
 getSingleLocation = false;
 } else {
 checkForPotentialStartEvent(location);
 }
 }
 }

 public void checkForPotentialStopEvent(Location location)
 {
 if(location.getSpeed() == 0) {
 mPotentialStopList.add(location);
 //BACKINDRIVE_SPEED_THRESHOLD is 3.57 meters
 per second or 8 mph
 } else if(mPotentialStopList.size()>0 &&
 location.getSpeed()>Constants.BACKINDRIVE_SPEED_THRESHOLD) {
 //Back in the drive
 mPotentialStopList.clear();
 }
 //POTENTIALSTOP_TIME_THRESHOLD is 300 seconds or 5 mins
 if(mPotentialStopList.size()>0 &&
 System.currentTimeMillis() - mPotentialStopList.get(0)
 .getTime() > Constants.POTENTIALSTOP_TIME_THRESHOLD) {
 confirmStopDrivingEvent();
 }
 }

 public void confirmStopDrivingEvent() {
 Constants.isDriveInProgress = false;
 stopLocationUpdates();
 onStopDrivingEvent(mPotentialStopList
 .get(mPotentialStopList.size() - 1));
 onParkingDetected(mPotentialStopList.get(0));
 mPotentialStopList.clear();
 }

 public void confirmStartDrivingEvent() {
 Constants.isDriveCheckInProgress = false;
 Constants.isDriveInProgress = true;
 onStartDrivingEvent(mPotentialStartList.get(0));
 mPotentialStartList.clear();
 }

 public void confirmStartDriveFailed(Location location) {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[20]

 stopLocationUpdates();
 Constants.isDriveCheckInProgress = false;
 onStartDriveFailed(location);
 mPotentialStartList.clear();
 }
 public void checkForPotentialStartEvent(Location location) {
 mPotentialStartList.add(location);
 //POTENTIALSTOP_SPEED_THRESHOLD is 6.7 meters per second or
 15 miles per hour
 if(location.getSpeed() >
 Constants.POTENTIALSTOP_SPEED_THRESHOLD) {
 confirmStartDrivingEvent();
 //POTENTIALSTART_TIME_THRESHOLD is 60 seconds
 } else if(location.getTime() -
 mPotentialStartList.get(0).getTime() >
 Constants.POTENTIALSTART_TIME_THRESHOLD) {
 confirmStartDriveFailed(location);
 }
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 LocationServices.FusedLocationApi.requestLocationUpdates
 (mGoogleApiClient, mLocationRequest, this);
 }
 }

The AutoDriveDetectionService class has the most important tasks to5.
perform. It manages the creation and the communication between all the four
classes. It also handles the input from the Activity recognition and Geo-fence
APIs. Let's look at its tasks in detail:

Creation of objects: In the onCreate() method of the service, we create the
objects of the GeofenceHelper, ActivityRecognitionHelper,
 GPSHelper and LocationDBHelper classes. The LocationDBHelper class is
discussed in detail in the next section, and for now, we will be using it to store the
parking location in the database:

 public class AutoDriveDetectionService extends Service {

 private GeofenceHelper mGeofenceHelper;
 private ActivityRecognitionHelper mActivityRecognitionHelper;
 private GPSHelper mGPSHelper;
 private LocationDBHelper mLocationDBHelper;
 @Override
 public void onCreate() {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[21]

 super.onCreate();
 mLocationDBHelper = new
 LocationDBHelper(getApplicationContext());
 mGPSHelper = new GPSHelper();
 mGeofenceHelper = new GeofenceHelper();
 mActivityRecognitionHelper = new ActivityRecognitionHelper();
 mGPSHelper.getSingleLocationForGeoFence();
 mActivityRecognitionHelper.startActivityUpdates();
 }

Handling the Activity recognition API and the Geo-fence API input: We will
receive the input of the Activity recognition and Geo-fence APIs
inside onStartCommand() from the service. Inside the method, we first check
the type of input from the intent, and if it is the activity recognition input, then it
is passed to handleActivityRecognitionInput(), but if it is the geo-fence
input, then it is passed to handleGeofenceInput(). Inside
the handleActivityRecognitionInput() method, we iterate over the array of
probable activities given by the ActivityRecognitionResult object using
a for loop. If the type of detected activity is IN_VEHICLE and has a confidence of
75 or above, then we consider it a trigger for the potential start drive event and
check for other conditions. If other conditions, such as not-in-drive or not-in-
checking-for-potential-start drive, are satisfied, then we call
the handlePotentialStartDriveTrigger() method of the GPSHelper class
and remove the last geo-fence by calling the removeLastGeoFence() method of
the GeofenceHelper class. If the type of detected activity is
WALKING or ON_FOOT and has a confidence of 75 or above, and also if we are in
active drive, then we call the handleWalkingActivityDuringDrive() method
of the GPSHelper class for further processing. We handle the geo-fence input
inside the handleGeofenceInput() method, where we check the type of geo-
fence event. If the geo-fence event is a type of GEOFENCE_TRANSITION_EXIT,
which is the constant for going outside the geo-fence, then we remove the last
geo-fence and check for other conditions. If we are not in drive, and also, if we
are not checking for a potential start drive event, then we call
the handlePotentialStartDriveTrigger() method of the GPSHelper class:

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 GeofencingEvent geofencingEvent =
 GeofencingEvent.fromIntent(intent);
 if(geofencingEvent!=null) {
 if(!geofencingEvent.hasError()) {
 handleGeofenceInput(geofencingEvent);

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[22]

 }
 } else if(ActivityRecognitionResult.hasResult(intent)) {
 handleActivityRecognitionInput
 (ActivityRecognitionResult.extractResult(intent));
 }
 return Service.START_STICKY;
 }

 public void handleActivityRecognitionInput
 (ActivityRecognitionResult result) {
 for (int i = 0; i < result.getProbableActivities()
 .size(); i++) {
 if(DetectedActivity.WALKING ==
 result.getProbableActivities().get(i).getType()
 || DetectedActivity.ON_FOOT ==
 result.getProbableActivities().get(i).getType()) {
 //CONFIDENCE THRESHOLD is 75
 if(result.getProbableActivities().get(i)
 .getConfidence() > Constants.CONFIDENCE_THRESHOLD &&
 Constants.isDriveInProgress) {
 mGPSHelper.handleWalkingActivityDuringDrive();
 }
 }
 if(DetectedActivity.IN_VEHICLE ==
 result.getProbableActivities().get(i).getType()) {
 if(result.getProbableActivities().get(i)
 .getConfidence() > Constants.CONFIDENCE_THRESHOLD &&
 !Constants.isDriveCheckInProgress &&
 !Constants.isDriveInProgress) {
 mGeofenceHelper.removeLastGeoFence();
 mGPSHelper.handlePotentialStartDriveTrigger();
 }
 }
 }
 }

 public void handleGeofenceInput(GeofencingEvent
 geofencingEvent) {

 if(Geofence.GEOFENCE_TRANSITION_EXIT ==
 geofencingEvent.getGeofenceTransition()) {
 mGeofenceHelper.removeLastGeoFence();
 if(!Constants.isDriveCheckInProgress &&
 !Constants.isDriveInProgress) {
 mGPSHelper.handlePotentialStartDriveTrigger();
 }
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[23]

Communication between objects and outside service: This class also acts as a
bridge for passing the data between
the GeofenceHelper and GPSHelper classes.
The onNewLocationFoundForGeoFence() method is called from
the GPSHelper class, where it passes the latest location. This location is used to
create new geo-fence by calling createNewGeoFence() of
the GeofenceHelper class. Similarly, the onStartDriveFailed() method is
also called from the GPSHelper class with the location being passed as a
parameter, which is used to create new geo-fence through
the createNewGeoFence()method of the GeofenceHelper class. There are
three more methods that are called from theGPSHelper class, and they interact
with other classes. The first method is onStartDrivingEvent(); it passes a
boolean variable, the isDriveStarted as true to
the EventDetectionService class, using the intent. The next method
is onStopDrivingEvent(); it passes the same boolean
variable,isDriveStarted, but its value is false. This method also creates the
new geo-fence through the createNewGeoFence() method of
the GeofenceHelper class. The last method is onParkingDetected(), which
uses the object of the LocationDBHelper class to save the parking location in
the database via an array list of EventData. The details of
the EventDetectionService, LocationDBHelper, and EventData classes are
discussed in the coming sections:

 public void onNewLocationFoundForGeoFence(Location location) {
 mGeofenceHelper.createNewGeoFence(location);
 }

 public void onStartDrivingEvent(Location location) {
 Intent intent = new Intent(this, EventDetectionService.class);
 intent.putExtra("isDriveStarted", true);
 startService(intent);
 }

 public void onStopDrivingEvent(Location location) {
 mGeofenceHelper.createNewGeoFence(location);
 Intent intent = new Intent(this, EventDetectionService.class);
 intent.putExtra("isDriveStarted", false);
 startService(intent);
 }

 public void onStartDriveFailed(Location location) {
 mGeofenceHelper.createNewGeoFence(location);
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[24]

 public void onParkingDetected(Location location) {
 ArrayList<EventData> parkingList = new ArrayList<EventData>();
 EventData eventData = new EventData();
 eventData.eventType = Constants.PARKING_EVENT;
 eventData.eventTime = location.getTime();
 eventData.latitude = location.getLatitude();
 eventData.longitude = location.getLongitude();
 parkingList.add(eventData);
 mLocationDBHelper.updateEventDetails(parkingList);
 parkingList.clear();
 }

What just happened?
We learned how to use and implement the Activity recognition, Geo-fence, and Fused
location APIs. We also implemented the drive start, drive stop, and parking location
detection logics using the activity recognition, geo-fence, and fused location APIs. We
learned some important location properties, such
as setPriority(), setInterval(), setFastestInterval(), which will decide how
and when we receive location updates from the fused location API.

The drive events detection algorithm
We will be using the GPS, accelerometer, and gyroscope sensors to detect drive events. Our
driving application will be focusing on six major risky driving events: hard braking, hard
turn, hard acceleration, high speed, severe crash, and phone distraction. Let's look at each
event in detail to understand its detection logic and how its signature looks on sensors.

