Chapter 1: Getting Started

$$E[X] = \mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

$$\langle \overrightarrow{v}, \overrightarrow{w} \rangle = \frac{\overrightarrow{v}.\overrightarrow{w}}{|\overrightarrow{v}|.|\overrightarrow{w}|} \quad \alpha : \overrightarrow{v} \rightarrow \langle \overrightarrow{v}, \overrightarrow{w} \rangle$$

$$p(X,Y) = p(X \cap Y) = p(X).p(Y)$$

$$p(Y|X) = p(X|Y).p(Y)/p(X)$$

$$p(Y|X) = p(Y,X)/p(X)$$

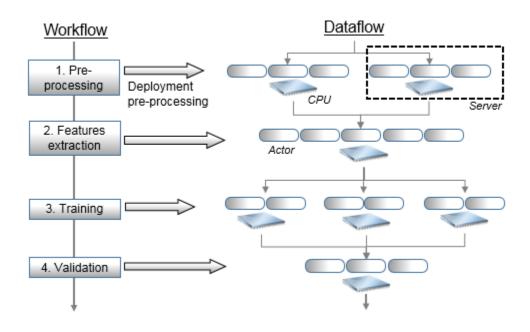
$$y_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

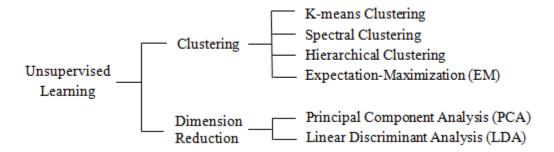
$$y_i = \frac{x_i - x_{min}}{x_{max} - x_{min}} (h - l) + l$$

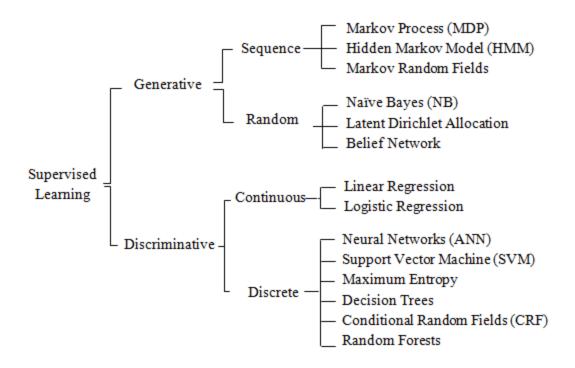
$$f(x \mid w) = w_0 + \sum_{i=1}^{N-1} x_i w_i \quad l(x \mid w) = \frac{1}{1 + e^{-f(x \mid w)}}$$

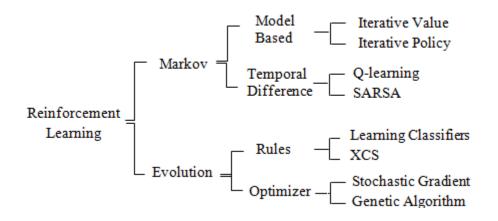
$$\mathcal{L}(x \mid w) = \frac{1}{N} \sum_{x=0}^{N-1} \log(1 + e^{-y \cdot W^T x})$$

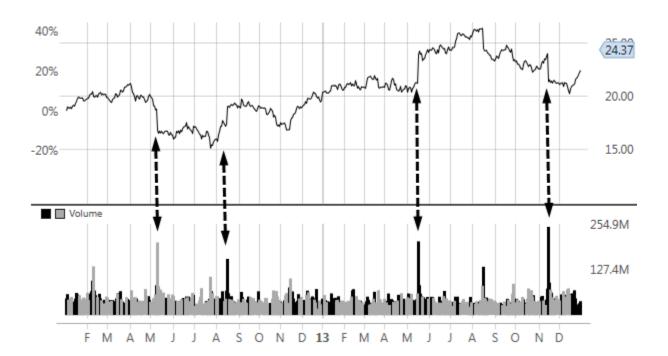
$$w_i^{(t+1)} = w_i^{(t)} + \eta \frac{x_i y}{1 + e^{yw^T x}}$$



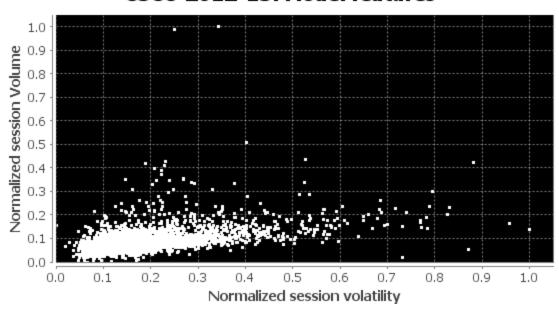




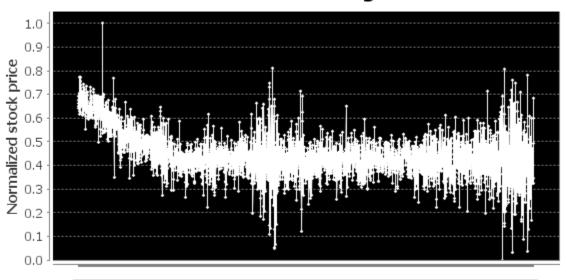




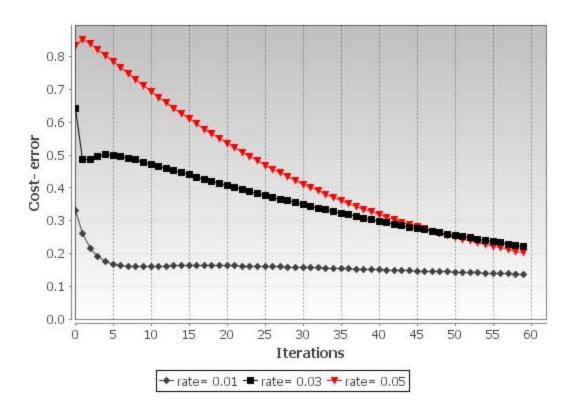
CSCO 2012-13: Model features



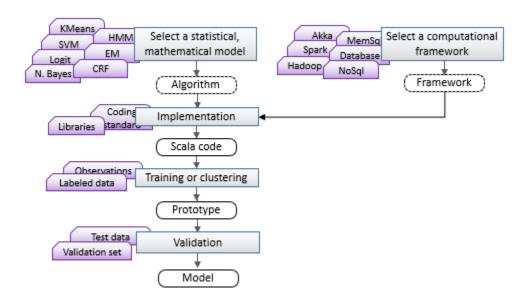
CSCO 2012-13: Training label

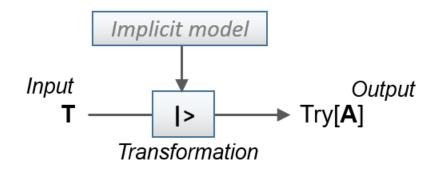


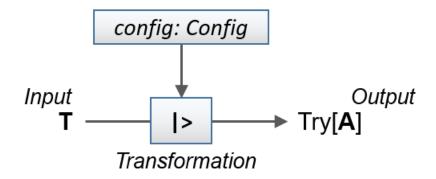
Trading sessions



Chapter 2: Data Pipelines

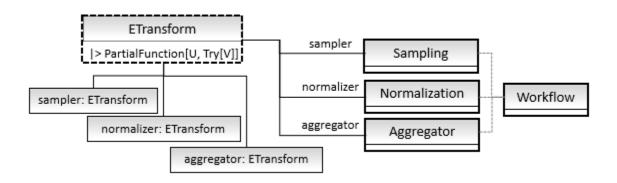


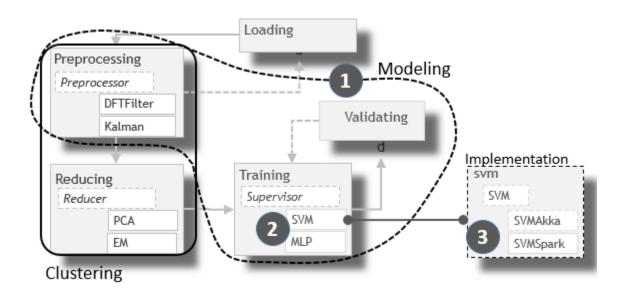




$$f: \mathbb{R}^n \to \mathbb{R}^n \ g: \mathbb{R}^n \to \mathbb{R}$$

$$f: x \to e^x$$
 $g: x \to \sum_{i=0}^{n-1} x_i$





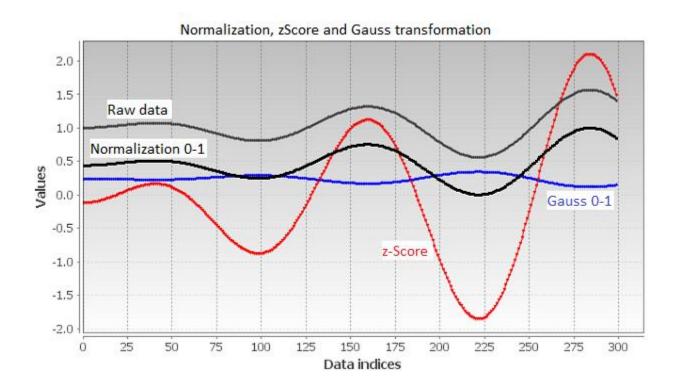
$$E[X] = \mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

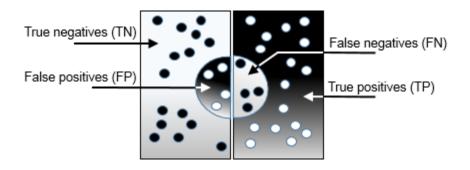
$$Var(X) = \frac{\sum (E(X) - x_j)^2}{n - 1}$$

$$\overline{Var}(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E[X])^2$$

$$y = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$z_i = \frac{x_i - \mu}{\sigma}$$



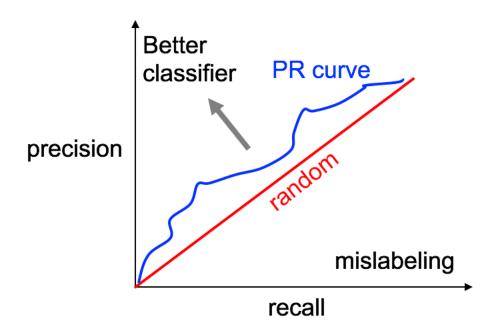


$$ac = \frac{tp + tn}{tp + tn + fp + fn} \qquad p = \frac{tp}{tp + fp} \qquad r = \frac{tp}{tp + fn}$$

$$F_1 = \frac{2pr}{p + r} \qquad F_n = \frac{\left(1 + n^2\right)pr}{n^2p + r} \qquad G = \sqrt{pr}$$

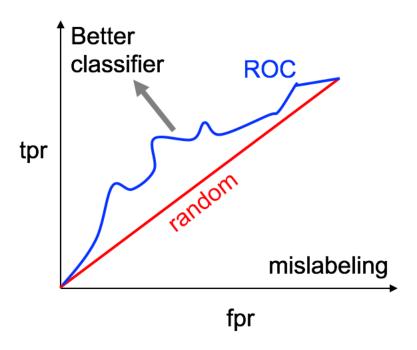
$$p^* = \frac{1}{c} \sum_{i=0}^{c-1} \frac{tp_i}{tp_i + fp_i} \quad r^* = \frac{1}{c} \sum_{i=0}^{c-1} \frac{tp_i}{tp_i + fn_i}$$

True positive			\	Actual					
classes			1	2	3	4	5	6	False positives
Predicted	1		167	3	19	8	0	2	Y
	2		11	107	3	27	4	12	
	3		4	21	145	3	7	14	
	4		9	17	4	179	20	0	
	5		15	0	18	2	139	8	
	6		1	6	0	24	8	164	
False negatives									

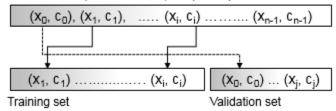


$$auPRC = 0.5 + \frac{1}{N} \sum_{i=0}^{N-1} (p_i - r_i)$$

$$trp = \frac{tp}{tp + fn}$$
 $fpr = \frac{fp}{fp + tn}$



Labeled data (x observations, c expected)

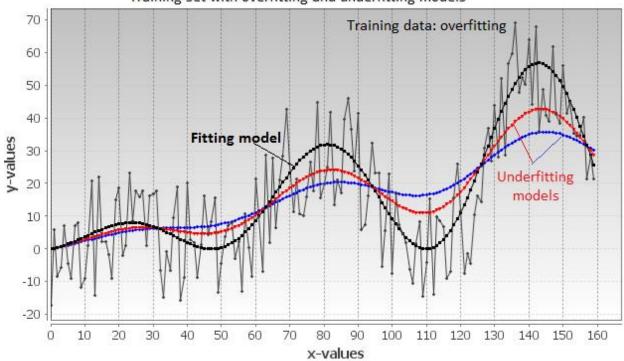


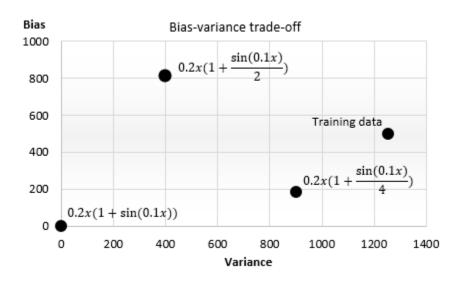
$$var\hat{\theta} = E\left[\left(\hat{\theta} - E\left[\hat{\theta}\right]\right)^{2}\right] \quad bias\hat{\theta} = \hat{\theta} - \theta$$

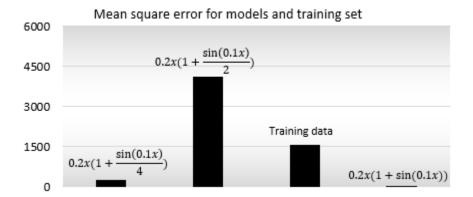
$$MSE = var(\tilde{\theta}) + bias(\tilde{\theta})$$

$$y = \frac{x}{5} \left(1 + \frac{1}{n} \sin \left(\frac{x}{10} + r1 \right) \right) + r2$$