Hard braking detection
Not being able to apply the brake, or applying them late, is one of the major causes of
accidents in the world. Applying brakes hard and suddenly at the last second is considered
risky driving behavior. Most vehicle manufactures and vehicle insurance companies
suggest that deceleration of 8 mph or above in one second is the threshold for hard braking.
We will use the same threshold for our application. We will use GPS to calculate the change
in speed every second, and whenever deceleration or change in speed goes to 8 mph or
above in one second, then we will consider it a hard braking event.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[25]

When hard braking is applied, then there is a sudden change in the inertia of the car,
because of which a forward force acts upon the car and all the objects inside it so as to
preserve its original inertia. It is because of this force that all the objects in the car
experience a forward movement or jerk. The smart phone inside the car is sensitive enough
to read this jerk and capture it on its accelerometer sensor. The effect of this force or jerk
generated from hard braking varies depending on the position of the smart phone inside
the car. When the smart phone is kept inside a phone cradle or inside the cup holder, then
they experience maximum jerk or force, while if it is kept inside a pocket or bag, then they
experience little or no effect of the force as the clothes or bag acts as a cushion and absorbs
the impact before it reaches the smart phone. The following is a sample graph of the
accelerometer reading during a hard braking event, where the smart phone was kept inside
the cup holder. The x axis represents the time in hours, minutes, seconds, and milliseconds,
and the y axis is the length of vector (that is, Sqrt(x*x+y*y+z*z)) for the accelerometer. This
length of vector includes the standard 9.8 m/s2 of gravitational acceleration acting on the
phone.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[26]

In the preceding sample data, we can easily identify the effect of the force registered in the
accelerometer data, which goes up to 23.13 m/s2 due to the braking event. This peak value
will vary based on multiple factors such as the range and sensitivity of the accelerometer
sensor on the phone and the position of the phone inside the vehicle. This effect of the force
that is captured by the accelerometer sensor can be used to detect hard braking. But the
problem with this signature of hard braking captured on the accelerometer sensor is that it
is not unique. We can get a similar effect of force (signature) generated by other events such
as hard acceleration, shaking the phone in one's hand, or even by just dropping the phone
in the car. This effect of force (signature) on the accelerometer is not sufficient on its own to
identify this effect as a result of a hard braking event, but when this effect of force on the
accelerometer is combined with the hard braking event detected by the GPS, then it
confirms and adds to the confidence of the hard braking event detected by the GPS. If the
hard braking signature on the accelerometer sensor is detected within 1 second (before or
after) of detecting a hard braking event from the GPS, then we can say with high confidence
that this effect of force (signature) on the accelerometer sensors is a result of a hard braking
event. If we get a hard braking event only from the GPS, then we consider it of medium
confidence, but if we get the hard braking event from both the GPS and accelerometer
within an overlap of 2 seconds, then we consider it as high confidence. This is a simple
example of sensor fusion, where we are using two sensors to detect the same event.

Hard acceleration detection
Hard acceleration is also considered a risky driving event and is one of the major causes of
accidents. When any vehicle accelerates or increases speed at or more than 8 mph in one
second, then we consider it a hard acceleration event. When any vehicle accelerates,
backward forces act on the vehicle and on the objects inside it to preserve its original inertia.
It is because of this force that all the objects in the car experience a backward movement or
jerk. If the phone is placed in a cup holder or phone cradle, then this movement or jerk is
easily captured by the phone's accelerometer sensor. The following is a sample graph of the
accelerometer data for a hard acceleration event. The phone was kept in the cup holder, and
the vehicle reached 30 mph from stationary in 3 seconds with an average acceleration of 10
mph per second:

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[27]

Similar to hard braking, for hard acceleration, we can easily identify the effect of the force
registered in the accelerometer data, but this effect of force (signature) on the accelerometer
is not unique and sufficient on its own to identify this effect as a result of the hard
acceleration event. But when we combine this effect of force on the accelerometer data with
the GPS data, then we can say with high confidence that this effect of force (signature) on
the accelerometer sensor is a result of a hard acceleration event.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[28]

Severe crash detection
Detecting a crash can be a useful feature, especially when the crash is really severe and
extreme medical casualties are involved. Once a severe crash is detected, automatic
notifications (calls and SMS) can be sent to the police, ambulance, friends, and family, and
the location can also be shared through the Android app. Detecting a crash using the
Android sensors is a challenging task as the crashes can vary from a small hit in the back
bumper to a severe head-on collision at high speed. Small and medium crashes are really
difficult to identify as their impact on the phone sensors are very small and insignificant.
They need advanced and sophisticated machine learning models, which are sensitive
enough and trained to identify even mild forces acting on the phone during small and
medium crashes. For our application, we will be developing an algorithm to capture severe
head-on collision crashes, where the vehicle is traveling at a high speed. To detect such
crashes, the position of the phone in the vehicle plays an important role. If the phone is kept
in a position, such as that on a phone cradle attached to the windscreen or on the vehicle
seat, where it falls to the floor due to the impact of the crash, then this produces an
identifiable signature on the phone sensors, which can be associated with a severe crash.
The following is the graph of the accelerometer data during a severe crash. The phone was
kept in a phone cradle attached to the windscreen. When the head-on collision took place,
the phone went flying in the air, collided with the back seat, and fell on the vehicle's floor.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[29]

A series of events happens during a severe crash. The first event, which is registered on the
phone sensors, is the hard braking event due to a sudden stop of the vehicle. This can also
be observed as the first peak on the graph. Hard braking can be identified by the GPS and
accelerometer together. The second event that is observed on the accelerometer sensor is the
falling of the phone on the vehicle floor under the effect of gravity. Whenever any object is
falling under the effect of gravity, the force of gravity acting on that object becomes 0, and
hence, the accelerometer sensor will shown 0 forces acting on the sensors, which would
normally show 9.8 m/s2. This can also be seen in the preceding graph, when the
accelerometer value goes close to zero. The third event is the phone hitting the vehicle floor
and after that colliding with multiple objects. This produces high force due to impact, which
can also be seen in the preceding accelerometer data graph. These three events happening
together can be used to identify a severe crash event. All three events have a unique
signature on phone sensors. In our crash detection algorithm, we will identify these three
individual events separately, and if they happen in succession, then we will confirm it is a
severe crash event.

Hard turn detection
Taking a turn at high speed is considered risky driving behavior and can lead to accidents.
We can use the GPS data for hard turn detection (as it gives a bearing value every second)
which is the horizontal direction of travel of the device and is not related to the device's
orientation. A turn can have a wide range of angles from 0 degrees, which can be a minor
lane change, to 180 degree, which is a full U-turn. The GPS data given by the phone's built-
in GPS chip is not 100% accurate all the time. It might experience some bounces and
inconsistencies due to a lack of GPS satellites or some other reason. Because of this, the
average rate of change of the angle of a turn is more important than the absolute angle
change in every second of the turn because absolute angle change might not be very
accurate. Using an average rate of change of angle over a period of turn for hard turn
detection takes care of the GPS data inconsistencies and bounces most of the time. For our
application, if the average rate of change of angle is greater than 22.5 degrees per second,
then we will consider it a hard turn.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[30]

The following diagram shows data of two turns from the GPS. In the following left-hand
diagram, the latitude and longitude of the drive is plotted on the map:

We can visually identify two turns on the map. The first turn is marked by a red circle, and
the second one is marked by a green circle. The corresponding bearing angles for the turns
given by the GPS are also plotted on the graph (which are also marked by red and green
circles). Both the turns are approximately 90 degrees, but the turn with the red circle was
completed in less than 4 seconds, and hence it generated an average angular speed greater
than 22.5 degrees per second, which is considered a hard turn, while the turn with green
circle was completed in 6 seconds, hence it generated an average angular speed less than
22.5 degrees per second, which is a normal turn. We will use the same turn detection logic
for our application.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[31]

Detecting phone distraction and high speed
Using the phone while driving is considered to be the most risky driving behavior. It takes
your focus off the road and distracts you from driving, which is one of the major causes of
accidents. If anybody lifts or handles the phone while driving at a speed of 20 miles per
hour or above, we consider it a phone distraction event. We will use the gyroscope sensor to
detect the phone distraction events. The gyroscope gives the rate of rotation of the phone
in x, y, and z axis. When your phone is kept still, there are very low or no rate of rotation
values reported by the gyroscope, but when the phone is picked up or handled, the rate of
rotation value goes very high. The following graph shows the magnitude, (that is,
Sqrt(x*x+y*y+z*z)) of the gyroscope sensor data when the phone is handled while driving:

For our application, we considered that whenever the magnitude of the gyroscope sensor
data crosses the threshold of 2.5, we will consider it a phone handling or distraction event.
The threshold of 2.5 is good enough to filter out any noise generated from the vehicle's
engine vibrations or the vehicle's turning noise recorded on the gyroscope sensor. This
threshold can only be crossed when somebody lifts or handles the phone by hand.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[32]

Driving at high speeds is also considered risky driving behaviour. Generally, the risky
driving speed limit will vary depending on the type of vehicle. For light vehicles, driving
above 80 miles per hour is considered unsafe, and for heavy vehicles, the risky speed limit
is 60 miles per hour. For our application, we will consider 80 miles per hour or above as the
risky speed identifier. Detecting the high speed limit is the simplest of all the events as the
speed is directly given by the GPS every second.

Time for action – detecting driving events
After discussing the design approach and logic, we will implement it in this section. We will
focus on detecting a risky driving event during the drive; the drive start and drive stop
events have already been taken care of in an earlier part of the chapter. The following is a
class diagram that lists the classes with their purposes; we will use this for the
implementation:

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[33]

EventDetectionService: This is an instance Android service that will stay in1.
the background, process raw sensor data, and capture risky driving events only
when the user is in active drive. It will also control the flow of data between the
different classes.
EventProcessorThread: This is an inner class inside2.
the EventDetectionService class and implements the runnable interface. It
contains all the event detection logic and executes once every 30 seconds to
process the raw data obtained from the sensors.
AccelerometerSensor: This is a singleton class for collecting the raw3.
accelerometer sensor data and providing this data to the
EventProcessorThread class for further event detection processing.
GyroscopeSensor: This is a singleton class for collecting the raw gyroscope4.
sensor data and providing this data to the EventProcessorThread class for
further event detection processing.
GPSSensor: This is also a singleton class for collecting the location data and5.
providing this data to the EventProcessorThread class for further event
detection processing. It uses the GoogleApiClient class to connect to the fused
location API to get the location data.
SensorData: This is a POJO (Plain Old Java Object) class and the6.
EventProcessorThread class uses it to tag the events while processing. It
contains the SensorEvent object and other primitive variables.
LocationData: This is also a POJO class and the EventProcessorThread class7.
uses it to tag the events. It contains the Location class and other primitive
variables.
EventData: This is a POJO class. The EventProcessorThread class uses this to8.
store details of events. It only contains primitive variables.
LocationDBHelper: It is used to persist the risky event data and drive the9.
summary data in the database, and it extends from the SQLiteOpenHelper class.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[34]

Now, let's discuss each class in detail. We start with discussing the
EventDetectionService class as it's most important and controls the flow of data.