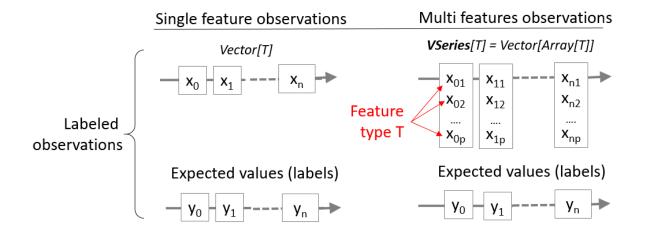
$$y = \frac{x}{5} \left(1 + \frac{1}{n} \sin \left(\frac{x}{10} \right) \right)$$







Chapter 3: Data Pre-processing

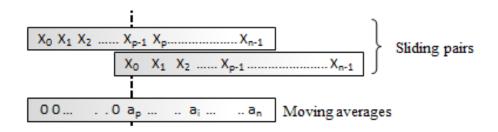


$$\tilde{x}_t = f(x_{t-p+1}, \dots, x_t) \forall t \ge p$$

$$\tilde{x}_{t} = \frac{1}{p} \sum_{j=t-p+1}^{t} x_{j} \quad \forall t \ge p$$

$$0 \ \forall t < p$$

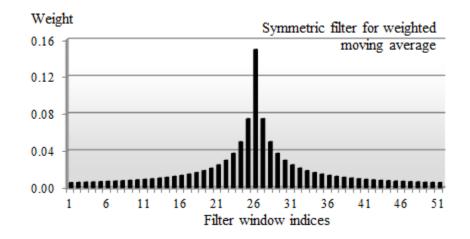
$$\tilde{x}_{t} = \tilde{x}_{t-1} + \frac{1}{p} \left(x_{t} - x_{t-p} \right) \quad \forall t \ge p$$

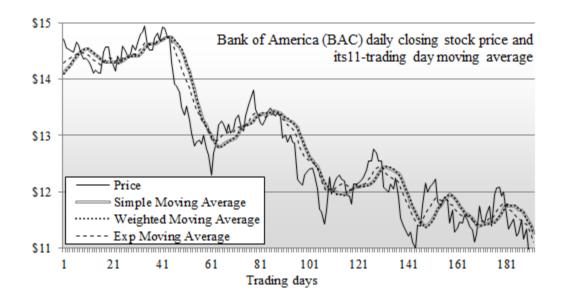


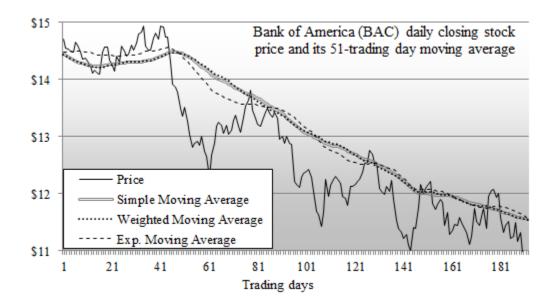
$$\tilde{x}_{t} = \sum_{j=t-p+1}^{t} \alpha_{j-t+p} x_{j} \quad \forall t \geq p \quad subject to \sum_{i=0}^{p-1} \alpha_{i} = 1$$

$$0 \, \forall t$$

$$\begin{split} \tilde{x}_t &= \left(1 - \alpha\right) \tilde{x}_{t-1} + \alpha x_t \ \forall t > 0 \quad 0 < \alpha < 1 \\ \tilde{x}_0 &= x_0 \end{split}$$







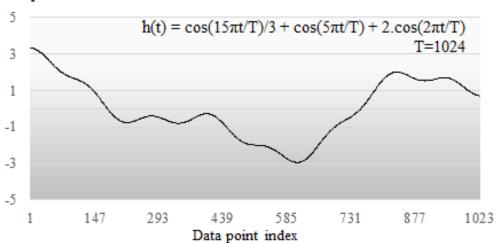
$$f(t) = \frac{a_0}{2} + \sum_{1}^{\infty} a_k \cos(nx) + \sum_{1}^{\infty} b_k \sin(nx)$$

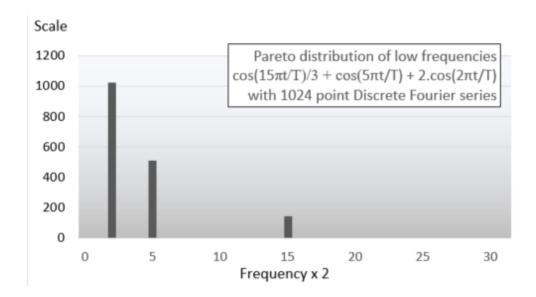
$$\mathcal{F}^{c}(f,k) = \int_{-\infty}^{\infty} \cos(2\pi k\pi) f(x) dx$$

$$f(x) = f(-x) = \frac{a_0}{2} + \sum_{k=1}^{2N-3} a_k \cos(kx)$$
 where $a_k = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(kt) dt$

$$\mathcal{F}^{s}(f,k) = \int_{-\infty}^{\infty} \sin(2\pi kx) f(x) dx$$

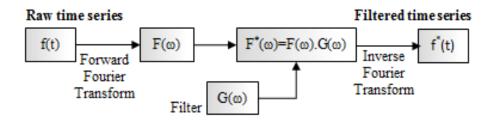
$$f(x) = -f(-x) = \sum_{k=1}^{2N-3} b_k \sin(kx) \text{ where } b_k \frac{2}{\pi} \int_0^{\pi} f(t) \sin(kt).dt$$

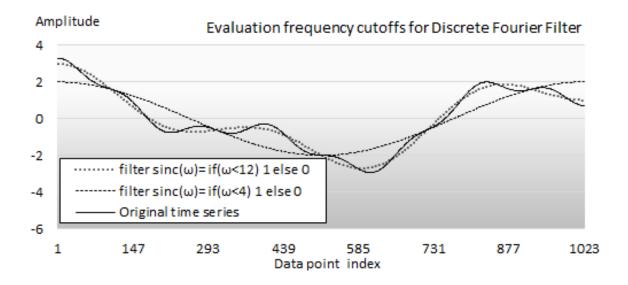


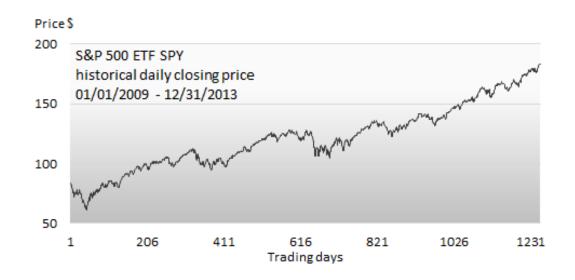


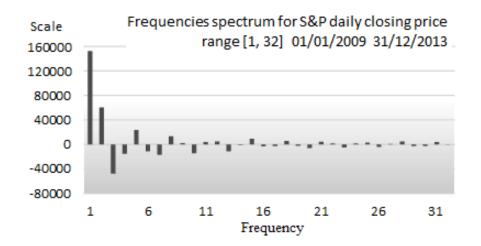
$$\langle f, g \rangle = \int_{-\infty}^{\pi} f(t) g(x-t) dt$$

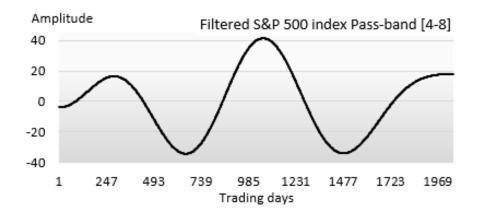
$$F(x*f) = F(x).F(g) = \sum_{j=0}^{N-1} \omega_j^x.\omega_{k-j}^f$$

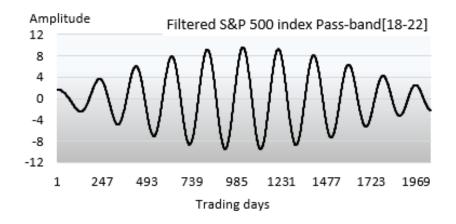


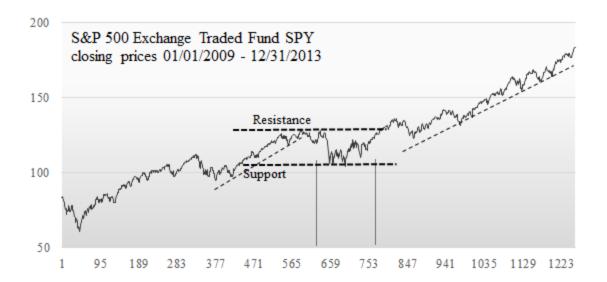






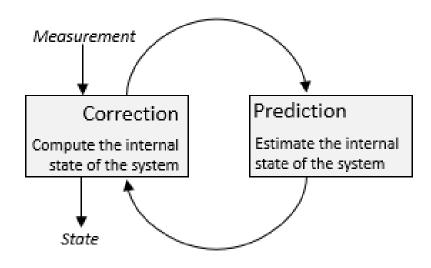






$$x_{t} = A_{t}.x_{t-1} + B_{t}.u_{t} + w_{t}$$

$$z_t = H_t \cdot x_t + v_t$$



$$\begin{bmatrix} \hat{x}_t \\ \hat{x}_{t-1} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_t \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_t \\ u_{t-1} \end{bmatrix} + \begin{bmatrix} w_t \\ w_{t-1} \end{bmatrix}$$

$$\hat{x}_t' = A_t.\hat{x}_{t-1} + B_t.u_t$$

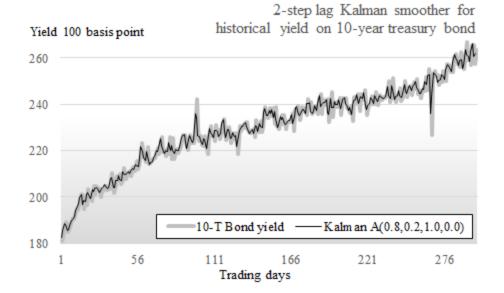
$$P_{t}' = A_{t}.P_{t-1} + A_{t}^{T} + Q_{t}$$

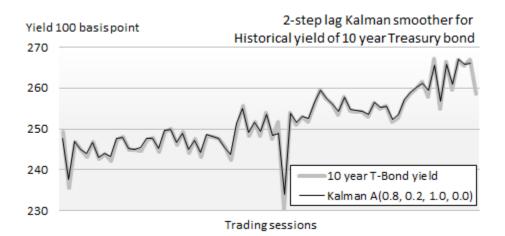
$$\begin{bmatrix} z_t \\ z_{t-1} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \cdot \begin{bmatrix} \hat{x}_t \\ \hat{x}_{t-1} \end{bmatrix} + \begin{bmatrix} v_t \\ v_{t-1} \end{bmatrix}$$

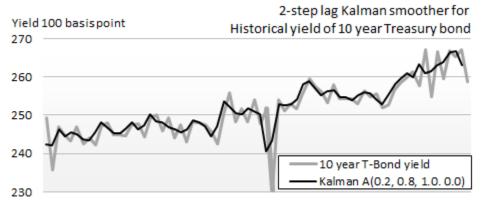
$$\hat{x}_{t} = \hat{x}_{t}' + K_{t}(z_{t} - H_{t}.\hat{x}_{t}') \quad r_{t} = z_{t} - H_{t}.\hat{x}_{t}'$$

$$K_{t} = P_{t}'.H_{t}^{T} (H_{t}.P_{t}'.H_{t}^{T} + R_{t})^{-1}$$

$$S_{t} = \begin{bmatrix} x_{t+1}, x_{t} \end{bmatrix}^{T} \text{ with } \begin{vmatrix} x_{t+1} \\ x_{t} \end{vmatrix} = \begin{vmatrix} \alpha & 1 - \alpha \\ 1 & 0 \end{vmatrix} \cdot \begin{vmatrix} x_{t} \\ x_{t-1} \end{vmatrix}$$







Trading sessions

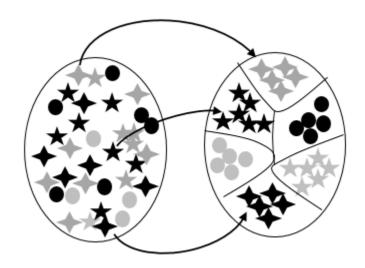
$$\left\{ x_{t+1} - x_{t} \right\}$$

$$\{x_t\}$$

$$\tilde{x}_t$$

$$\tilde{x}$$

Chapter 4: Unsupervised Learning

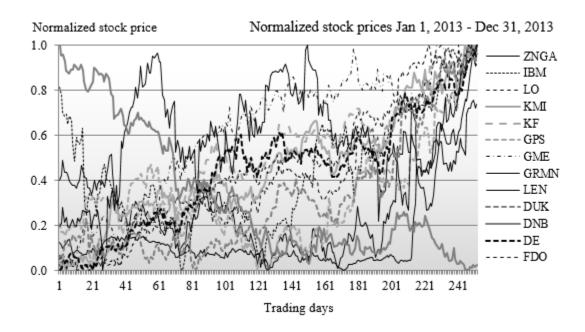


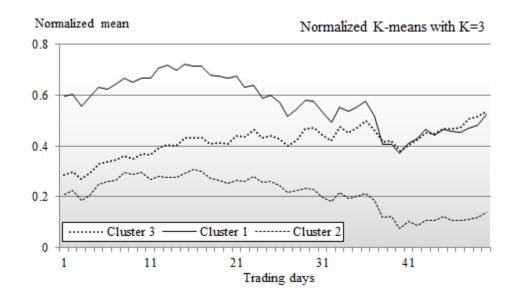
$$d(x,y) = \sum |x_i - y_i|$$

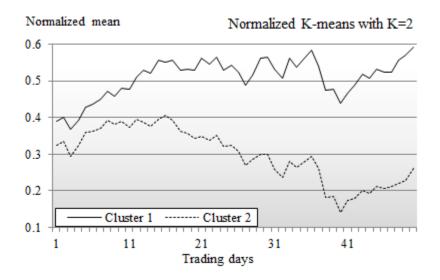
$$d(x,y) = \sum (x_i - y_i)^2$$

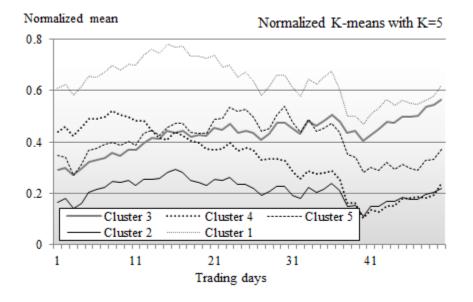
$$d(x,y) = \frac{\sum x_i y_i}{\left(\sum x_i^2 \sum y_i^2\right)^{1/2}}$$

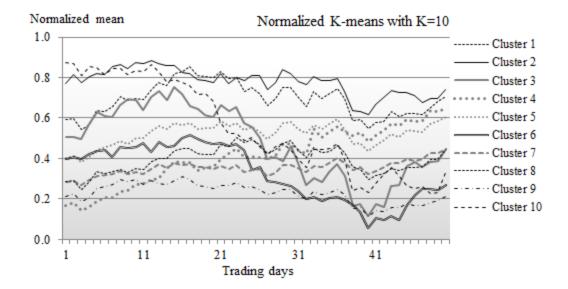
$$\min_{C_k} \sum_{1}^{K} \sum_{x_{i \in C_k}} d(x_i, m_k)$$



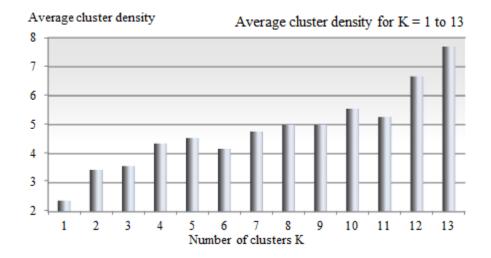




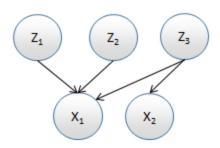




$$d\left(C_{j}\right) = 1 / \sum\nolimits_{x \in C_{j}} \left(x - c_{j}\right)^{2}$$



$$H(p) = -\sum_{c} p_{c} log_{2} p_{c}$$



$$p(x_i \mid \theta) = -\sum_{z} p(x_i, z \mid \theta)$$

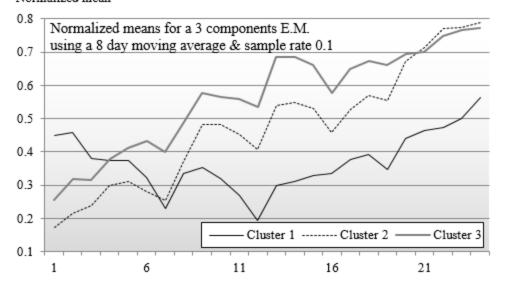
$$\mathcal{L}(\theta) = \sum_{i=0}^{N-1} log \left\{ \sum_{z} p(x_i, z \mid \theta) \right\} \quad \tilde{\theta} = argmax \, \mathcal{L}(\theta)$$

$$\mathbb{Q}(\theta, \theta^n) = \sum_{z} p(z \mid x_i, \theta^n) \cdot \log p(x_i, z \mid \theta)$$

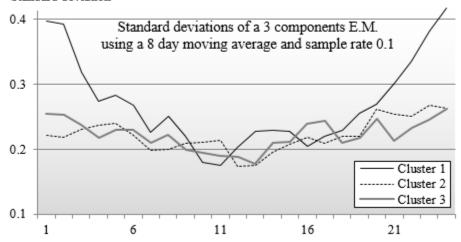
Q

$$\theta^{n+1} = \arg\max \mathbb{Q}(\theta, \theta^n) \left| \theta^{n+1} - \theta^n \right| < \varepsilon$$

Normalized mean



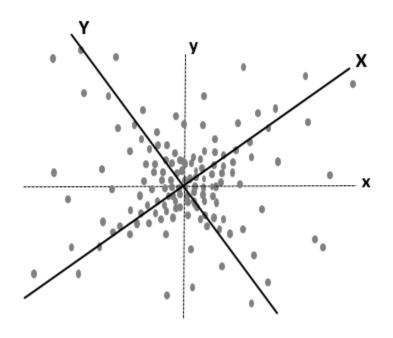
Standard deviation



Chapter 5: Dimension Reduction

$$D_{KL}(P||Q) = \sum_{i=0}^{n-1} p(x_i) \cdot \log \frac{p(x_i)}{q(x_i)}$$

$$I(X;Y) = D_{kl}[p(X,Y), p(X)p(Y)] = \sum_{i=0}^{n-1} p(x_i, y_i) \log \frac{p(x_i, y_i)}{p(x_i).p(y_i)}$$



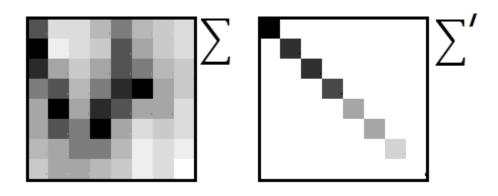
$$M = \left\{ f_{i:1,m} \left| \sum_{i=1}^{m} \sigma^{2} \left(f_{i} \right) < \mu \right. \right\}$$

$$cov(X,Y) = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \overline{x})(y_i - \overline{y})$$

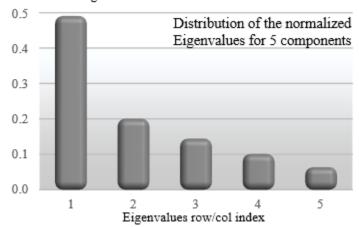
$$x_i \leftarrow \frac{x_i - \overline{x}}{\sigma}$$

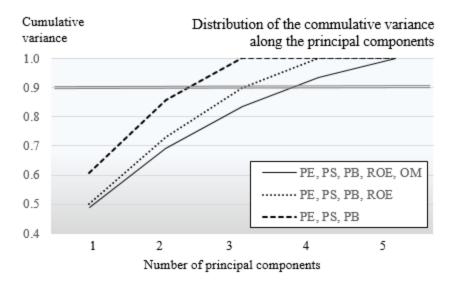
$$\Sigma_{cov} = \begin{vmatrix} cov(x_0, x_0) & \dots & cov(x_0, x_{n-1}) \\ \dots & var(x_i) & \dots \\ cov(x_{n-1}, x_0) & \dots & cov(x_{n-1}, x_{n-1}) \end{vmatrix}$$

$$\Sigma' = W^T . \Sigma_{cov} . W$$

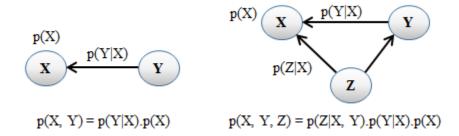


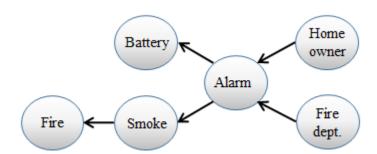
Normalized Eigenvalues

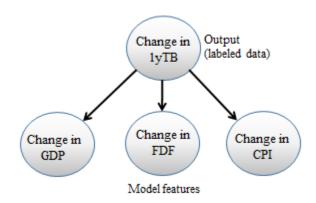




Chapter 6: Naïve Bayes Classifiers





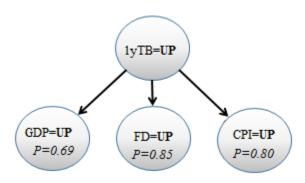


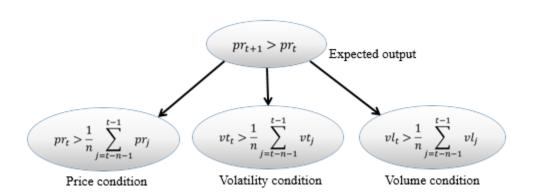
$$p(C_j \mid x) = \frac{p(x \mid C_j).p(C_j)}{p(x)}$$

$$p(C_j \mid x) = \prod_{i=0}^{n-1} p(x_i \mid C_j).p(C_j)$$

$$\mathcal{L}\left(C_{j} \mid x\right) = \sum_{i=0}^{n-1} \left\{ \log p\left(x_{i} \mid C_{j}\right) + \log p\left(C_{j}\right) \right\}$$

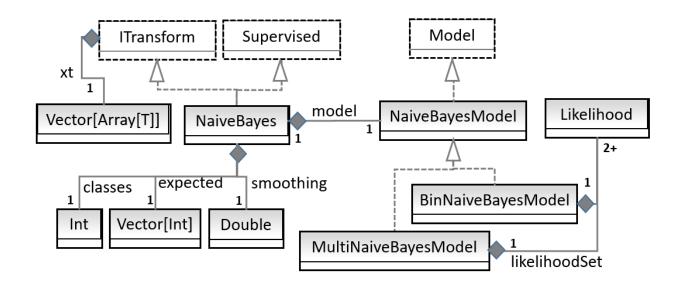
$$C_m = \arg\max_{j} \mathcal{L}(C_j \mid x)$$



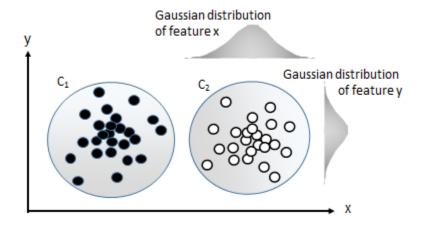


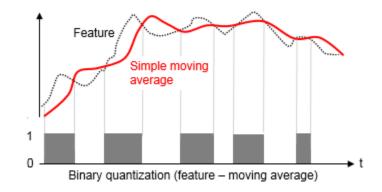
$$\mu' = \frac{k+1}{N+n}$$

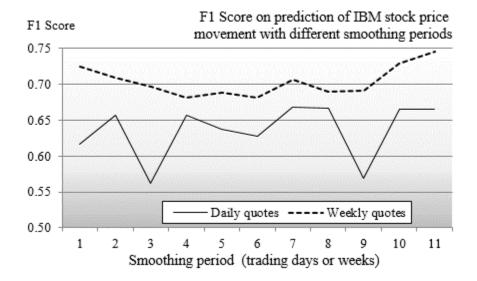
$$\mu' = \frac{k+a}{N+\alpha n}$$



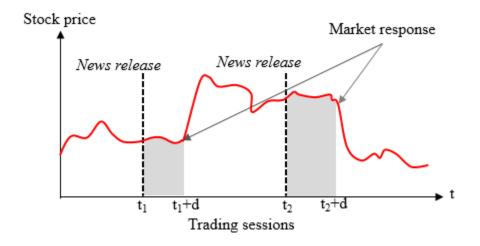
$$\mathcal{L}\left(C_{j} \mid x\right) = \sum_{i=0}^{n-1} \left[-\frac{1}{2} \log\left(2\pi\right) - \log\sigma - \frac{\left(x_{i} - \mu'\right)^{2}}{2\sigma^{2}} + \log p\left(C_{j}\right) \right]$$



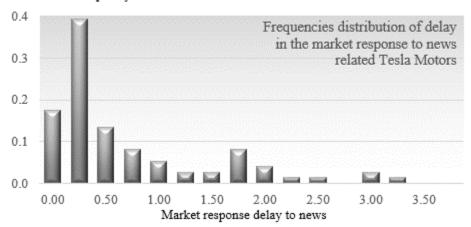


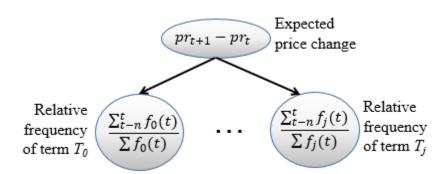


$$p(x \mid f, C_j) = \prod_{k=0}^{n-1} \{ f_k p(x_k \mid C_j) + (1 - f_k) (1 - p(x_k \mid C_j)) \}$$



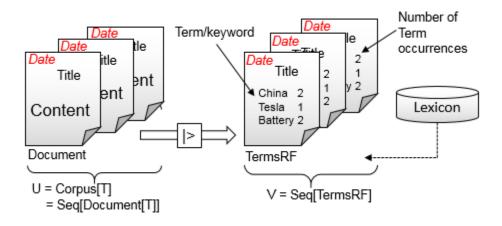
Normalized frequency

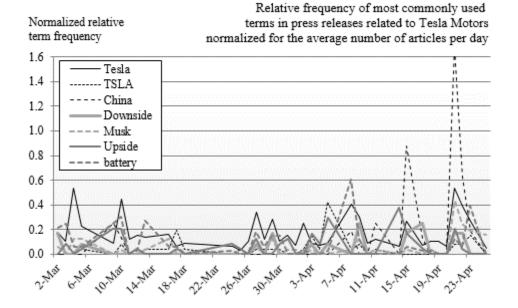




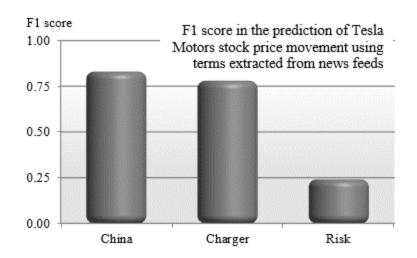
$$rtf\left\{t_{i}\right\} = \frac{\sum_{a \in D_{t}} n_{i}^{a}}{\sum_{a \in Corpus} n_{i}^{a}}$$

$$nrt\left\{t_{i}\right\} = \frac{rtf\left\{t_{i}\right\}N_{d}}{N_{a}}$$



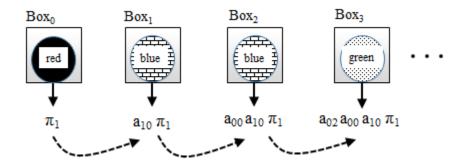


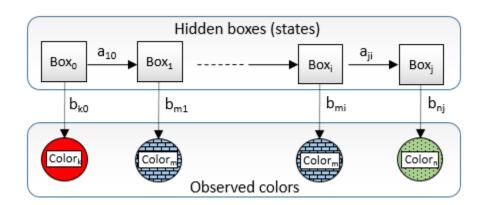


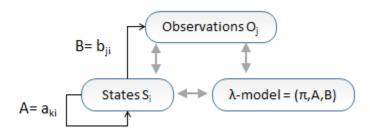


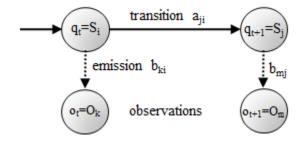
	Keyword 1	Keyword 2	Keyword 3	 Keyword N
Date 1	0.42	0.00	0.07	0.23
Date 2	0.00	0.11	0.18	0.04
Date J	0.13	0.29	0.00	0.00