EventDetectionService is extended from the Service class. It remains in the1.
background and provides a container for execution. In the onCreate() method,
we initiate the object of the LocationDBHelper class, and after that, we create
the objects of the HandlerThread and Handler classes. We need to pass this
object of the Handler class while registering the sensors with SensorManager.
By default, sensor events are delivered to the main application thread, but if your
application wants sensor events to be delivered in a separate background thread,
then we have pass the object of the Handler class. For most cases, it is fine to get
the sensor events on the main application thread, but when we are dealing with
multiple sensors, and also for a longer duration of time, then it is recommended
that you get the sensor events in a separate thread. We initiate the object
of ScheduledExecutorService with two threads using
the Executors.newScheduledThreadPool(2)method. This concept
of ScheduledExecutorService is explained in Chapter 6, The Step Counter
and Detector Sensors – The Pedometer App, during the explanation of
the StepTrackerService. The EventDetectionService class receives two
important messages from AutoDriveDetectionService in the form of intents.
These messages are about when the drive was started and when the drive was
stopped. The value true for the Boolean variable isDriveStarted signifies the
start of the drive, and after that, we call the startEventProcessing() method,
while the value false for isDriveStarted signifies the stop of the drive, and
after that, we call the stopEventProcessing()method. In the
startEventProcessing() method, we take the following important actions:

Generate a unique identifier for the drive: We do this by calling
the generateDriveID()method of the LocationDBHelper class, which
generates a unique identifier for the drive, and all the driving events captured
during the drive will be associated with this unique ID.
Start collecting the raw data from sensors: We start collecting the sensors' data
by calling each sensor's register(mHandler) method and passing the Handler
object in it.
Start processing sensor data once every 30 seconds: All the risky driving event
detection is done in the EventProcessorThread class, and it is executed once
every 30 seconds until the end of the drive. We schedule this regular processing
of the thread by using the scheduleWithFixedDelay() method of the
ScheduledExecutorService class.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[35]

stopEventProcessing()is executed after the drive has stopped. It is responsible for two
major tasks: the first is to stop collecting the sensor data, which is done by calling each
sensor's unregister() method, and the second is to stop the scheduled regular processing
of sensor data happening once every 30 seconds, and this is done using
the ScheduledFuture.cancel() method:

 public class EventDetectionService extends Service {
 LocationDBHelper mLocationDBHelper;
 HandlerThread mHandlerThread;
 Handler mHandler;
 ScheduledExecutorService mScheduledExecutorService;
 ScheduledFuture mEventProcessorFutureRef;
 EventProcessorThread mEventProcessorThread;
 long timeOffsetValue;

 @Override
 public void onCreate() {
 super.onCreate();
 mLocationDBHelper = new
 LocationDBHelper(getApplicationContext());
 mHandlerThread = new HandlerThread("Sensor Thread",
 android.os.Process.THREAD_PRIORITY_BACKGROUND);
 mHandlerThread.start();
 mHandler = new Handler(mHandlerThread.getLooper());
 mScheduledExecutorService =
 Executors.newScheduledThreadPool(2);
 timeOffsetValue = System.currentTimeMillis() -
 SystemClock.elapsedRealtime();
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int
 startId) {
 if(intent!=null && intent.getBooleanExtra
 ("isDriveStarted", false)) {
 startEventProcessing();
 } else {
 stopEventProcessing();
 }
 return Service.START_STICKY;
 }

 public void startEventProcessing() {
 mLocationDBHelper.generateDriveID();
 GyroscopeSensor.getInstance().register(mHandler,
 getApplicationContext());
 GPSSensor.getInstance().register(mHandler,

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[36]

 getApplicationContext());
 AccelerometerSensor.getInstance().register(mHandler,
 getApplicationContext());
 mEventProcessorThread = new EventProcessorThread();
 //INITIAL_DELAY and FIXED_DELAY is 30 seconds
 mEventProcessorFutureRef = mScheduledExecutorService
 .scheduleWithFixedDelay(mEventProcessorThread,
 Constants.INITIAL_DELAY, Constants.FIXED_DELAY,
 TimeUnit.MILLISECONDS);
 }

 public void stopEventProcessing() {
 GyroscopeSensor.getInstance().unregister();
 GPSSensor.getInstance().unregister();
 AccelerometerSensor.getInstance().unregister();
 mEventProcessorFutureRef.cancel(false);
 }

For the detection of risky driving events, we have to collect and process data2.
from three sensors: the accelerometer, gyroscope, and GPS. We have created their
individual singleton classes, which are only responsible for the collection of raw
sensor data. All three sensors' collection classes have the register()method,
which registers from the respective sensor API and starts collecting the sensor
data, and, the unregister() method, which unregisters from the respective
sensors' APIs and stops the collection of sensor data. Now, let's look at each
sensor class:

 AccelerometerSensor: This is a singleton class and implements
the SensorEventListener interface. It collects data from the accelerometer
sensor and stores it in mAccelerometerList, which is an ArrayList
of SensorEvent objects. We provide these accelerometer sensor events to
the EventProcessorThread class via the getAccelerometerList() method.
It collects the data at frequency of 50 Hz, that is, a 20,000 microseconds interval:

 public class AccelerometerSensor implements SensorEventListener {
 private ArrayList<SensorEvent> mAccelerometerList = new
 ArrayList<SensorEvent>();
 private SensorManager mSensorManager;
 private Sensor mSensor;
 private static AccelerometerSensor accelerometerSensor;

 public static AccelerometerSensor getInstance() {
 if (accelerometerSensor == null) {
 accelerometerSensor = new AccelerometerSensor();
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[37]

 return accelerometerSensor;
 }

 public void unregister() {
 mSensorManager.unregisterListener(this);
 }

 public void register(Handler mHandler, Context context) {
 mSensorManager = (SensorManager)
 context.getSystemService(Context.SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_ACCELEROMETER);
 //ACCELEROMETER_INTERVAL is 20000, i.e. 50 times
 in second (50 Hz)
 mSensorManager.registerListener(this, mSensor,
 Constants.ACCELEROMETER_INTERVAL, mHandler);
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 mAccelerometerList.add(event);
 }

 public ArrayList<SensorEvent> getAccelerometerList()
 {
 return mAccelerometerList;
 }
 }

 GyroscopeSensor: All the functionality of the GyroscopeSensor class is the
same as the AccelerometerSensor class, except that it stores all the sensor data
in mGyroscopeList and provides the gyroscope sensor events to
the EventProcessorThread class via the getGyroscopeList() method. It also
collects the data at a frequency of 50 Hz (a 20,000 microseconds interval):

 public class GyroscopeSensor implements SensorEventListener {
 private ArrayList<SensorEvent> mGyroscopeList = new
 ArrayList<SensorEvent>();
 private static GyroscopeSensor gyroscopeSensor;
 private SensorManager mSensorManager;
 private Sensor mSensor;

 public static GyroscopeSensor getInstance()
 {
 if (gyroscopeSensor == null) {
 gyroscopeSensor = new GyroscopeSensor();
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[38]

 return gyroscopeSensor;
 }

 public void unregister() {
 mSensorManager.unregisterListener(this);
 }

 public void register(Handler mHandler, Context context) {
 mSensorManager = (SensorManager)
 context.getSystemService(Context.SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_GYROSCOPE);
 //GYROSCOPE_INTERVAL is 20000, i.e. 50 times in
 second (50 Hz)
 mSensorManager.registerListener(this, mSensor,
 Constants.GYROSCOPE_INTERVAL, mHandler);
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 mGyroscopeList.add(event);
 }

 public ArrayList<SensorEvent> getGyroscopeList()
 {
 return mGyroscopeList;
 }

 GPSSensor: This is a singleton class and collects the location data every second
and stores it in mLocationDataList, which is the ArrayList of the Location
objects. This location data is provided to the EventProcessorThread class for
processing via the getGPSList() method. The steps to create the object
of mGoogleApiClient and connect to the fused location API have been
explained in an earlier part of this chapter while discussing the GPSHelper class:

 public class GPSSensor implements ConnectionCallbacks,
 OnConnectionFailedListener, LocationListener {

 private ArrayList<Location> mLocationDataList = new
 ArrayList<Location>();
 private static GPSSensor gpsSensor;
 private GoogleApiClient mGoogleApiClient;
 private LocationRequest mLocationRequest;

 public static GPSSensor getInstance()
 {
 if (gpsSensor == null) {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[39]

 gpsSensor = new GPSSensor();
 }
 return gpsSensor;
 }

 public void register(Handler mHandler, Context context)
 {
 mGoogleApiClient = new GoogleApiClient.Builder(context)
 .addApi(LocationServices.API)
 .addConnectionCallbacks(this) .setHandler(mHandler)
 .addOnConnectionFailedListener(this).build();
 //GPS_INTERVAL is 1000 milliseconds, i.e. 1 second
 mLocationRequest = LocationRequest.create();
 mLocationRequest.setPriority
 (LocationRequest.PRIORITY_HIGH_ACCURACY);
 mLocationRequest.setInterval(Constants.GPS_INTERVAL);
 mLocationRequest.setFastestInterval(Constants.GPS_INTERVAL);
 mGoogleApiClient.connect();
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 LocationServices.FusedLocationApi.requestLocationUpdates
 (mGoogleApiClient, mLocationRequest, this);
 }

 public void unregister() {
 LocationServices.FusedLocationApi
 .removeLocationUpdates(mGoogleApiClient, this);
 mGoogleApiClient.disconnect();
 }

 @Override
 public void onLocationChanged(Location location) {
 mLocationDataList.add(location);
 }

 public ArrayList<Location> getGPSList()
 {
 return mLocationDataList;
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[40]

We will need the following POJO classes during the processing of the sensor data3.
inside the EventProcessorThread class. These POJO classes will hold original
sensor event data generated from sensors along with some extra information,
which will be used to tag events. Now, let's look at each POJO class:

 SensorData: This is used to store the original accelerometer or gyroscope data
in the form of a SensorEvent object along with other tagging information such
as isDuplicate, magnitude, and time in milliseconds:

 public class SensorData {
 public SensorEvent mSensorEvent;
 public double magnitude;
 public boolean isDuplicate;
 public long time;
 }

 LocationData: This is used to store the original location data in the form of
the Location object along with other tagging information such
as isDuplicate, eventType, and isfused:

 public class LocationData {
 public Location mLocation;
 public int eventType;
 public boolean isFused;
 public boolean isDuplicate;
 }