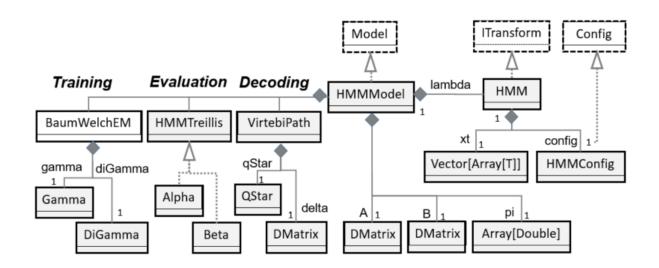
Chapter 7: Sequential Data Models











$$p(O_{0:T-1} | \lambda) \alpha p(O_{0:t} | \lambda) . p(O_{t+1:T-1} | \lambda)$$

$$p(O_{0:T-1} | \lambda) = \sum_{i=0}^{N-1} p(O_{0:T-1}, q_t = S_i | \lambda)$$

$$p(O_{0:T-1} | \lambda) = \sum_{i} \alpha_{t}(i).\beta_{t}(i)$$

$$\alpha_0(i) = \pi_i.b_i(O_0)$$

$$\hat{a}_{0}\left(i\right) = \alpha_{0}\left(i\right) / \sum_{j=0}^{N-1} \alpha_{0}\left(i\right)$$

$$\alpha_{t}\left(i\right) = \sum_{j=0}^{N-1} \alpha_{t-1}\left(j\right) a_{ji} b_{i}\left(O_{t}\right) \quad c_{t} = 1 / \sum_{j=0}^{N-1} \alpha_{t}\left(i\right) \quad \hat{a}_{t}\left(i\right) = \alpha_{t}\left(i\right) . c_{t}$$

$$\log p(O | \lambda) = -\sum_{j=0}^{T-1} \log \left(\frac{1}{\sum_{i=0}^{N-1} \hat{\alpha}_{t}(i)} \right)$$

$$\hat{\beta}_{T-1}(i) = \beta_{T-1}(i) / \sum_{j=0}^{N-1} \beta_{T-1}(j)$$

$$\beta_{t}\left(i\right) = \sum_{j=0}^{N-1} \beta_{t-1}\left(j\right) . \mathbf{a}_{ij}. b_{j}\left(O_{t+1}\right) c_{t} = 1 / \sum_{j=0}^{N-1} \beta_{t}\left(j\right) \widehat{\beta}_{t}\left(i\right) = \beta_{t}\left(i\right). c_{t}$$

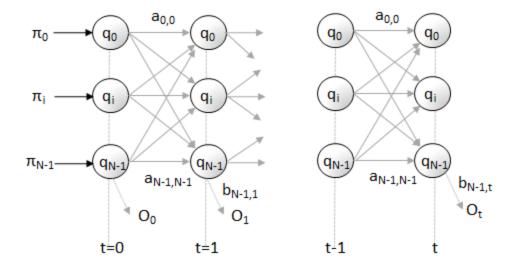
$$\gamma_t(i,j) = p(q_t = S_i, q_{t+1} = S_i \mid O, \lambda)$$

$$\gamma_{t}(i,j) = \frac{\alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)}{\sum_{j=0}^{N-1} \alpha_{t}(i) \beta_{t}(i)}$$

$$\hat{\pi}_{i} = \gamma_{0}\left(i\right) \ \gamma_{t}\left(i\right) = \sum_{j=0}^{N-1} \gamma_{t}\left(i,j\right)$$

$$\hat{a}_{ij} = rac{\sum_{t=0}^{T-1} \left[\left(\gamma_t\left(i,j
ight)
ight)}{\sum_{t=0}^{T-1} \gamma_t\left(i
ight)}$$

$$\hat{b}_{ij} = \frac{\sum_{t=0}^{O_j} \gamma_t(i)}{\sum_{t=0}^{T-1} \gamma_t(i)}$$

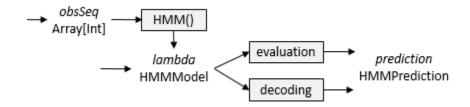


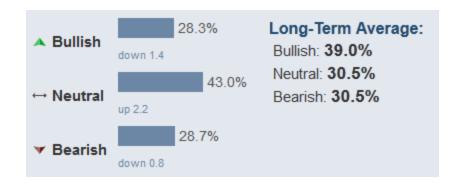
$$\mathcal{S}_{t}\left(i\right) = \max_{q::\left\{o,T-1\right\}} p\left(q_{0:T-1} = S_{i}, O_{o:T-1} \mid \lambda\right)$$

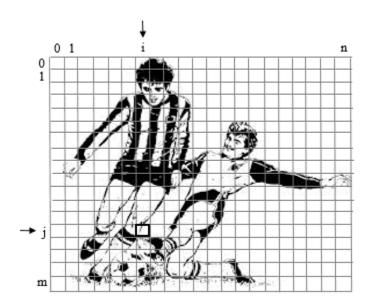
$$\delta_0(i) = \pi_i b_i(O_0) \psi_0(i) = 0 \forall i$$

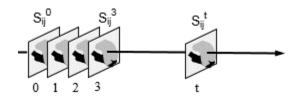
$$\delta_{t}(j) = \max\left(\delta_{t-1}(i).a_{ij}.b_{j}(O_{t})\right) \quad \psi_{t}(j) = \arg\max_{i}\left(\delta_{t-1}(i).a_{j}\right)$$

$$q_{t}^{*} = \psi_{t+1}\left(q_{t+1}^{*}\right) q_{T}^{*} = \arg\max_{i} \delta_{T}\left(i\right)$$

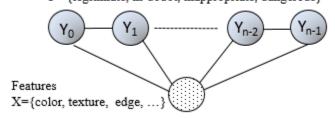


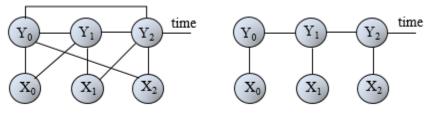






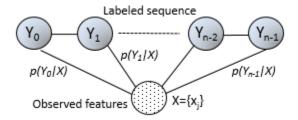
Sequences of labels (type of interaction)
Y= {legitimate, in-doubt, inappropriate, dangerous}





Example non-linear CRF

Linear chain CRF

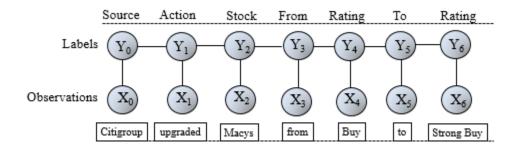


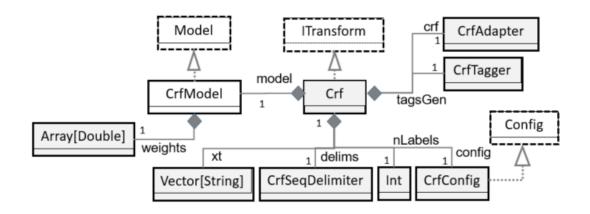
$$\log f_i(y_{i-1}, y_i \mathbf{x}, \mathbf{i}) = w_c + \sum_{i=0}^{K-1} w_i t_i(y_{i-1}, y_i, \mathbf{x}, \mathbf{i}) + \sum_{j=0}^{K-1} \mu_j s_j(y_i, \mathbf{x}, \mathbf{i})$$

$$t_i(y_{i-1}, y_i, \mathbf{x}, \mathbf{i}) = I(y_{i-1} = l_1).I(y_i = l_2).I(\mathbf{x} = 0)$$

$$F_{i}(y,x) = \sum_{j=0}^{K-1} f_{i}(y_{j-1}y_{j},x,i) \log p(x,\lambda) \propto \sum_{j=0}^{K-1} w_{j}F_{j}(x,y)$$

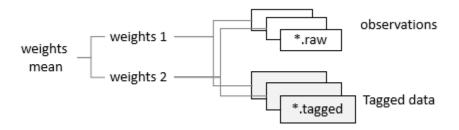
$$p(y|x,w) = \frac{1}{Z(x)} e^{\sum_{j=0}^{K-1} w_j F_j(x,y)} z(x) = \sum_{j=0}^{K-1} \sum_{j=0}^{K-1} w_j F_j(x,y)$$

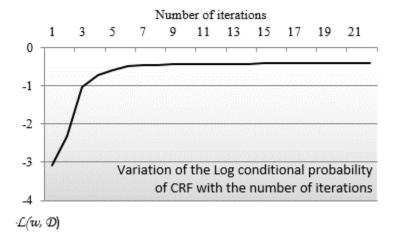




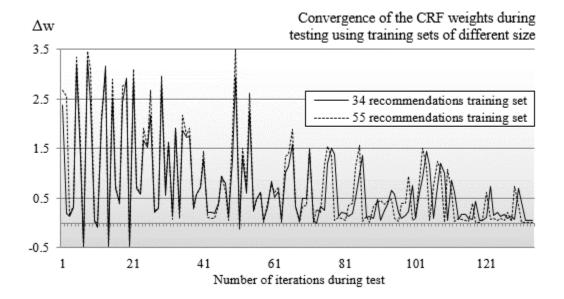
$$\mathcal{L}(w,D) = -\sum_{i=0}^{n-1} \log p(y_i \mid x_i, w)$$

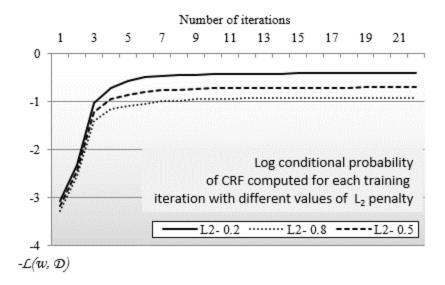
$$w^* = \arg\max\left[\mathcal{L}(w, D) + \lambda \|w\|^2\right] \quad \lambda = \frac{1}{2\sigma^2}$$





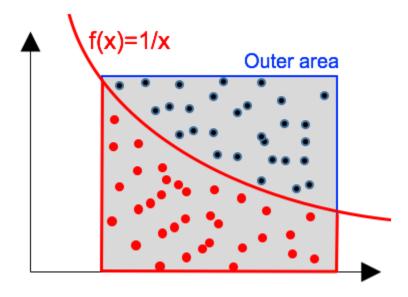
$$\Delta w = \sum_{i=0}^{D-1} \left(w_i^{t+1} - w_i^{t} \right)$$

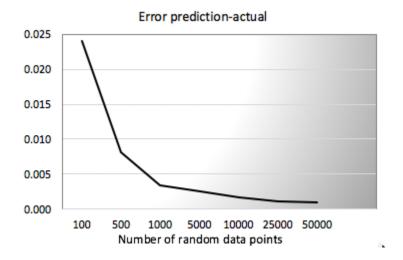




Chapter 8: Monte Carlo Inference

$$\sqrt{-2\log(u_1)}$$
. $\sin(2\pi u_2)\sqrt{-2\log(u_1)}$. $\cos(2\pi u_2)$

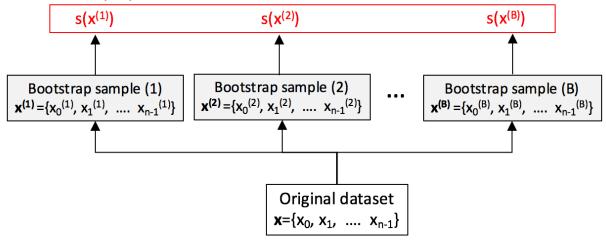




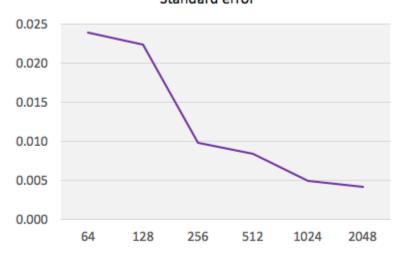
$$x^{(i)} = \{x_j^{(i)}\}\hat{\theta}^{(i)} = s(x^{(i)})$$

$$\hat{s} = \sqrt{\frac{1}{B-1} \sum_{j=0}^{B-1} \left(\hat{\theta}_{j}^{\;(i)} - \overline{\theta} \right)^{2}} \quad \hat{\theta} = \frac{1}{B} \sum_{j=0}^{B-1} \hat{\theta}_{j}^{\;(i)}$$

Bootstrap replicates



Standard error



$$\alpha = \frac{\hat{p}(s')q(s'|s')}{\hat{p}(s')q(s'|s')}$$

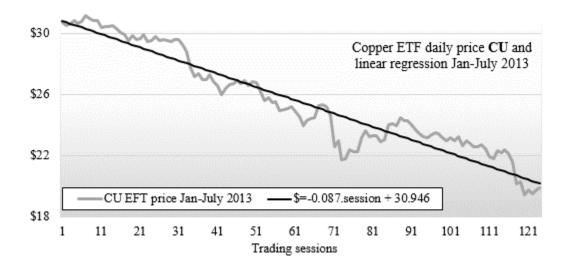
$$s^{t+1} = \begin{cases} s' & \text{if } u < \min(1, \alpha) \\ s' & \text{if } u \ge \min(1, \alpha) \end{cases}$$

$$\log \alpha = \log(\hat{p}(s')) - \log(\hat{p}(s')) + \log(q(s'|s')) - \log(q(s'|s'))$$

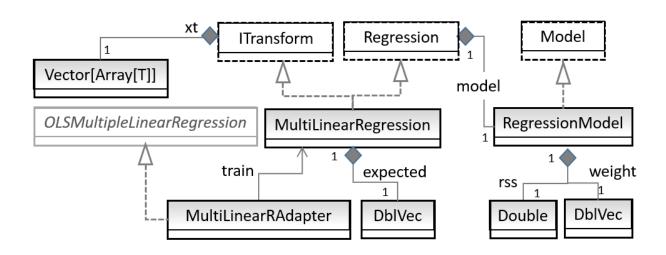
$$s^{t+1} = \begin{cases} s' & \text{if } u < e^{\alpha} \\ s' & \text{if } u \ge e^{\alpha} \end{cases}$$

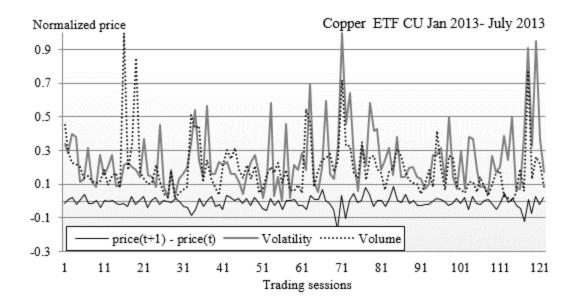
Chapter 9: Regression and Regularization

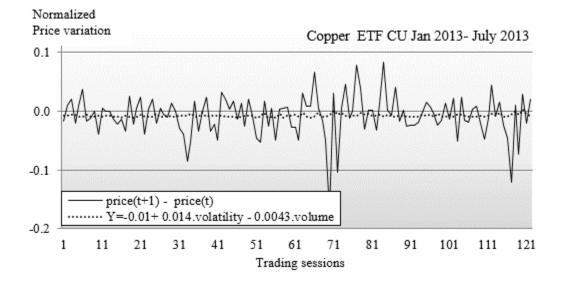
$$\tilde{w} = arg \min_{w,r} \left\{ \sum_{j=0}^{N-1} (y_j - f(x_j | w))^2 \right\} \quad f(x | w) = w_0 + w_1 x$$

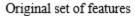


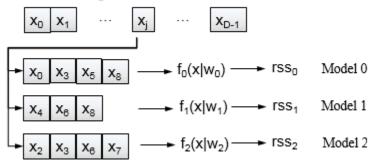
$$\tilde{w} = arg \min_{w,r} \left\{ \sum_{j=0}^{N-1} (y_j - f(x_j | w))^2 \right\} \quad f(x | w) = w_0 + \sum_{j=0}^{N-1} w_d x_d$$



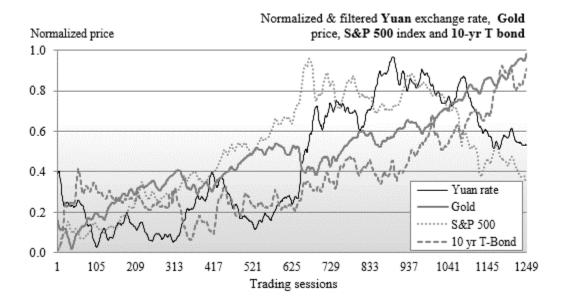








$$\widetilde{f} = arg \min_{f_j} \left\{ \sum_{i=0}^{n-1} (y_j - f_j(x|w))^2 \right\} \quad f_j(x|w) = w_{j0} + \sum_{d=1}^{D_j-1} w_{jd} x_d$$



$$r^{2} = 1 - \frac{RSS}{TSS} TSS = \sum_{i=0}^{n-1} (y_{i} - \overline{f}(x|w))^{2} \overline{f} = \sum_{f} f_{f}$$

CNY = f(SPY, GLD, TLT)

RSS: 3.681353535940423

CNY = f(SPY, TLT)

0.2039015515038045 + -0.03796334296279046.x1 + 0.26219728078589966.x2

RSS: 3.8589613138639227

CNY = f(GLD, TLT)

0.19290917330324198 + 0.015507174710195552.x1 + 0.2204800144601237.x2

RSS: 3.8849688539396317

CNY = f(SPY, GLD)

0.22242202699107552 + 0.17842973203100937.x1 + -0.12099602178260839.x2

RSS: 4.6681933948464645

CNY = f(SPY)

0.20238901847764892 + 0.1251591898720694.x1

RSS: 4.7291908591838405

CNY = f(TLT)

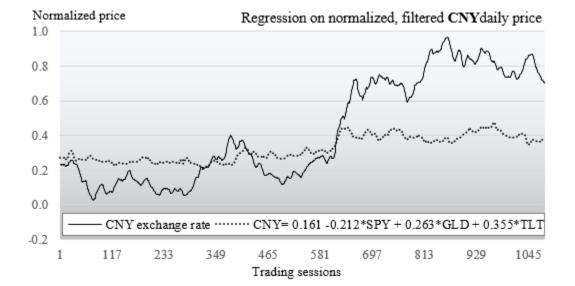
0.19724352413716711 + 0.22501420632545652.x1

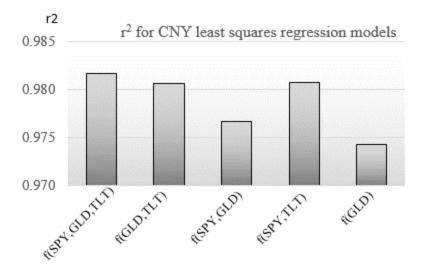
RSS: 3.8876824376753705

CNY = f(GLD)

0.198195293931846 + 0.16413676262473123.x1

RSS: 5.149661975952835





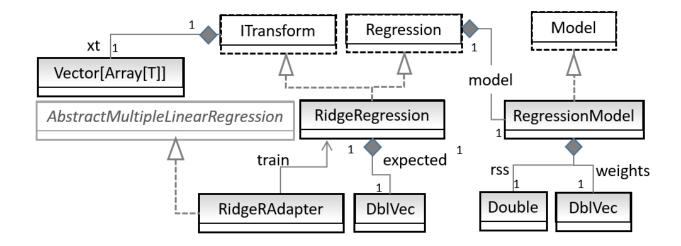
$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}_d} \left\{ \sum_{i=0}^{n-1} (y_i - f(\boldsymbol{x}_i | \boldsymbol{w}))^2 + \lambda J(\boldsymbol{w}) \right\}$$

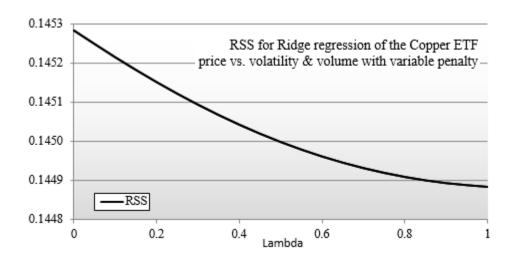
$$J_{pq}\left(w\right) = \left\|w\right\|_{p}^{q} = \left[\sum_{d=1}^{D-1} \left|w_{d}\right|^{p}\right]^{q/p}$$

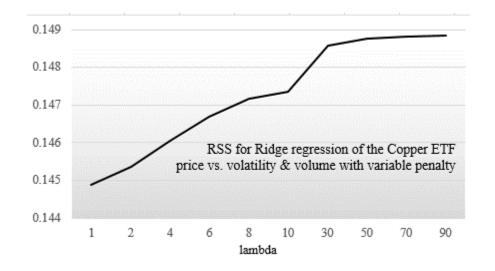
$$\tilde{w}_{ridge} = arg \min_{w} \left\{ \sum_{j=0}^{N-1} (y - w_0 - w^T x)^2 + \lambda |w|_2^2 \right\} \quad |w|_2^2 = \sum_{j=0}^{N-1} w_d^2$$

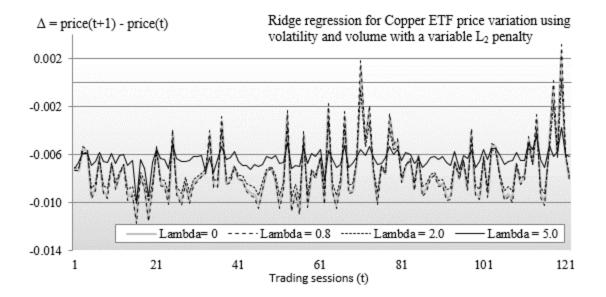
$$\left\{ X^T X - \lambda J \right\} . \hat{w}_{Ridge} = X^T y$$

$$\left\{ X^T X - \lambda . I \right\} = Q \begin{vmatrix} R \\ 0 \end{vmatrix} \quad w_{Ridge} = Q^T y \begin{bmatrix} R \\ 0 \end{bmatrix}^{-1}$$







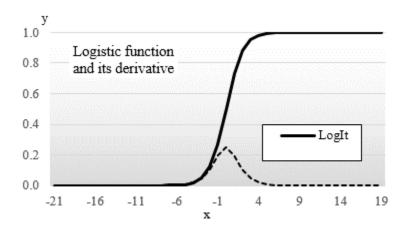


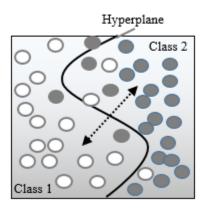
$$L(w) = \sum_{i=0}^{n-1} r_i(w)^2 \quad r_i(w) = y_i - f(x_i|w)$$

$$\sum_{i=0}^{n-1} r_i(w) J_{id}(w) = 0 \quad J_{id}(w) = -\frac{\partial r_i(w)}{\partial w_d}$$

$$f(x_i|w) - f(x_i|w^{(k)}) \sim \sum_{j,d=0}^{D-1} \frac{\partial f(x_i|w^{(k)})}{\partial w_d} (w - w^{(k)})$$

$$f(x) = \frac{1}{(1 - e^{-x})} \qquad \frac{df}{dx} = f(x)(1 - f(x))$$





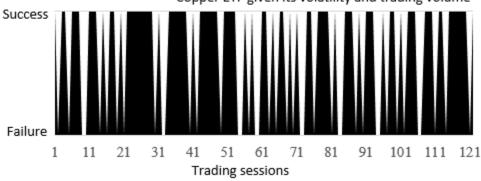
$$L\left(w\right) = \sum_{i=0}^{N-1} \log p\left(x_i \mid w\right)$$

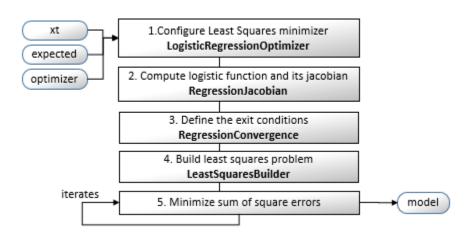
$$x_i = \{1, x_{i0}, \dots, x_{id-1}\}\ p(x_i | w) = \frac{1}{1 + e^{-w^T x_i}} w^T x_i = \sum_{j=0}^d w_j x_{ij}$$

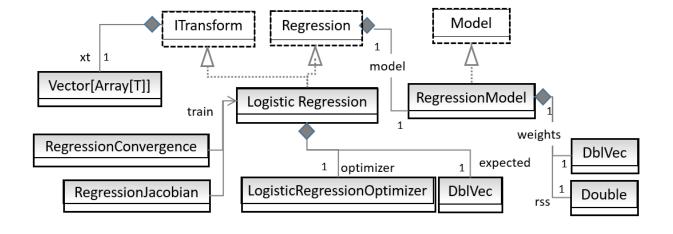
$$sse(w) = \frac{1}{2} \sum_{i=0}^{N-1} \left\{ y_i - \log\left(1 + e^{-w^T x_i}\right) \right\}^2 \quad y \in \left\{0, 1\right\}$$

$$\frac{\partial L\left(\tilde{w}\right)}{\partial w_{j}} = \sum_{i=0}^{N-1} x_{ij} \left(y_{i} - \frac{1}{1 + e^{-\tilde{w}^{T} x_{i}}} \right) = 0$$

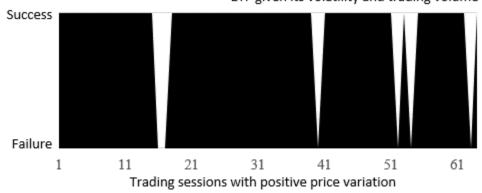
Accuracy of prediction of the direction of the price variation of Copper ETF given its volatility and trading volume



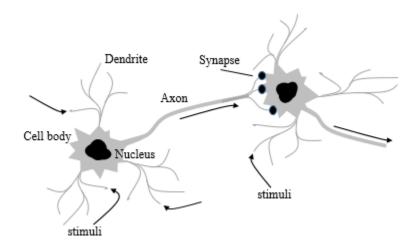


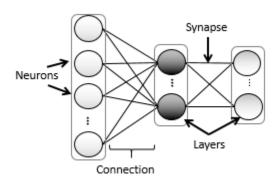


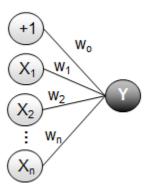
Accuracy of prediction of the positive price variation of Copper ETF given its volatility and trading volume



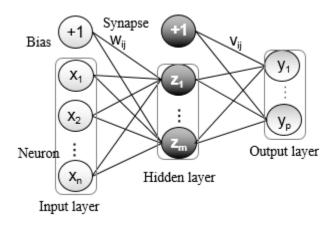
Chapter 10: Multilayer Perceptron



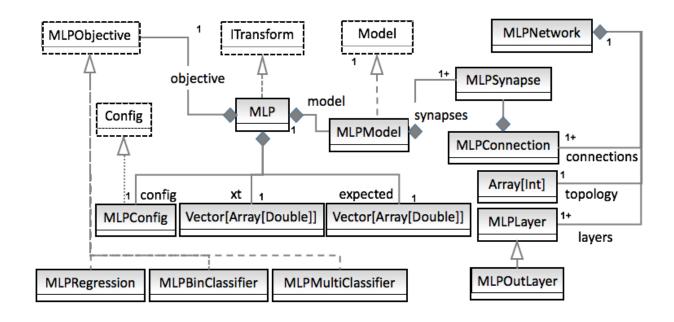


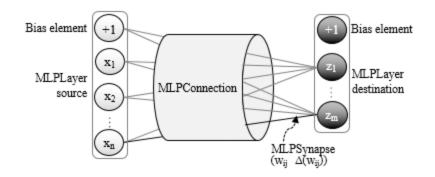


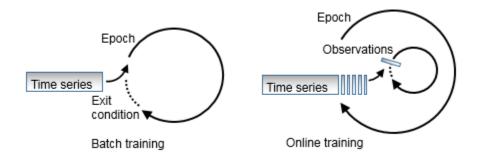
$$y = \sigma(w_0 + w^T x) = \frac{1}{1 + e^{-(w_0 + w^T x)}}$$