 EventData: This is used to store all the information extracted from raw sensor
data before saving it to the database. It has the location, time, and other tagging
information:

 public class EventData {
 public double latitude;
 public double longitude;
 public double speed;
 public double acceleration;
 public long eventTime;
 public int eventType;
 public boolean isFused;
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[41]

Until now, we were building the infrastructure required to detect a risky driving4.
event. Now, in this section, we will implement the core logic for event detection.
The EventProcessorThread class implements the runnable interface and is
executed once every 30 seconds to process all the raw sensor data collected so far
using the singleton sensor classes. The EventProcessorThread class hosts all
the individual event detection logic, which is spread across multiple methods,
and which is called from the run() method. The following is the skeleton code
structure of the EventProcessorThread class without the method's
implementation. We will be discussing these individual methods'
implementations separately as it will become very lengthy and complicated to
discuss all of them together. We have also declared and initialized
some ArrayList and variables, which we will discuss as we encounter them:

 class EventProcessorThread implements Runnable{

 ArrayList<Location> mGPSRawList = new ArrayList<Location>();
 ArrayList<SensorEvent> mAccelerometerRawList = new
 ArrayList<SensorEvent>();
 ArrayList<SensorEvent> mGyroscopeRawList = new
 ArrayList<SensorEvent>();
 ArrayList<SensorData> mAccelerometerPotentialList = new
 ArrayList<SensorData>();
 ArrayList<SensorData> mCrashPotentialList = new
 ArrayList<SensorData>();
 ArrayList<SensorData> mGyroscopePotentialList = new
 ArrayList<SensorData>();
 ArrayList<LocationData> mGPSPotentialList = new
 ArrayList<LocationData>();
 ArrayList<EventData> mEventList = new ArrayList<EventData>();
 SensorData mAccelerometerData;
 SensorData mGyroscopeData;
 LocationData mLocationData;
 double magnitude;
 boolean isHighSpeedEventPresent;
 EventData mEventData;

 @Override
 public void run() {
 transferData();
 detectPhoneDistraction();
 detectHardTurns();
 eventDetectionUsingGPS();
 eventDetectionUsingAccelerometer();
 fusingGPSAccelerometerEvents();
 processNonFusedGPSEvents();
 detectSevereCrashes();

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[42]

 saveSensorEventInDB();
 clearData();
 }
 }

The following is the implementation and explanation of each method separately; they are
called from the run() method:

 transferData(): The individual singleton sensor classes collect the sensor data
in their own instances of the ArrayList of the sensor data, and we cannot use
them directly for processing. If used, then they would create concurrency
read/write problems as the values are being added at a high frequency, and it is
being processed at the same time as the same ArrayList of sensor data. So, we
have to transfer all the sensor data from the individual singleton sensor classes to
the local ArrayList of the EventProcessorThread class and clear the
original ArrayList so that they are not processed the next time. All of this is
done by the transferData() method. It collects the GPS sensor data and adds it
to the local mGPSRawList, which is the ArrayList of Location objects.
Similarly, it collects the Accelerometer and Gyroscope sensor data and puts them
in the respective mAccelerometerRawList and mGyroscopeRawList, which
are the ArrayList of the SensorEvent objects:

 private void transferData()
 {
 //Transferring all the data from the main collection
 array and cleaning after that, so that adding new values
 to the arrays doesn't get blocked
 mGPSRawList.addAll(GPSSensor.getInstance().getGPSList());
 GPSSensor.getInstance().getGPSList().clear();
 mAccelerometerRawList.addAll(AccelerometerSensor
 .getInstance().getAccelerometerList());
 AccelerometerSensor.getInstance().getAccelerometerList()
 .clear();
 mGyroscopeRawList.addAll(GyroscopeSensor.getInstance()
 .getGyroscopeList());
 GyroscopeSensor.getInstance().getGyroscopeList().clear();
 }

 detectPhoneDistraction(): Detecting the phone distraction event is a three
step process. The first step is to find those gyroscope sensor values where the
magnitude is greater than 2.5. The second step is to remove those gyroscope
sensor values that are close enough to be considered duplicate events. The third
step is to filter out the gyroscope values that were generated at driving speeds of
20 mph or less, find the location of every phone distraction event above the speed

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[43]

of 20 mph, and add them to mEventList. The first for loop inside
the detectPhoneDistraction()method calculates the magnitude, that
is, Sqrt(x*x+y*y+z*z), and puts the SensorData object
in mGyroscopePotentialList if the magnitude value exceeds the threshold. It
also converts the sensor event time, which is from the phone's boot time to epoch
time. The second for loop removes the sensor magnitude values that are within 3
seconds of each other. If the time difference between the two consecutive values
is less than 3 seconds, then we set its isDuplicate Boolean variable to true. The
third for loop is executed over mGyroscopePotentialList for only those
gyroscope values for which the isDuplicate Boolean variable is false. Inside
the loop, we have to find the corresponding GPS location where the gyroscope
magnitude crossed the threshold value. This can be done by finding the closest
time match between the GPS location value and the gyroscope value. We take the
time from the gyroscope value and subtract it from the GPS location values by
running it over the entire mGPSRawList using the second nested for loop, and
whenever the time difference comes to less than 1.5 seconds, we consider that as
the GPS location for the phone distraction event. After finding the closest GPS
location, we check for its speed. If the GPS speed is greater than 20 mph, then we
consider it a phone distraction event and save all the event details in a
new EventData object with the eventType as PHONE_DISTRACTION_EVENT
constant and add that object to mEventList:

 private void detectPhoneDistraction()
 {
 //Calculating the magnitude (Length of vector) and
 //checking if its greater than 2.5 threshold
 (PHONE_DISTRACTION_PEAK)
 int sizeGyroscopeRawList = mGyroscopeRawList.size();
 for (int i = 0; i < sizeGyroscopeRawList; i++) {
 magnitude = Math.sqrt(Math.pow(mGyroscopeRawList
 .get(i).values[0], 2) + Math.pow(mGyroscopeRawList
 .get(i).values[1], 2) + Math.pow(mGyroscopeRawList
 .get(i).values[2], 2));
 if(magnitude > Constants.PHONE_DISTRACTION_PEAK)
 {
 mGyroscopeData = new SensorData();
 mGyroscopeData.mSensorEvent =
 mGyroscopeRawList.get(i);
 mGyroscopeData.magnitude = magnitude;
 mGyroscopeData.time =
 (mGyroscopeRawList.get(i).timestamp/1000000L) +
 timeOffsetValue;
 mGyroscopePotentialList.add(mGyroscopeData);
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[44]

 }

 //Removing the Gyroscope Potential Overlapping &
 Duplicate Data, which are close enough
 int sizeGyroscopePotentialtList =
 mGyroscopePotentialList.size();
 for (int i = 0; i < sizeGyroscopePotentialtList; i++)
 {
 for (int j = i+1; j < sizeGyroscopePotentialtList; j++)
 {
 if(mGyroscopePotentialList.get(j).time -
 mGyroscopePotentialList.get(i).time <
 Constants.THREE_SECONDS)
 {
 mGyroscopePotentialList.get(j).isDuplicate = true;
 }
 }
 }

 //Capturing Phone Distraction Events location and checking
 for speed threshold
 boolean correspondingGPSFound;
 for (int i = 0; i < sizeGyroscopePotentialtList; i++)
 {
 if(!mGyroscopePotentialList.get(i).isDuplicate)
 {
 correspondingGPSFound = false;
 mEventData = new EventData();
 for (int k = 0; k < mGPSRawList.size(); k++) {
 // PHONE_DISTRACTION_SPEEDLIMT is 20 miles per hour
 if(Math.abs(mGyroscopePotentialList.get(i).time -
 mGPSRawList.get(k).getTime()) <
 Constants.ONE_AND_HALF_SECOND && mGPSRawList.get(k)
 .getSpeed() > Constants.PHONE_DISTRACTION_SPEEDLIMT)
 {
 correspondingGPSFound = true;
 mEventData.speed = mGPSRawList.get(k).getSpeed();
 mEventData.latitude = mGPSRawList.get(k).getLatitude();
 mEventData.longitude = mGPSRawList.get(k).getLongitude();
 break;
 }
 }
 if(correspondingGPSFound) {
 mEventData.eventType = Constants.PHONE_DISTRACTION_EVENT;
 mEventData.eventTime = mGyroscopePotentialList.get(i).time;
 mEventList.add(mEventData);
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[45]

 }
 }

 detectHardTurns(): This method is responsible for detecting hard turns using
the GPS bearing data obtained from mGPSRawList. A turn has two important
properties: the first is the angle of the turn, and the second is the time to complete
the turn. Generally, hard turns will have a big change in the angle and will be
completed in a short span of time. Hard turns can be completed anywhere from 2
seconds with a 45 degrees change of angle (a small turn), to 8 seconds with a 180
degrees change of angle (a full u-turn). Taking a hard turn with a change of angle
of 90 degrees or more is considered more risky than taking a turn with a change
of angle much less than 90 degrees. As a baseline for our application, we will only
consider turns that have a turn angle equal to or greater than 90 degrees, and the
time of completion of the turn as 4 seconds or less. The angle of turn given by the
GPS bearing value might not be accurate for every single second of the turn,
hence we will take the average of the change of angle spread across 4 seconds. If
the average change of angle for 4 seconds is greater than 22.5 degrees, then we
will consider it a hard turn. This average threshold will only include the hard
turns that are within 4 seconds and have a change of angle between 90 and 180
degrees. In order to get the change of angle for every second of the turn, we will
subtract the next GPS bearing value with the previous GPS bearing value. The
angle given by the GPS bearing is always in between 0 and 360 degrees, which
can lead to a change of angle calculation error. If the two consecutive angles fall
in two different quadrants, particularly between [0, 90] and [270, 360], then the
change of angle, which is the difference between two consecutive angles, will
give us the wrong value. For example, if the first angle is 358 degrees and the
next angle is 5 degrees, then the difference calculation goes wrong, that is, 5
minus 358 is equal to -353. A way to fix this error is by adding 360 to the smaller
angle value, that is, if the two consecutive angles fall in either the [0, 90] or [270,
360] range. This will correct the relative difference, that is, (5+360)-358 = 7. To
implement this algorithm, we will just use one for loop to calculate the change
of angle between two consecutive bearing values for a continuous 4 seconds of
data, and then we will take the average value for 4 seconds of the change of angle
data. If this average value is greater than 22.5 degrees, then we consider this a
hard turn and save all the event details in a new EventData object
with eventType as the HARD_TURN_EVENT constant and add that object
to mEventList. While calculating the change of angle between two consecutive
bearing values, we also check whether they fall in either the [0, 90] or [270, 360]
range, and then we add 360 to the smaller angle value to get the correct change of
angle. This for loop is executed over the entire GPS bearing data obtained
from mGPSRawList:

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[46]

 private void detectHardTurns()
 {
 float fourthAngle, thirdAngle, secondAngle, firstAngle,
 averageTurnAngle = 0;
 int sizeGPSList = mGPSRawList.size();
 for (int i = 0; i < sizeGPSList - 4; i++)
 {
 //Calculating fourth angle
 if(mGPSRawList.get(i+4).getBearing() < 90 &&
 mGPSRawList.get(i+3).getBearing() > 270)
 {
 fourthAngle = (mGPSRawList.get(i+4).getBearing()+360) -
 mGPSRawList.get(i+3).getBearing();
 }
 else if(mGPSRawList.get(i+4).getBearing() > 270 &&
 mGPSRawList.get(i+3).getBearing() < 90)
 {
 fourthAngle = (mGPSRawList.get(i+3).getBearing()+360) -
 mGPSRawList.get(i+4).getBearing();
 }
 else
 {
 fourthAngle = Math.abs(mGPSRawList.get(i+4).getBearing() -
 mGPSRawList.get(i+3).getBearing());
 }
 //Calculating third angle
 if(mGPSRawList.get(i+3).getBearing() < 90 &&
 mGPSRawList.get(i+2).getBearing() > 270)
 {
 thirdAngle = (mGPSRawList.get(i+3).getBearing()+360) -
 mGPSRawList.get(i+2).getBearing();
 }
 else if(mGPSRawList.get(i+3).getBearing() > 270 &&
 mGPSRawList.get(i+2).getBearing() < 90)
 {
 thirdAngle = (mGPSRawList.get(i+2).getBearing()+360) -
 mGPSRawList.get(i+3).getBearing();
 }
 else
 {
 thirdAngle = Math.abs(mGPSRawList.get(i+3).getBearing() -
 mGPSRawList.get(i+2).getBearing());
 }
 //Calculating second angle
 if(mGPSRawList.get(i+2).getBearing() < 90 &&
 mGPSRawList.get(i+1).getBearing() > 270)
 {
 secondAngle = (mGPSRawList.get(i+2).getBearing()+360) -

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[47]

 mGPSRawList.get(i+1).getBearing();
 }
 else if(mGPSRawList.get(i+2).getBearing() > 270 &&
 mGPSRawList.get(i+1).getBearing() < 90)
 {
 secondAngle = (mGPSRawList.get(i+1).getBearing()+360) -
 mGPSRawList.get(i+2).getBearing();
 }
 else
 {
 secondAngle = Math.abs(mGPSRawList.get(i+2).getBearing() -
 mGPSRawList.get(i+1).getBearing());
 }
 //Calculating first angle
 if(mGPSRawList.get(i+1).getBearing() < 90 &&
 mGPSRawList.get(i).getBearing() > 270)
 {
 firstAngle = (mGPSRawList.get(i+1).getBearing()+360) -
 mGPSRawList.get(i).getBearing();
 }
 else if(mGPSRawList.get(i+1).getBearing() > 270 &&
 mGPSRawList.get(i).getBearing() < 90)
 {
 firstAngle = (mGPSRawList.get(i).getBearing()+360) -
 mGPSRawList.get(i+1).getBearing();
 }
 else
 {
 firstAngle = Math.abs(mGPSRawList.get(i+1).getBearing() -
 mGPSRawList.get(i).getBearing());
 }
 //Calculating average angle
 averageTurnAngle = (fourthAngle + thirdAngle + secondAngle +
 firstAngle)/4;
 //HARD_TURN_PEAK is 22.5f
 if(averageTurnAngle>Constants.HARD_TURN_PEAK)
 {
 //This is considered as hard turn and adding this hard
 turn to Detected Event List Array
 mEventData = new EventData();
 mEventData.eventType = Constants.HARD_TURN_EVENT;
 mEventData.speed = mGPSRawList.get(i+2).getSpeed();
 mEventData.latitude = mGPSRawList.get(i+2).getLatitude();
 mEventData.longitude = mGPSRawList.get(i+2).getLongitude();
 mEventData.eventTime = mGPSRawList.get(i+2).getTime();
 mEventList.add(mEventData);
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[48]

 }

 eventDetectionUsingGPS(): With GPS data, we process three types of risky
event: the first is hard braking, the second is hard acceleration, and the third is
high speed. We iterate over the entire GPS array mGPSRawList and calculate the
acceleration, which is the difference in speed between two consecutive GPS data
points. If the acceleration is positive and above 8 mph per second, then we
consider it as a hard acceleration event and save all the location details in a
new LocationData object with eventType as the HARD_ACCELERATION_EVENT
constant and add that object to mGPSPotentialList. If the acceleration is
negative and between -8 mph per second and -17 mph per second, then we
consider it a hard braking event and save all the location details in a
new LocationData object with eventType as the HARD_BRAKING_EVENT
constant and add that object to mGPSPotentialList. Whenever the speed
crosses the 80 mph threshold, we consider it a high-speed event. We only tag the
first such occurrence as a high-speed event in the entire 30 seconds of GPS data
collected in mGPSRawList. This is done using
the isHighSpeedEventPresent boolean variable, which is set to true on the
first occurrence. We save the first occurrence of high-speed event details in a
new EventData object with eventType as the SPEEDING_EVENT constant and
add that object to mEventList. For hard braking and hard acceleration, we don't
save the event details directly in mEventList because they will be further
processed and fused with the accelerometer sensor data. For all the braking and
accelerating data in mGPSPotentialList, we remove the duplicates using
the for loop that are within 3 seconds of each other by assigning
their isDuplicate variable to true:

 private void eventDetectionUsingGPS()
 {
 //Processing the GPS data for Hard Braking,
 Fast Acceleration and High Speed
 int sizeGPSRawList = mGPSRawList.size();
 float acceleration = 0;
 isHighSpeedEventPresent = false;
 for (int i = 0; i < sizeGPSRawList-1; i++)
 {
 //calculating change in speed between two
 consecutive points
 acceleration = mGPSRawList.get(i+1).getSpeed() -
 mGPSRawList.get(i).getSpeed();
 //Checking for HARD ACCELERATION PEAK(above 8 mph or
 3.57632 meters per second)
 if(acceleration > Constants.HARD_ACCELERATION_PEAK)

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[49]

 {
 mLocationData = new LocationData();
 mLocationData.eventType =
 Constants.HARD_ACCELERATION_EVENT;
 mLocationData.mLocation = mGPSRawList.get(i+1);
 mLocationData.acceleration = acceleration;
 mGPSPotentialList.add(mLocationData);
 }
 //Checking for HARD BREAKING, between -8 mph
 (HARD_BREAKING_LOWER_PEAK) to -17 mph
 (HARD_BREAKING_HIGHER_PEAK)
 else if((acceleration >
 Constants.HARD_BREAKING_HIGHER_PEAK) &&
 (acceleration < Constants.HARD_BREAKING_LOWER_PEAK))
 {
 //Potential Candidate for Hard Brake
 Severe Crash
 mLocationData = new LocationData();
 mLocationData.eventType = Constants.HARD_BRAKING_EVENT;
 mLocationData.mLocation = mGPSRawList.get(i+1);
 mLocationData.acceleration = acceleration;
 mGPSPotentialList.add(mLocationData);
 }
 //Checking for HIGH SPEEDING PEAK (80 miles per hour or
 35.76 meters per second)
 if(mGPSRawList.get(i).getSpeed() >
 Constants.HIGH_SPEED_PEAK &&
 !isHighSpeedEventPresent)
 {
 mEventData = new EventData();
 mEventData.eventType = Constants.SPEEDING_EVENT;
 mEventData.acceleration = acceleration;
 mEventData.speed = mGPSRawList.get(i).getSpeed();
 mEventData.latitude = mGPSRawList.get(i).getLatitude();
 mEventData.longitude = mGPSRawList.get(i).getLongitude();
 mEventData.eventTime = mGPSRawList.get(i).getTime();
 mEventList.add(mEventData);
 isHighSpeedEventPresent = true;
 }
 }

 //Removing the GPS Potential Overlapping & Duplicate Data,
 which are close enough (within 3 seconds interval)
 int sizeGPSPotentialList = mGPSPotentialList.size();
 for (int i = 0; i < sizeGPSPotentialList; i++)
 {
 for (int j = i+1; j < sizeGPSPotentialList; j++)
 {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[50]

 if(mGPSPotentialList.get(j).time -
 mGPSPotentialList.get(i).time <
 Constants.THREE_SECONDS)
 {
 mGPSPotentialList.get(j).isDuplicate = true;
 }
 }
 }
 }

eventDetectionUsingAccelerometer(): We process the accelerometer sensor
data to measure any jerks or forces that acted on the phone during hard braking,
hard acceleration, or in the event of a severe crash. We calculate the magnitude,
that is Sqrt(x*x+y*y+z*z), inside the for loop over the
entire mAccelerometerRawList. If the magnitude crosses the threshold of 20,
then we take it that this accelerometer event would have resulted either from
hard braking or hard acceleration, and we take this accelerometer sensor data,
assign it to a new SensorData object, and then add this object
to mAccelerometerPotentialList.
mAccelerometerPotentialList contains all the potential events generated
from hard braking or hard acceleration. Inside the same for loop, we also check
for the threshold of a severe crash. If the phone falls under the effect of gravity,
then we consider that as a potential event implying a severe crash. If the
magnitude is read at less than 0.5, which can only be generated by the falling of
the phone, then we consider it as a potential event for a severe crash and assign
this accelerometer data to a new SensorData object, and add this object
to mCrashPotentialList. We iterate
over mAccelerometerPotentialListand mCrashPotentialList to remove
the duplicate sensor events, which are within 1 second of each other, by assigning
their isDuplicate variable to true. The events detected using the accelerometer
sensor data are considered to be the potential events, and they need to be fused
with the GPS sensor data for the confirmation of events:

 private void eventDetectionUsingAccelerometer()
 {
 //Processing the Raw Accelerometer data for Hard Braking,
 Severe Crash, Fast Acceleration
 int sizeAccelerometerRawList = mAccelerometerRawList.size();
 for (int i = 0; i < sizeAccelerometerRawList; i++) {
 //ACCELEROMETER_PEAK is 20
 magnitude = Math.sqrt(Math.pow(mAccelerometerRawList
 .get(i).values[0], 2) + Math.pow(mAccelerometerRawList
 .get(i).values[1], 2) + Math.pow(mAccelerometerRawList
 .get(i).values[2], 2));