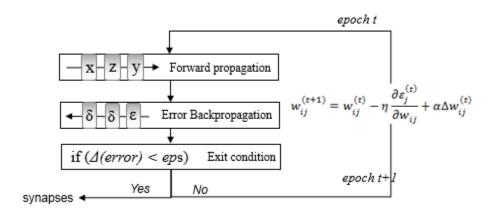


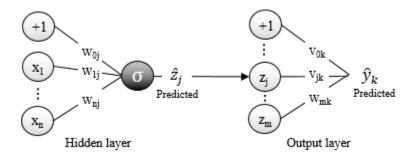
$$\hat{y} = h \left(w_0 + \sum_{i=1}^n w_i x_i \right) = h \left(w_0 + w^T x \right)$$





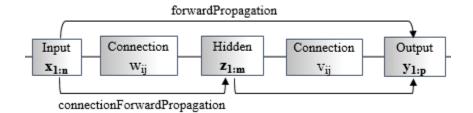






$$\tilde{y}_k = v_{0j} + \sum_{j=1}^m v_{kj} z_j$$

$$\tilde{z}_{j} = \sigma \left(w_{0j} + \sum_{i=1}^{m} w_{ij} x_{i} \right) = \frac{1}{1 + e^{-w_{0j} - \sum_{i=1}^{m} w_{ij} x_{i}}}$$



$$\varepsilon = \frac{1}{2} \sum_{i=0}^{n-1} \sum_{j=0}^{k-1} \left(y_{ij} - \tilde{y}_{ij} \right)^2 \quad \overline{\varepsilon} = \frac{\varepsilon}{n}$$

$$ce = -\sum_{i=0}^{n-1} \left\{ y_i \log \left(\tilde{y}_i \right) + \left(1 - y_i \right) \cdot \log \left(\tilde{y}_i \right) \right\}$$

$$ce = -\sum_{i=0}^{n-1} \sum_{j=0}^{k-1} \tilde{y}_{ij} \log(y_{ij})$$

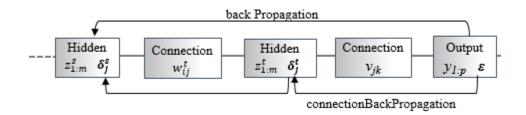
$$\widehat{\overline{y}} = \frac{e^{-\hat{y}_k}}{\sum_i e^{-\hat{y}_i}}$$

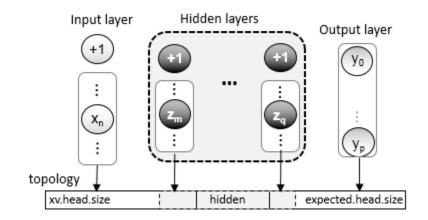
$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \eta \frac{\partial \varepsilon_{j}^{(t)}}{\partial w_{ij}}$$

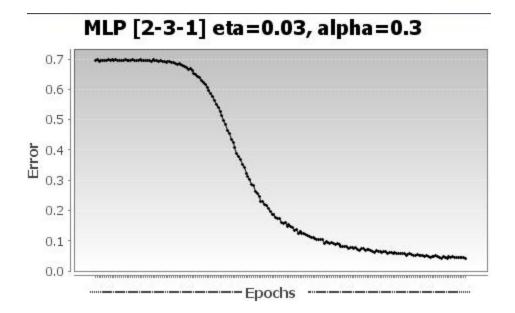
$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \eta \frac{\partial \varepsilon_j^{(t)}}{\partial w_{ij}} + \alpha \Delta w_{ij}^{(t)}$$

$$\delta_{ih} = (\tilde{y}_i - y_i).z_h \ \Delta v_{ih} = -\delta_{ih}$$

$$\delta_{hi} = \sum_{j=0}^{k-1} \left\{ \left(\tilde{y}_j - y_j \right) . v_{jh} \right\} . z_h \left(1 - z_h \right) . x_i \quad \Delta w_{hi} = -\eta \delta_{hi}$$

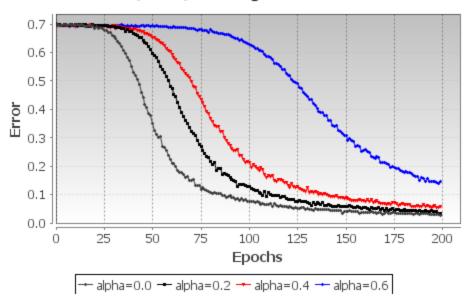




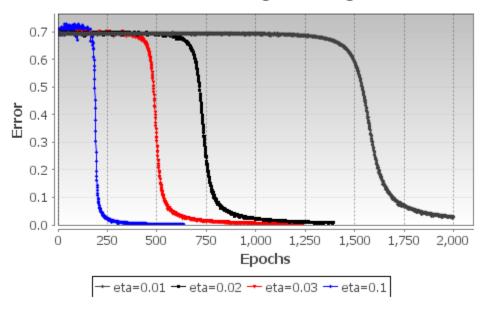


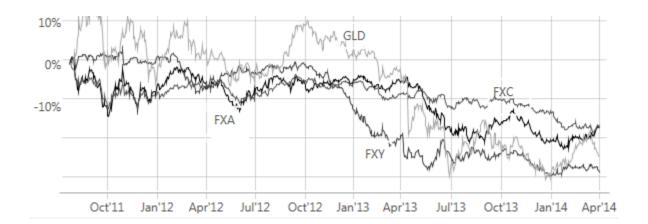


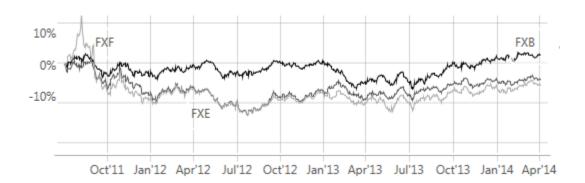
MLP [2-3-1] training - momentum

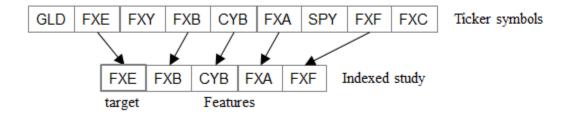


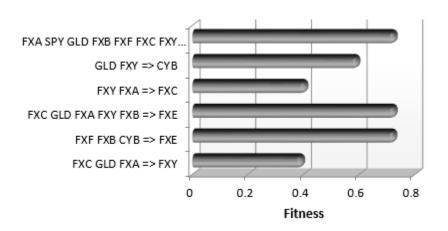
MLP [2-7-3-1] training - learning rate

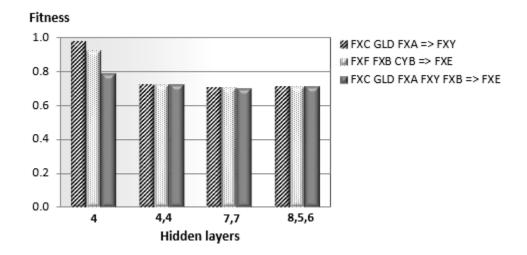


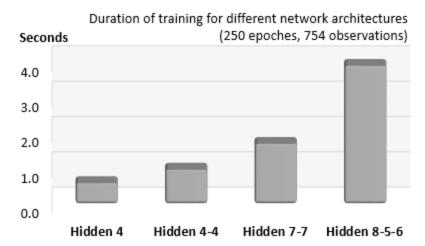


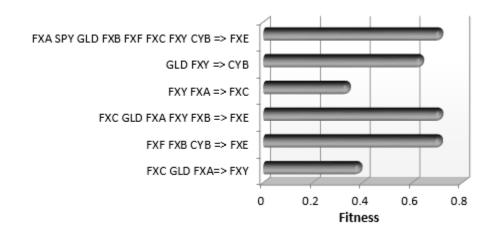


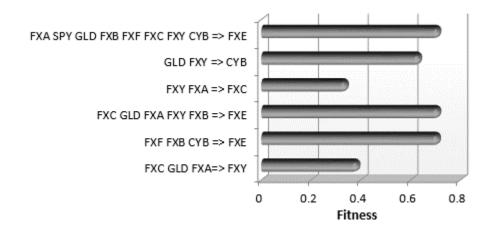




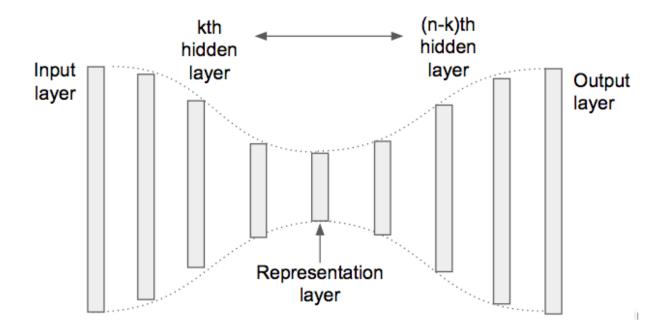






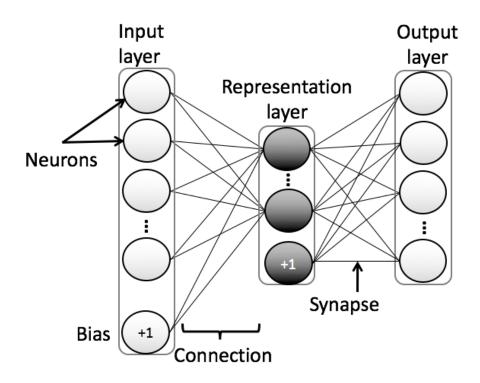


Chapter 11: Deep Learning

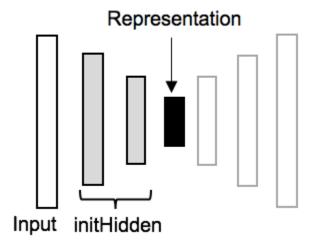


$$x' = \emptyset(\psi(x))loss = \mathcal{L}(x,\emptyset(\psi(x)))$$

$$h = \emptyset(x) = \sigma(w'.x + b)$$
$$x' = \psi(h) = \sigma'(w''.h + b)$$
$$loss = ||x - x'||^2$$



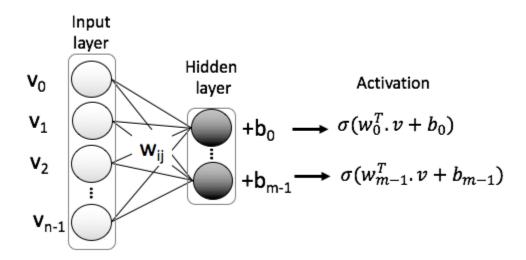
$$\rho_i' = \lambda . f(w_i^T . x + b_i') + (1 - \lambda) . \rho$$
$$b_i' = b_i - \alpha \beta (\rho_i - \rho_i')$$



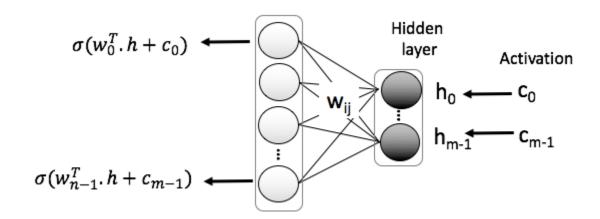
$$E(x) = -(x^{T}Wx + b^{T}x) = -\sum_{i < j}^{n-1} w_{ij}x_{i}x_{j} - \sum_{i=0}^{n-1} b_{i}x_{i}$$

$$p(x=1) = \frac{1}{1 + e^{\frac{E(x=1) - E(x=0)}{T}}}$$

$$p(v | h) = \prod_{j=0}^{n-1} p(v_j | x) \quad p(v_j = 1 | h) = \sigma\left(\sum_{i=0}^{n-1} w_{ij} h_i + b_j\right)$$



$$p(h|v) = \prod_{i=0}^{m-1} p(h_i|v) \quad p(h_i = 1|v) = \sigma\left(\sum_{j=0}^{m-1} w_{ij}v_j + c_i\right)$$

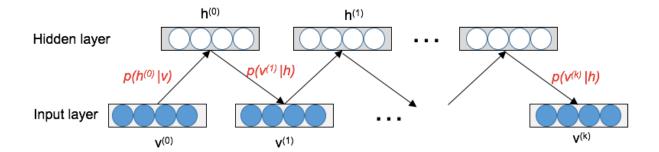


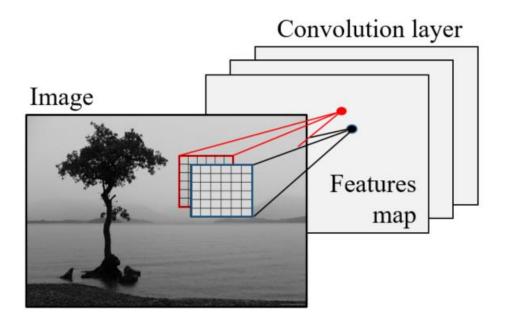
$$p(v \mid w) = \frac{1}{Z(w)} \tilde{p}(v \mid w)$$
$$\frac{\partial \ln p(v \mid w)}{\partial w} = \frac{\partial \ln \tilde{p}(v \mid w)}{\partial w} - \frac{\partial Z(w)}{\partial w}$$

$$\frac{\partial \ln \left(\mathcal{L}(w \mid v) \right)}{\partial w_{ij}} \triangleq \Delta_e = \frac{1}{n} \left(e_+ - e_- \right)$$