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[51]

 if(magnitude > Constants.ACCELEROMETER_PEAK)
 {
 //Potential Candidate for Fast Acceleration or Hard Braking
 mAccelerometerData = new SensorData();
 mAccelerometerData.mSensorEvent =
 mAccelerometerRawList.get(i);
 mAccelerometerData.magnitude = magnitude;
 mAccelerometerData.time = (mAccelerometerRawList.get(i)
 .timestamp/1000000L) + timeOffsetValue;
 mAccelerometerPotentialList.add(mAccelerometerData);
 }
 //FALLING_PEAK is 0.5
 else if(magnitude < Constants.FALLING_PEAK)
 {
 //Potential Candidate for Severe Crash
 mAccelerometerData = new SensorData();
 mAccelerometerData.mSensorEvent =
 mAccelerometerRawList.get(i);
 mAccelerometerData.magnitude = magnitude;
 mAccelerometerData.time = (mAccelerometerRawList.get(i)
 .timestamp/1000000L) + timeOffsetValue;
 mCrashPotentialList.add(mAccelerometerData);
 }
 }
 //Removing the Accelerometer Potential Overlapping Data,
 which are close enough (within 1 second interval)
 int sizeAccePotentialList =
 mAccelerometerPotentialList.size();
 for (int i = 0; i < sizeAccePotentialList; i++)
 {
 for (int j = i+1; j < sizeAccePotentialList; j++)
 {
 if(mAccelerometerPotentialList.get(j).time -
 mAccelerometerPotentialList.get(i).time <
 Constants.ONE_SECOND)
 {
 mAccelerometerPotentialList.get(j).isDuplicate = true;
 }
 }
 }
 //Removing the Crash (or Falling Phone) Potential
 Overlapping Data, which are close enough (within 1
 second interval)
 int sizeCrashPotentialList = mCrashPotentialList.size();
 for (int i = 0; i < sizeCrashPotentialList; i++)
 {
 for (int j = i+1; j < sizeCrashPotentialList; j++)
 {

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[52]

 if(mCrashPotentialList.get(j).time -
 mCrashPotentialList.get(i).time <
 Constants.ONE_SECOND)
 {
 mCrashPotentialList.get(j).isDuplicate = true;
 }
 }
 }
 }

 fusingGPSAccelerometerEvents(): So far,we have got the events separately
from the GPS and accelerometer data. In this method, we combine the data to
check for any overlapping of reported events. If we find any overlaps, then we
fuse the event data together and consider it as a high confidence fused event. We
do this by finding the time difference between the reported potential
accelerometer events and the potential GPS events inside two nested for loops. If
the time difference is less than two seconds, we merge the data and create a
new EventData object with eventType the same as the GPS eventType, and
add that object to mEventList. We also tag (isFused = true) the potential GPS
event data, which has been merged and added to mEventList. We execute for
loops only for non-duplicate events. The for loops are only executed if
both mAccelerometerPotentialList and mGPSPotentialList have any data
in them:

 private void fusingGPSAccelerometerEvents()
 {
 //Sensor fusion, combining the values from GPS and
 Accelerometer data, to check the overlap of reported values.
 int sizeGPSPotentialList = mGPSPotentialList.size();
 int sizeAccePotentialList = mAccelerometerPotentialList.size();
 if(sizeGPSPotentialList>0 && sizeAccePotentialList>0)
 {
 for (int i = 0; i < sizeGPSPotentialList; i++)
 {
 if(!mGPSPotentialList.get(i).isDuplicate)
 {
 for (int j = 0; j < sizeAccePotentialList; j++)
 {
 if(!mAccelerometerPotentialList.get(j).isDuplicate)
 {
 long timeDifference =
 Math.abs(mGPSPotentialList.get(i).time -
 mAccelerometerPotentialList.get(j).time);
 if(timeDifference < Constants.TWO_SECONDS)
 //If the reported acceleration value is within
 2 seconds of the GPS reported value, then they

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[53]

 are fused together
 {
 mGPSPotentialList.get(i).isFused = true;
 mEventData = new EventData();
 if(mGPSPotentialList.get(i).eventType ==
 Constants.HARD_ACCELERATION_EVENT)
 {
 mEventData.eventType =
 Constants.HARD_ACCELERATION_EVENT;
 }
 else
 {
 mEventData.eventType = Constants.HARD_BRAKING_EVENT;
 }
 mEventData.isFused = true;
 mEventData.acceleration =
 mGPSPotentialList.get(i).acceleration;
 mEventData.speed =
 mGPSPotentialList.get(i).mLocation.getSpeed();
 mEventData.eventTime =
 mGPSPotentialList.get(i).mLocation.getTime();
 mEventData.latitude =
 mGPSPotentialList.get(i).mLocation.getLatitude();
 mEventData.longitude =
 mGPSPotentialList.get(i).mLocation.getLongitude();
 mEventList.add(mEventData);
 }
 }
 }
 }
 }
 }
 }

 processNonFusedGPSEvents(): In the previous method, we processed the
GPS events that overlapped with accelerometer events. In this method, we will
process those GPS events that were not overlapping with accelerometer events.
We will use the tagging (isFused=true) to filter out fused events from non-
fused events. We will iterate over mGPSPotentialList for those events that are
not fused and are not duplicated using the for loop. For those events that satisfy
these conditions, we will create a new EventData object and add it
to mEventList:

 private void processNonFusedGPSEvents()
 {
 //Adding GPS events to mEventList, which are not fused with

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[54]

 accelerometer data
 int sizeGPSPotentialList = mGPSPotentialList.size();
 for (int i = 0; i < sizeGPSPotentialList; i++)
 {
 if(!mGPSPotentialList.get(i).isFused &&
 !mGPSPotentialList.get(i).isDuplicate)
 {
 mEventData = new EventData();
 mEventData.eventType =
 mGPSPotentialList.get(i).eventType; //Either Hard Braking
 or Acceleration
 mEventData.acceleration = mGPSPotentialList.get(i)
 .acceleration;
 mEventData.speed = mGPSPotentialList.get(i)
 .mLocation.getSpeed();
 mEventData.eventTime =
 mGPSPotentialList.get(i).mLocation.getTime();
 mEventData.latitude =
 mGPSPotentialList.get(i).mLocation.getLatitude();
 mEventData.longitude =
 mGPSPotentialList.get(i).mLocation.getLongitude();
 mEventList.add(mEventData);
 }
 }
 }

detectSevereCrashes(): We consider a severe crash event as the falling of the
phone onto the vehicle's floor combined with a hard braking event. We have
already identified the falling of the phone event using the accelerometer sensor
data, which is stored in mCrashPotentialList. Now, we have to find the
closest match between this accelerometer data and the hard braking event. We do
this by iterating over mCrashPotentialList and mEventList using two
nested for loops and trying to find the hard breaking event, which is within a
time difference of 3 seconds from the accelerometer event. We only iterate for
nonduplicate data, and once the overlapping hard breaking event is found, we
save the severe crash event data in a new EventData object with eventType as
the POTENTIAL_SEVERE_CRASH_EVENT constant, and we then add it
to mEventList:

 private void detectSevereCrashes()
 {
 //Fusing, combining the falling of phone event with hard
 braking event for detecting severe crashes
 int sizeCrashPotentialList = mCrashPotentialList.size();
 int sizeEventList = mEventList.size();
 for (int i = 0; i < sizeCrashPotentialList; i++)

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[55]

 {
 if(!mCrashPotentialList.get(i).isDuplicate)
 {
 for (int j = 0; j < sizeEventList; j++)
 {
 if(mEventList.get(j).eventType ==
 Constants.HARD_BRAKING_EVENT &&
 Math.abs(mEventList.get(j).eventTime -
 mCrashPotentialList.get(i).time)
 (Constants.THREE_SECONDS) //Within 3 seconds
 {
 mEventData = new EventData();
 mEventData.eventType =
 Constants.POTENTIAL_SEVERE_CRASH_EVENT;
 mEventData.eventTime = mEventList.get(j).eventTime;
 mEventData.speed = mEventList.get(j).speed;
 mEventData.latitude = mEventList.get(j).latitude;
 mEventData.longitude = mEventList.get(j).longitude;
 mEventData.acceleration = mEventList.get(j).acceleration;
 mEventList.add(mEventData);
 break;
 }
 }
 }
 }
 }

 saveSensorEventInDB(): Once all the processing on the sensor data is done,
and all the detected events are collected in mEventList, then all the event data
in mEventList is persisted in the database using the updateEventDetails()
method of the LocationDBHelper class. Similarly, all the GPS locations collected
in mGPSRawList are also persisted in the database using
the updateDrivingRoute() method:

 private void saveSensorEventInDB()
 {
 //Updating the database with Event List and Location Trail
 mLocationDBHelper.updateEventDetails(mEventList);
 mLocationDBHelper.updateDrivingRoute(mGPSRawList);
 }

 clearData(): This is the last method that is called from the run() method of
the EventProcessorThread class. It is used to clear all the data stored inside the
temporary arrays used to process the events:

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[56]

 private void clearData()
 {
 //Clear all the data from Arrays
 mGPSRawList.clear();
 mAccelerometerRawList.clear();
 mGyroscopeRawList.clear();
 mAccelerometerPotentialList.clear();
 mCrashPotentialList.clear();
 mGyroscopePotentialList.clear();
 mGPSPotentialList.clear();
 mEventList.clear();
 }

Time for action – supporting the database,
calculating a driving score, and plotting
events and the route on the map
We need two more components to complete the application. The first is the database to
store all the events generated during the processing of the sensor data, and the second is the
Android activity to show all the events and driving scores and plot the driving route on the
map. Let's discuss each one in detail:

We have created a LocationDBHelperclass to handle all the database operations1.
and extended it from Android SQLite built in the SQLiteOpenHelper utility
class, which provides easy access to the database. Inside the class, we created a
database, called DrivingDatabase, along with its two tables
called DrivingRoute and EventDetails. The first table, DrivingRoute, has
the following 5 columns:

id, which is auto-incremented and used to store the unique identifier of the row.1.
driveId, which is used to store the unique identifier for each drive.2.
routeTime, which is used to store the time of each location update during the3.
drive.
routeLatitude, which is used to store the latitude of each location update4.
during the drive.
routeLongitude, which is used to store the longitude of each location update5.
during the drive.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[57]

The second table, EventDetails, has the following 9 columns:

id, which is auto incremented and used to store the unique identifier of the row.1.
driveId, which is used to store the unique identifier for each drive.2.
eventTime, which is used to store the time of each generated event during the3.
drive.
eventLatitude, which is used to store the latitude of the location where the4.
event was generated during the drive.
eventLongitude, which is used to store the longitude of the location where the5.
event was generated during the drive.
eventAcceleration, which is used to store the acceleration of the vehicle at the6.
time of the event being generated during the drive.
eventSpeed, which is used to store the speed of the vehicle at the time of the7.
event being generated during the drive.
eventType, which is used to store the integer constant that represents the type of8.
event.
isFused, which is used to store metadata information (whether it is fused or not)9.
for the generated event.

This class has a generateDriveId() method, which is called
from EventDetectionService whenever a new drive is started. This method generates a
unique ID by appending the current time in milliseconds with the drive_ string and saves
it in the shared preferences. There is another method, getCurrentDriveId(), which
provides the latest drive's unique ID after reading it from the shared preference. There are
four more methods, discussed as follows, to read and write from the DrivingRoute
and EventDetails tables:

 updateDrivingRoute(): This method takes the ArrayList of the Location
objects and inserts them (the latitude, longitude, and time) into
the DrivingRoute table. It uses the getCurrentDriveId() method to get the
latest drive ID. This is called once every 30 seconds by
the EventProcessorThread class to update the driving route.
getDrivingRoute(): This method is called from
the PostDriveSummaryActivity class to plot the driving route on the map. It
reads all the location details (the latitude, longitude, and time) from
the DrivingRoute table for the latest drive, and then it returns the ArrayList of
the Location objects.
updateEventDetails(): This method takes the ArrayList of the EventData
objects and inserts the event details into the EventDetails table. It gets the latest

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[58]

drive ID from the getCurrentDriveId() method. This is called once every 30
seconds by the EventProcessorThread class to update the detected event
details. We store the isFuse Boolean variable as 1 or 0, for true or false
respectively, as there is no support for Boolean types in the SQLite database. We
used a switch statement to filter the types of events as we don't save the speed
and acceleration for events such as parking, hard turns, and phone distractions.
getEventDetails(): This method is called from
the PostDriveSummaryActivity class to show the event details on the map. It
reads all the event details from the EventDetails table for the latest drive and
returns the ArrayList of EventData objects:

 public class LocationDBHelper extends SQLiteOpenHelper {
 private static final int DATABASE_VERSION = 1;
 private static final String DATABASE_NAME = "DrivingDatabase";

 // Table Names
 private static final String TABLE_EVENT_DETAILS = "EventDetails";
 private static final String TABLE_DRIVING_ROUTE = "DrivingRoute";

 // Common column names
 private static final String ID = "id";
 private static final String DRIVE_ID = "driveId";

 // TABLE_EVENT_DETAILS Table - column names
 private static final String EVENT_TIME = "eventTime";
 private static final String EVENT_LATITUDE = "evenLatitude";
 private static final String EVENT_LONGITUDE = "eventLongitude";
 private static final String EVENT_TYPE = "eventType";
 private static final String EVENT_ACCELERATION =
 "eventAcceleration";
 private static final String EVENT_DRIVING_SPEED = "eventSpeed";
 private static final String EVENT_ISFUSED = "eventIsFused";
 // TABLE_DRIVING_ROUTE Table - column names
 private static final String ROUTE_TIME = "routeTime";
 private static final String ROUTE_LATITUDE = "routeLatitude";
 private static final String ROUTE_LONGITUDE = "routeLongitude";

 // TABLE_EVENT_DETAILS table create statement
 private static final String CREATE_TABLE_EVENT_DETAILS =
 "CREATE TABLE " + TABLE_EVENT_DETAILS + "(" + ID +
 " INTEGER PRIMARY KEY AUTOINCREMENT," + DRIVE_ID + " TEXT," +
 EVENT_TYPE + " INTEGER,"+ EVENT_ACCELERATION + " REAL," +
 EVENT_TIME + " INTEGER," + EVENT_LATITUDE + " REAL," +
 EVENT_DRIVING_SPEED + " REAL," + EVENT_ISFUSED + " INTEGER," +
 EVENT_LONGITUDE + " REAL" +")";
 // TABLE_DRIVING_ROUTE table create statement

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[59]

 private static final String CREATE_TABLE_DRIVING_ROUTE =
 "CREATE TABLE " + TABLE_DRIVING_ROUTE + "(" + ID + " INTEGER
 PRIMARY KEY AUTOINCREMENT," + DRIVE_ID + " TEXT," + ROUTE_TIME +
 " INTEGER," + ROUTE_LATITUDE + " REAL," + ROUTE_LONGITUDE +
 " REAL" + ")";
 private Context mContext;
 public LocationDBHelper(Context mContext) {
 super(mContext, DATABASE_NAME, null, DATABASE_VERSION);
 this.mContext = mContext;
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // creating required tables
 db.execSQL(CREATE_TABLE_DRIVING_ROUTE);
 db.execSQL(CREATE_TABLE_EVENT_DETAILS);
 }

 public String generateDriveID()
 {
 String driveId = "drive_"+
 String.valueOf(System.currentTimeMillis());
 SharedPreferences mPreferences = mContext.getSharedPreferences
 ("DrivingEvents", Context.MODE_PRIVATE);
 SharedPreferences.Editor mEditor = mPreferences.edit();
 mEditor.putString("driveId", driveId);
 mEditor.commit();
 return driveId;
 }

 public String getCurrentDriveID()
 {
 SharedPreferences mSharedPreferences =
 mContext.getSharedPreferences("DrivingEvents",
 Context.MODE_PRIVATE);
 return mSharedPreferences.getString("driveId", "default");
 }

 public void updateDrivingRoute(ArrayList<Location>
 mLocationDataList)
 {
 try {
 SQLiteDatabase db = this.getWritableDatabase();
 String driveId = getCurrentDriveID();
 for (int i = 0; i < mLocationDataList.size(); i++)
 {
 Location mLocationData = mLocationDataList.get(i);
 ContentValues values = new ContentValues();

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[60]

 values.put(DRIVE_ID, driveId);
 values.put(ROUTE_TIME, mLocationData.getTime());
 values.put(ROUTE_LATITUDE, mLocationData.getLatitude());
 values.put(ROUTE_LONGITUDE, mLocationData.getLongitude());
 db.insert(TABLE_DRIVING_ROUTE, null, values);
 }
 db.close();
 }catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public void updateEventDetails(ArrayList<EventData> mEventDataList)
 {
 try {
 SQLiteDatabase db = this.getWritableDatabase();
 String driveId = getCurrentDriveID();
 for (int i = 0; i < mEventDataList.size(); i++)
 {
 EventData mEventData = mEventDataList.get(i);
 ContentValues values = new ContentValues();
 values.put(DRIVE_ID, driveId);
 values.put(EVENT_TIME, mEventData.eventTime);
 values.put(EVENT_TYPE, mEventData.eventType);
 values.put(EVENT_LATITUDE, mEventData.latitude);
 values.put(EVENT_LONGITUDE, mEventData.longitude);
 if(mEventData.isFused)
 {
 values.put(EVENT_ISFUSED, 1);
 }
 else
 {
 values.put(EVENT_ISFUSED, 0);
 }
 switch(mEventData.eventType) {
 case Constants.SPEEDING_EVENT:
 values.put(EVENT_ACCELERATION, mEventData.acceleration);
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 break;
 case Constants.HARD_BRAKING_EVENT:
 values.put(EVENT_ACCELERATION, mEventData.acceleration);
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 break;
 case Constants.HARD_ACCELERATION_EVENT:
 values.put(EVENT_ACCELERATION, mEventData.acceleration);
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 break;

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[61]

 case Constants.POTENTIAL_SEVERE_CRASH_EVENT:
 values.put(EVENT_ACCELERATION, mEventData.acceleration);
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 break;
 case Constants.PHONE_DISTRACTION_EVENT:
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 values.put(EVENT_ACCELERATION, 0);
 break;
 case Constants.HARD_TURN_EVENT:
 values.put(EVENT_DRIVING_SPEED, mEventData.speed);
 values.put(EVENT_ACCELERATION, 0);
 break;
 case Constants.PARKING_EVENT:
 values.put(EVENT_ACCELERATION, 0);
 values.put(EVENT_DRIVING_SPEED, 0);
 break;
 }
 db.insert(TABLE_EVENT_DETAILS, null, values);
 }
 db.close();
 }catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public ArrayList<EventData> getEventDetails()
 {
 ArrayList<EventData> mEventDataList = new ArrayList<EventData>();
 String selectQuery = "SELECT * FROM " + TABLE_EVENT_DETAILS +
 " WHERE " + DRIVE_ID +" = '"+ getCurrentDriveID()+"'" ;
 try {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor c = db.rawQuery(selectQuery, null);
 if (c.moveToFirst()) {
 do {
 EventData mEventData = new EventData();
 mEventData.eventTime =
 c.getInt((c.getColumnIndex(EVENT_TIME)));
 mEventData.eventType =
 c.getInt((c.getColumnIndex(EVENT_TYPE)));
 mEventData.latitude =
 c.getDouble((c.getColumnIndex(EVENT_LATITUDE)));
 mEventData.longitude =
 c.getDouble((c.getColumnIndex(EVENT_LONGITUDE)));
 mEventData.speed =
 c.getFloat((c.getColumnIndex(EVENT_DRIVING_SPEED)));
 mEventData.acceleration =

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[62]

 c.getFloat((c.getColumnIndex(EVENT_ACCELERATION)));
 if(c.getInt(c.getColumnIndex(EVENT_ISFUSED))==1)
 {
 mEventData.isFused = true;
 }
 else
 {
 mEventData.isFused = false;
 }
 mEventDataList.add(mEventData);
 } while (c.moveToNext());
 }
 db.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return mEventDataList;
 }

 public ArrayList<Location> getDrivingRoute()
 {
 ArrayList<Location> mLocationList = new ArrayList<Location>();
 String selectQuery = "SELECT * FROM " + TABLE_DRIVING_ROUTE +
 " WHERE " + DRIVE_ID +" = '"+ getCurrentDriveID()+"'" ;
 try {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor c = db.rawQuery(selectQuery, null);
 if (c.moveToFirst()) {
 do {
 Location mLocation = new Location("fromdatabase");
 mLocation.setLatitude(c.getDouble(c.getColumnIndex
 (ROUTE_LATITUDE)));
 mLocation.setLongitude(c.getDouble(c.getColumnIndex
 (ROUTE_LONGITUDE)));
 mLocation.setTime(c.getLong(c.getColumnIndex
 (ROUTE_TIME)));
 mLocationList.add(mLocation);
 } while (c.moveToNext());
 }
 db.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return mLocationList;
 }
 }

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[63]