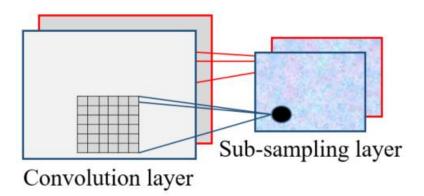
$$e_{+} = v^{(0)}.p(v^{(0)} \mid h)$$

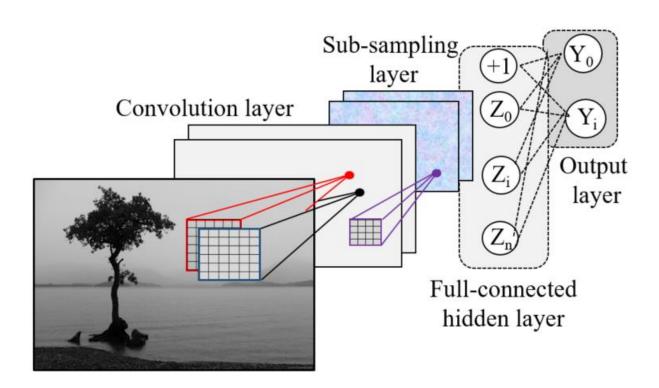
$$e_{-} = v^{(1)} \cdot p(v^{(1)} \mid h) v^{(1)} = p(h^{(0)} \mid v) h^{(0)} = p(v^{(0)} \mid h)$$



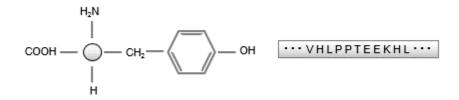


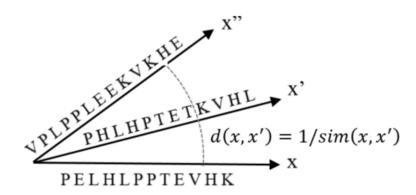
$$\tilde{z}_{j} = \sigma \left(w_{0} + \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} w_{u,v} x_{j+u,i+v} \right)$$





Chapter 12: Kernel Models and SVM





$$sim(x_{cp}, x'_{c'p'}) = \frac{1}{mx} \sum_{i=1}^{mx} (c = c') \cap (p = p') mx = \max(n, n')$$

$$f(x \mid w) = w_0 + \sum_{d=1}^{D} w_d \varnothing_d(x) \varnothing_d : \mathbb{R} \to \mathbb{R}$$

$$K(x, x') = \varnothing(x).\varnothing(x') = \sum_{d=1}^{D} \varnothing_d(x)\varnothing_d(x')$$

$$K(x, x') = x^{T}x' = \sum_{d=1}^{D} x_{i}.x'_{i}$$

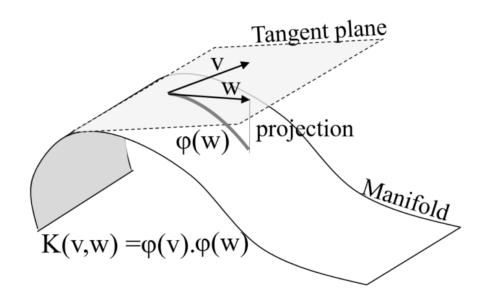
$$K(x,x') = (\gamma x^T x' + c)^n \ \gamma > 0, c \ge 0$$

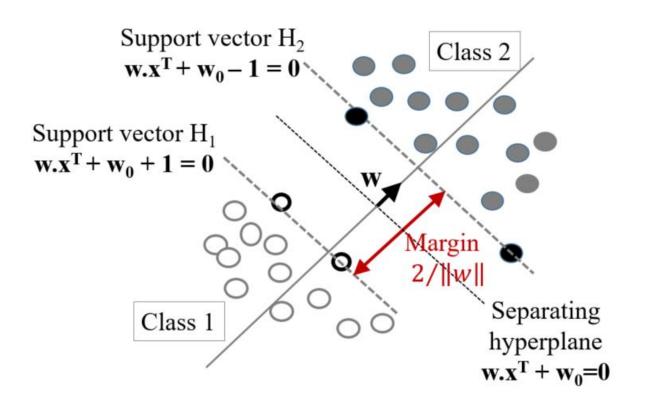
$$K(x, x') = \tanh(\gamma x^T x' + c) \gamma > 0, c \ge 0$$

$$K(x, x') = e^{-\gamma ||x - x'||^2} \gamma > 0$$

$$K(x,x') = e^{-\gamma ||x-x'||} \gamma > 0$$

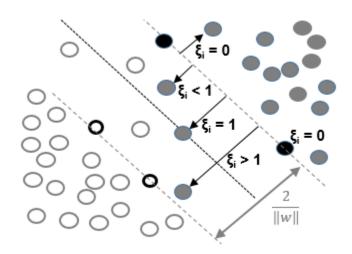
$$K(x, x') = -\log(1 + ||x - x'||^n)$$





$$y_i (w^T x + w_0) \ge 1 \ \forall i$$

$$\min_{w,w_0} \left\{ \frac{w^T w}{2} \right\} subject to \ y_i \left(w^T x + w_0 \right) \ge 1 \ \forall i$$



$$\min_{w,,\xi} \left\{ \frac{w^T w}{2} + C \sum_{i=0}^{n-1} \xi_i \right\}$$

$$\xi_i \ge 0, \ y_i \left(w^T x + w_0 \right) \ge 1 - \xi_i \ \forall i$$

$$\min_{w, w_0} \left\{ \frac{w^T w}{2} + C \sum_{i=0}^{n-1} \mathcal{L}_i \right\} \mathcal{L}_i = \left| 1 - y_i \left(w^T x + w_0 \right) \right|$$

$$\min_{w,\rho,\xi} \left\{ \frac{w^T w}{2} - \rho + \frac{1}{vn} \sum_{i=0}^{n-1} \xi_i \right\}$$

$$\xi_i \ge 0, \quad y_i \left(w^T x + w_0 \right) \ge \rho - \xi_i \quad \forall i$$



$$y_i \left(w^T \varnothing \left(x \right) + w_0 \right) \ge 1 - \xi_i \ \xi_i \ge 0 \ \forall i$$

$$w^* = \sum_{i=0}^{n-1} \alpha_i y_i \varnothing (x_i)$$

$$y_{i}\left(w^{T} \cdot \varnothing(x) + w_{0}\right) = y_{i}\left(\sum_{i=0}^{n-1} \alpha_{i} y_{i} K\left(x_{i}, x\right) + w_{0}\right) \ge 1$$

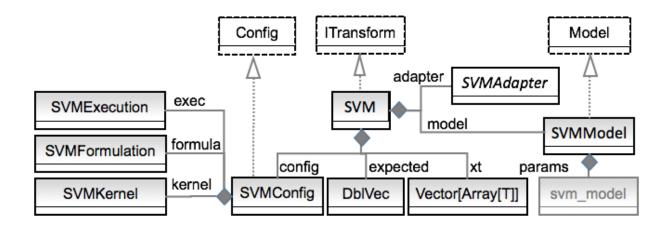
$$K\left(x_{i}, x\right) = \varnothing(x_{i}) \varnothing(x) \forall_{i}$$

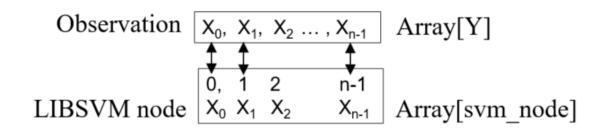
$$K(x_{i},x) = (1+x^{T}x')^{2}$$

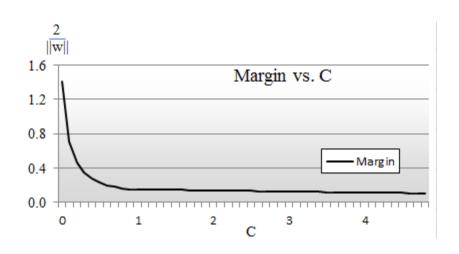
$$= 1+2x_{1}x'_{1}+2x_{2}x'_{2}+2x_{1}x'_{1}x_{2}x'_{2}+(x_{1}x'_{1})^{2}+(x_{2}x'_{2})^{2}$$

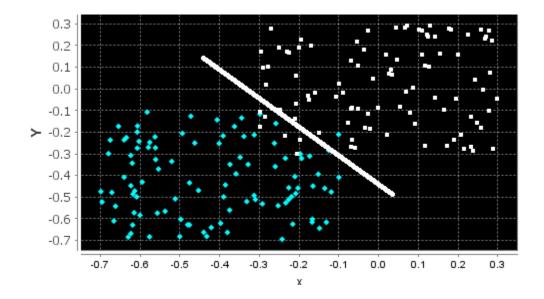
$$= \varnothing_{1}(x).\varnothing_{1}(x')+\varnothing_{2}(x).\varnothing_{2}(x')+\varnothing_{3}(x).\varnothing_{3}(x')+\cdots$$

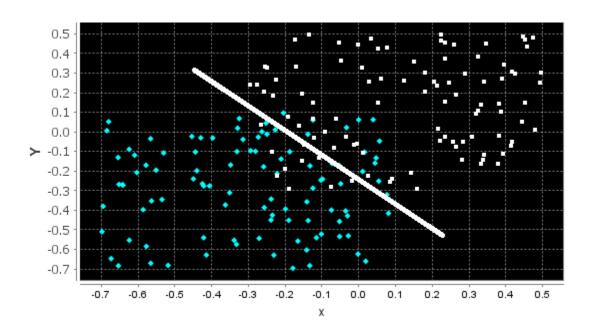
$$\varnothing_{2}(x) = 1,\varnothing_{2}(x) = \sqrt{2}x_{1},\varnothing_{3}(x) = \sqrt{2}x_{2},\varnothing_{4}(x) = x_{1}^{2}\cdots$$

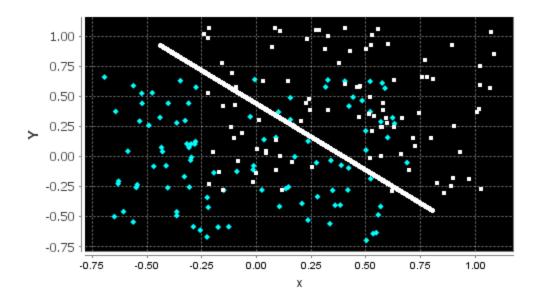


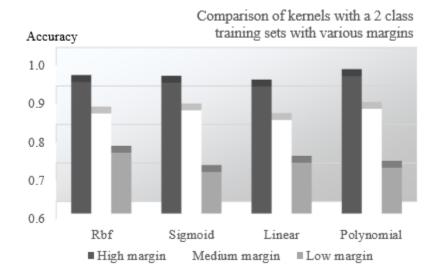


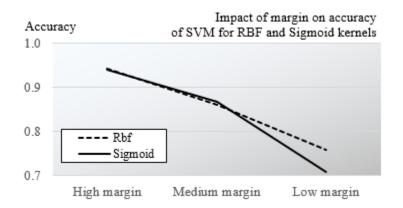


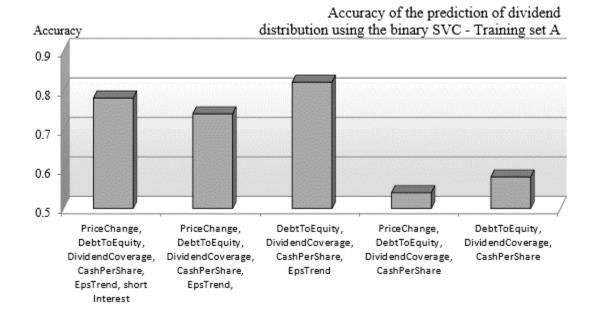


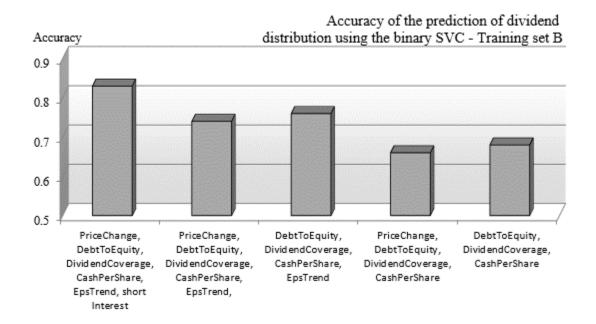


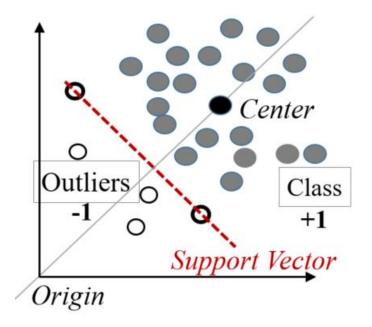


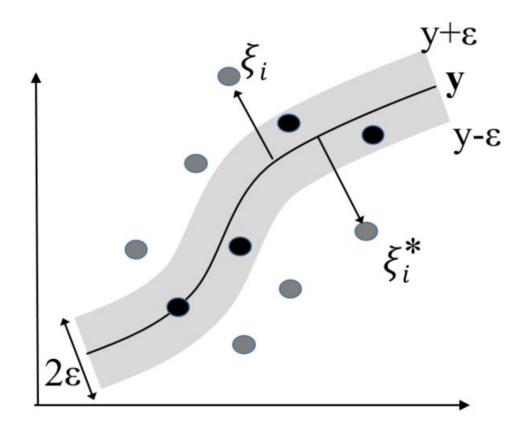






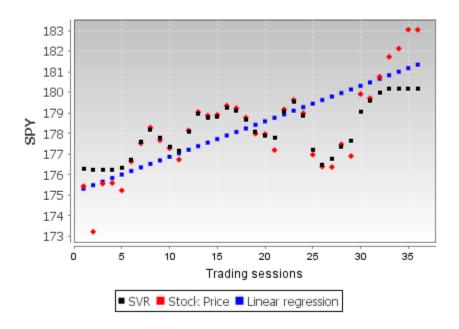


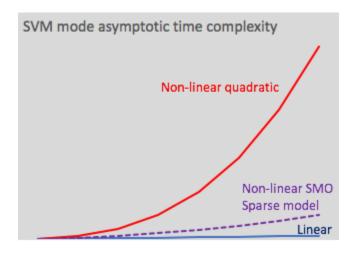




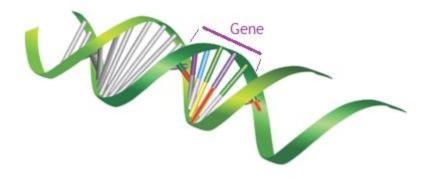
$$\begin{split} & \min_{w, \xi, \xi^*} \left\{ \frac{w^T w}{2} + C \sum_{i=0}^{n-1} \left(\xi_i + \xi_i^* \right) \right\} \\ & - \in -\xi_i^* \le w^T \varnothing \left(x_i \right) + w_0 - y_i \le \varepsilon + \xi_i \ \forall i \end{split}$$