PostDriveSummaryActivity is extended from the Android Activity class2.
and is used to show a summary of driving events and driving scores, and also to
plot the driving route on the map for the last captured drive or currently active
drive. It gets the events and route details from the LocationDBHelperclass.
Readers can extend the logic to show the history of all the previous drives taken
by reading all the drives' data from the database. Let's look at each task
performed by this class in detail:

 Initializing the map: In the onCreate() method of the activity, we set
the maps_layout.xml using setContentView() and initialize
the drivingScoreText variable used to display the driving score. We initialize
Google Maps inside the initializeMap() method, which is called from
the onCreate() method of the activity. We use the map
fragment,com.google.android.gms.maps.MapFragment, in the XML layout
file and initialize it
using getFragmentManager().findFragmentById().getMap(), which is
inside the initializeMap() method. We also set the map UI settings
properties, such as zoom control, zoom gesture, and rotation gesture, to true.
Showing the driving score and event details on the map using markers: We get
all the event details inside the mEventDataList array list of the EventData
objects from the getEventDetails()method of the LocationDBHelper class.
We iterate over the mEventDataList array list using the for loop to plot the
event details on the map using the markers. We set the individual position of the
marker on the map using the latitude and longitude from the
individual EventData object. We use a switch case over the eventType variable
of the EventData object to distinguish between different types of events. For
each type of event, we assign a different color of icon, title, and snippet to
marker, as shown in the following code. We also calculate the driving score using
the updateDrivingScore() method. We assign a weight to each type of event.
A more risky event has a higher weight. For every drive, we initialize
the drivingScore integer variable at 100, and then we subtract it by the weight
of each occurrence of the risky event inside the updateDrivingScore()
method, which is called for each risky event received inside the switch case. We
don't assign any weight to the parking and severe crash events. After updating
the driving score and setting the icon, title, and snippet, we add this individual
event marker to the mGoogleMap using the addMarker() method. We use
the convertDateToString() method to convert the event time from
milliseconds to date string.

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[64]

Plotting the driving route on the map: We get all the driving routes inside
the mLocationList array list of Location objects from
the getDrivingRoute() method of the LocationDBHelper class. We iterate
over the mLocationList array list using the for loop to plot the driving route
on the map. Inside the for loop, we take two consecutive locations and draw a
blue colored polyline with a width of 5 pixels in between them. After the end of
the for loop, all the locations are connected using this polyline, which gives us
the driving route. After the plotting is completed, we zoom in to the last location
on the drive using the animateCamera() method of the Google Map.

The following is a code snippet for the maps_layout.xml file, which uses map fragment
and text view to show the driving route and driving score on the map:

//maps_layout.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<fragment
android:id="@+id/map"
android:name="com.google.android.gms.maps.MapFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

<TextView
android:id="@+id/drivingscore"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="18dp"
android:layout_centerHorizontal="true"
android:textColor="@color/blue"
android:textStyle="bold"/>

</RelativeLayout>

public class PostDriveSummaryActivity extends Activity {
 private GoogleMap mGoogleMap;
 private ArrayList<Location> mLocationList;
 private ArrayList<EventData> mEventDataList;
 private LocationDBHelper mLocationDBHelper;
 private MarkerOptions mMarketOptions;
 private LatLng mLatLng;
 private int drivingScore = 100;
 private TextView drivingScoreText;

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[65]

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.maps_layout);
 drivingScoreText = (TextView) findViewById(R.id.drivingscore);
 mLocationDBHelper = new LocationDBHelper(this);
 initializeMap();

 //Plot Route and Show Event only when any previous drive exist
 if(!mLocationDBHelper.getCurrentDriveID().equalsIgnoreCase
 ("NoDriveExists")) {
 showEventDetailsDrivingScore();
 plotDrivingRoute();
 }else{
 drivingScoreText.setText("No previous or current drive exists,
 \nplease take a drive and then check back.");
 }
 //Start the service for auto drive detection
 Intent intent = new Intent(this, AutoDriveDetectionService.class);
 startService(intent);
 }

 public void initializeMap()
 {
 mGoogleMap = ((MapFragment)
 getFragmentManager().findFragmentById(R.id.map)).getMap();
 mGoogleMap.setMyLocationEnabled(true);
 mGoogleMap.getUiSettings().setZoomControlsEnabled(false);
 mGoogleMap.getUiSettings().setZoomGesturesEnabled(true);
 mGoogleMap.getUiSettings().setMyLocationButtonEnabled(false);
 mGoogleMap.getUiSettings().setRotateGesturesEnabled(true);
 }

 public void showEventDetailsDrivingScore()
 {
 mEventDataList = mLocationDBHelper.getEventDetails();
 for (int i = 0; i < mEventDataList.size(); i++)
 {
 mLatLng = new LatLng(mEventDataList.get(i).latitude,
 mEventDataList.get(i).longitude);
 mMarketOptions = new MarkerOptions();
 mMarketOptions.position(mLatLng);

 switch (mEventDataList.get(i).eventType) {
 case Constants.SPEEDING_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_ORANGE));
 mMarketOptions.title("High Speed Event");

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[66]

 mMarketOptions.snippet("Driving at speed of" +
 String.valueOf(mEventDataList.get(i).speed) + " miles per hour at
 " + convertDateToString(mEventDataList.get(i).eventTime));
 updateDrivingScore(5);
 break;
 case Constants.HARD_TURN_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_MAGENTA));
 mMarketOptions.title("Hard Turning Event");
 mMarketOptions.snippet("Turning at speed of" +
 String.valueOf(mEventDataList.get(i).speed) + " miles per hour at
 " + convertDateToString(mEventDataList.get(i).eventTime));
 updateDrivingScore(4);
 break;
 case Constants.HARD_BRAKING_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_CYAN));
 mMarketOptions.title("Hard Braking Event");
 mMarketOptions.snippet("Hard braking with acceleration of" +
 String.valueOf(mEventDataList.get(i).acceleration) +
 " miles per hour square at " + convertDateToString(mEventDataList
 .get(i).eventTime));
 updateDrivingScore(3);
 break;
 case Constants.HARD_ACCELERATION_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_YELLOW));
 mMarketOptions.title("Hard Acceleration Event");
 mMarketOptions.snippet("Hard accelerating with acceleration of" +
 String.valueOf(mEventDataList.get(i).acceleration) + " miles per
 hour square at " + convertDateToString(mEventDataList.get(i)
 .eventTime));
 updateDrivingScore(2);
 break;
 case Constants.PHONE_DISTRACTION_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_BLUE));
 mMarketOptions.title("Phone Distraction Event");
 mMarketOptions.snippet("Phone distraction at speed of" +
 String.valueOf(mEventDataList.get(i).speed) + " miles per hour
 at " + convertDateToString(mEventDataList.get(i).eventTime));
 updateDrivingScore(1);
 break;
 case Constants.POTENTIAL_SEVERE_CRASH_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_RED));
 mMarketOptions.title("Potential Severe Crash Event");
 mMarketOptions.snippet("Potential severe crash event captured at

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[67]

 " + convertDateToString(mEventDataList.get(i).eventTime));
 break;
 case Constants.PARKING_EVENT:
 mMarketOptions.icon(BitmapDescriptorFactory.defaultMarker
 (BitmapDescriptorFactory.HUE_GREEN));
 mMarketOptions.title("Last Vehicle Parked Location");
 mMarketOptions.snippet("Last vehicle parking done at " +
 convertDateToString(mEventDataList.get(i).eventTime));
 break;
 }
 mGoogleMap.addMarker(mMarketOptions);
 }

 //Setting the final driving Score
 drivingScoreText.setText("Your Driving Score is " +
 String.valueOf(drivingScore) + "out of 100");
 }

 public void plotDrivingRoute()
 {
 //Plotting the route
 mLocationList = mLocationDBHelper.getDrivingRoute();
 int sizeLocationDataList = mLocationList.size() - 1;
 for (int i = 0; i < sizeLocationDataList; i++)
 {
 mGoogleMap.addPolyline(new PolylineOptions()
 .add(new LatLng(mLocationList.get(i).getLatitude(),
 mLocationList.get(i).getLongitude()),
 new LatLng(mLocationList.get(i+1).getLatitude(),
 mLocationList.get(i+1).getLongitude())).width(5)
 .color(Color.BLUE).geodesic(true));
 }

 //Zooming in to the last location of drive
 if(sizeLocationDataList>0)
 {
 mGoogleMap.animateCamera(CameraUpdateFactory.newLatLngZoom
 (new LatLng(mLocationList.get(mLocationList.size() -
 1).getLatitude(), mLocationList.get(mLocationList.size() -
 1).getLongitude()), 14));
 }
 }

 public void updateDrivingScore(int weight)
 {
 if(drivingScore > 0)
 {
 drivingScore = drivingScore - weight;

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[68]

 }
 }

 public String convertDateToString(long date)
 {
 SimpleDateFormat mSimpleDateFormat = new SimpleDateFormat
 ("HH:mm:ss aa", Locale.US);
 return mSimpleDateFormat.format(new Date(date)).toString();
 }
 }

The following is a screenshot of the driving route on the map with a lot of phone
distraction, hard braking, hard acceleration, hard turn, and high speed events shown as
colored markers. The driving score was 67 out of 100:

Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App

[69]

What just happened?
Congratulations! We have completed our risky driving event detection application. We
added the database for persisting the events generated during the processing of the sensor
data. We also added the activity to display the summary of the driving events and driving
score, and also to plot the driving route of the last drive on the map.

Summary
You should now feel more confident as you have developed a real-world application purely
based on sensors and sensors-based APIs. You understood the signatures of driving events
on the sensors, and how you can use this signature to develop algorithms to identify the
driving events. You learned the whole process of getting data, storing data, and finally
processing data from multiple sensors together. We also developed the infrastructure (the
service, threads, and database) required to process a high volume of sensor data in the
background for longer period of time.

	Table of Contents
	Sensor Fusion and Sensor-Based APIs – The Driving Event Detection App
	Detecting risky driving behavior using sensors
	The driving event detection application requirements
	The sensors and APIs used in driving event detection
	The Activity recognition API
	The Geo-fence API
	The Fused location API
	Accelerometer
	Gyroscope

	The detection of the driving start event, end event, and last parked location
	Driving start event detection
	Driving stop event detection
	Last vehicle parked location detection

	Time for action – the driving start point, end point, and last parked location
	What just happened?

	The drive events detection algorithm
	Hard braking detection
	Hard acceleration detection
	Severe crash detection
	Hard turn detection
	Detecting phone distraction and high speed

	Time for action – detecting driving events
	Time for action – supporting the database, calculating a driving score, and plotting events and the route on the map
	What just happened?

	Summary

	Index