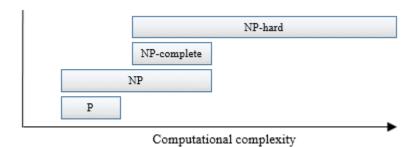
$$\hat{y}(x) = \sum_{i=0}^{n-1} \alpha_i K(x_i, x) + \hat{w}_0$$

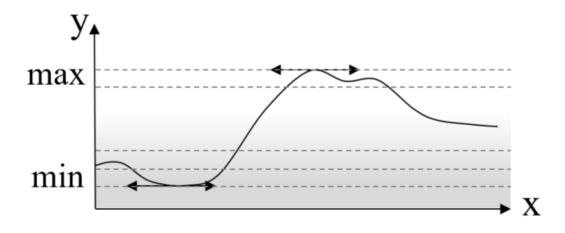




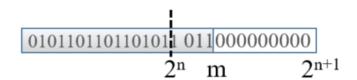
Chapter 13: Evolutionary Computing

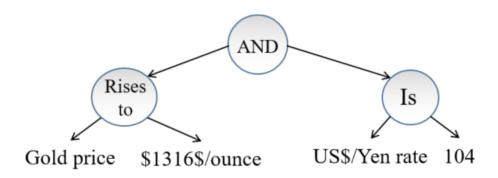


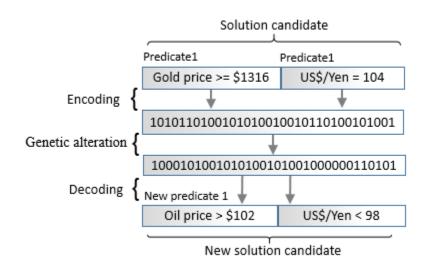




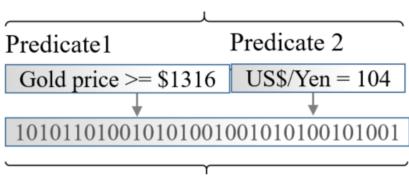
$$step = \frac{max - min}{2^n}$$



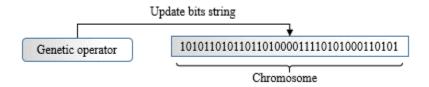


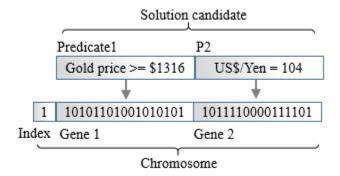


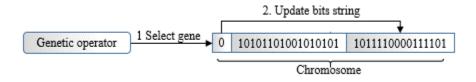
Solution candidate

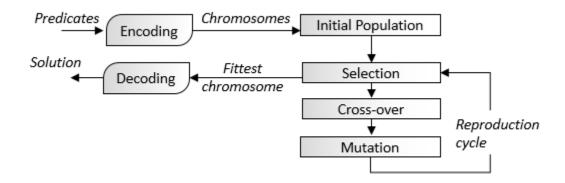


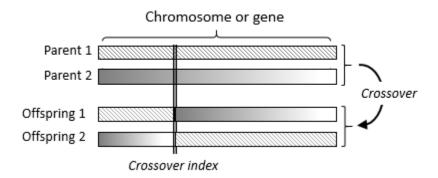
Chromosome

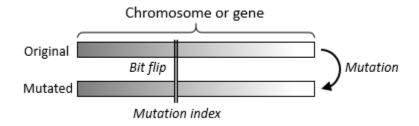


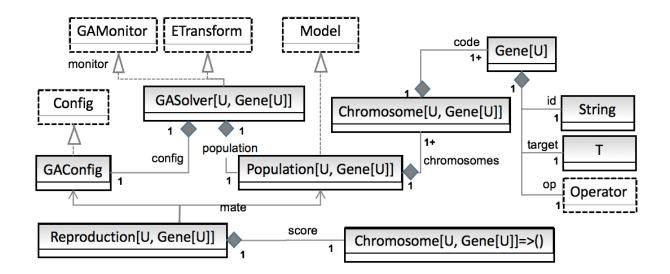


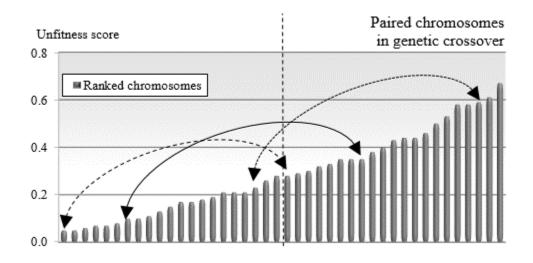


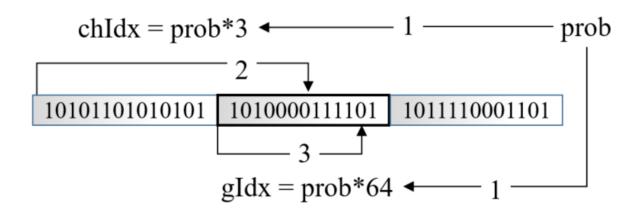


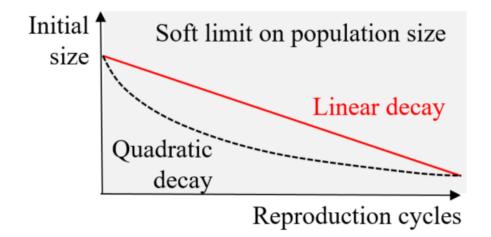


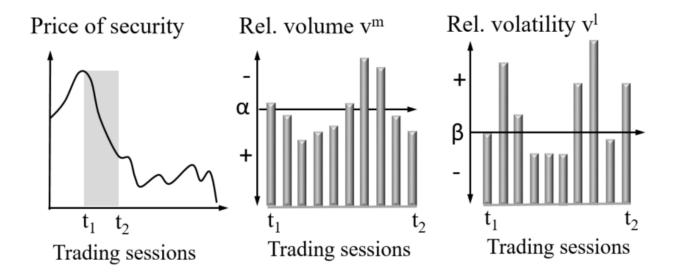




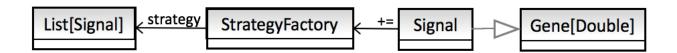


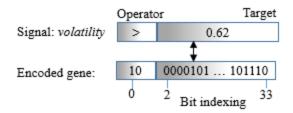


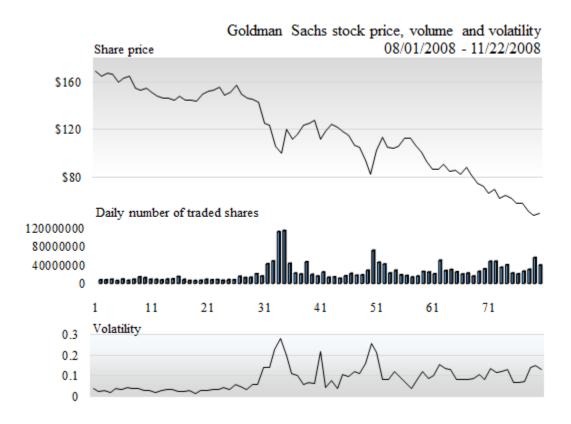


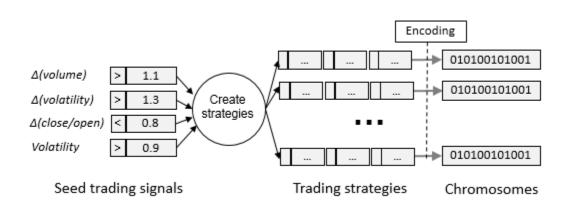


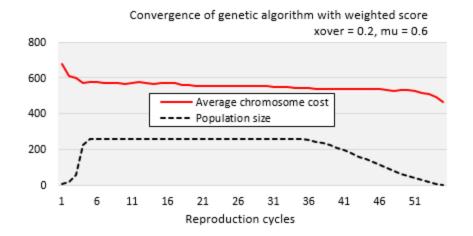
$$\begin{aligned} w_t &= -\Delta p_t \\ C\left(p, v^m, v^l \mid \alpha, \beta\right) &= \sum_{t=0}^{n-1} \left(\alpha - v_t^m\right) w_t + \left(v_t^l - \beta\right) w_t \end{aligned}$$



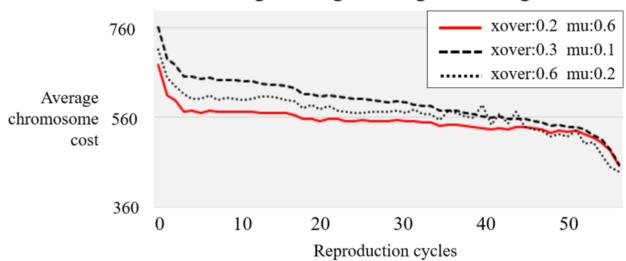


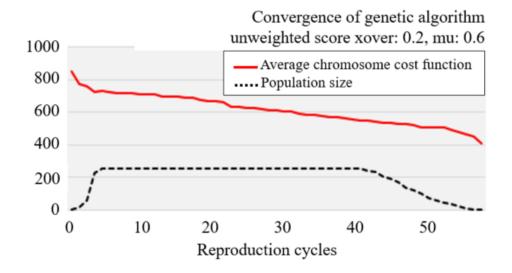




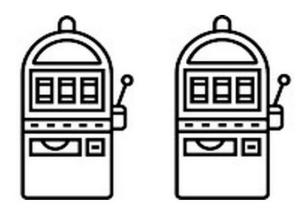


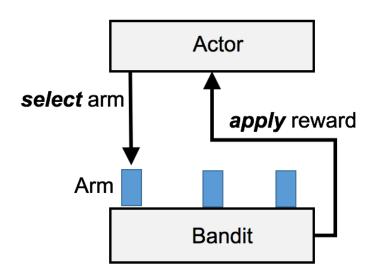
Convergence of genetic algorithm weighted score



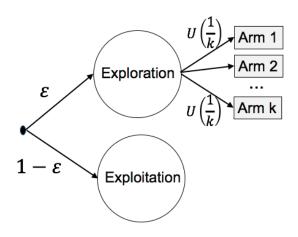


Chapter 14: Multiarmed Bandits

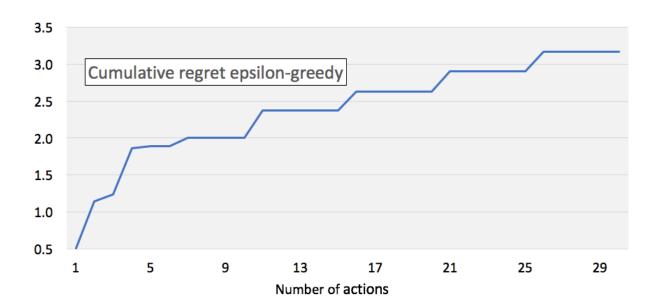




$$E[R] = T\mu^* - \sum_{t=0}^{T-1} \mu_{a_t}$$

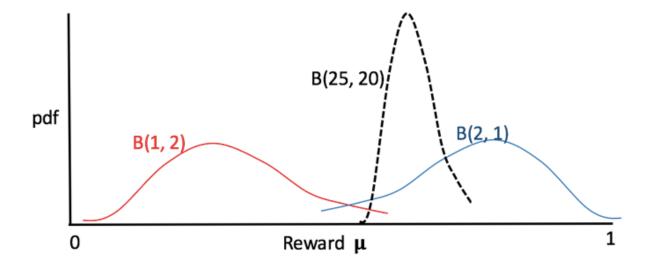


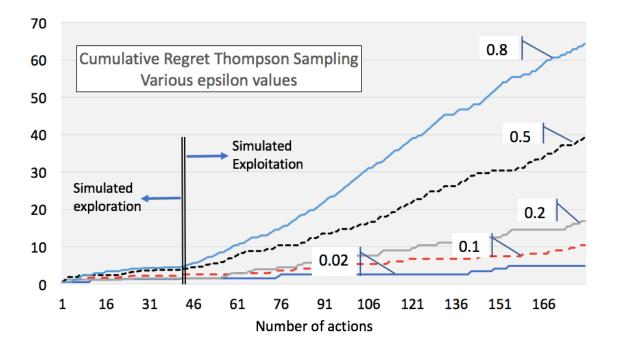
$$E[R] = T\varepsilon \left(\mu^* - \frac{1}{K}\right) \sum_{j=0}^{K-1} \mu_j$$



$$m = \arg\max_{0 \le j < k} f(. | w_j)$$

$$f(x \mid w) = \frac{1}{1 + e^{-\sum x_i w_j}}$$

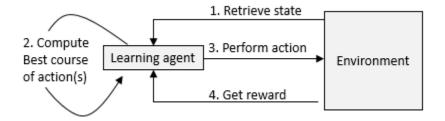




Mean reward Target for exploration exploitation Lower bound Arm₀ Arm_i Arm_j Arm_{k-1}

$$l = \arg\max_{0 \leq j < k} f \left\{ \mu_j + \sqrt{2 \frac{\log t}{n_j}} \right\}$$

Chapter 15: Reinforcement Learning

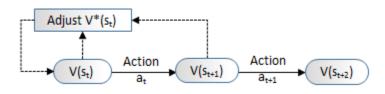


$$R_{t} \sum_{k=0}^{+\infty} \gamma^{k} r_{t+1+k}$$

$$V^{\pi} (s_{t}) = E \{ R_{t} \mid s_{t} \}$$

$$V^{\pi}(s_{t}) = \sum_{a \in A} \pi_{t} \sum_{k} \left\{ p_{k} \left(r_{k} + \gamma \cdot V^{\pi}(s_{k}) \right) \right\}$$

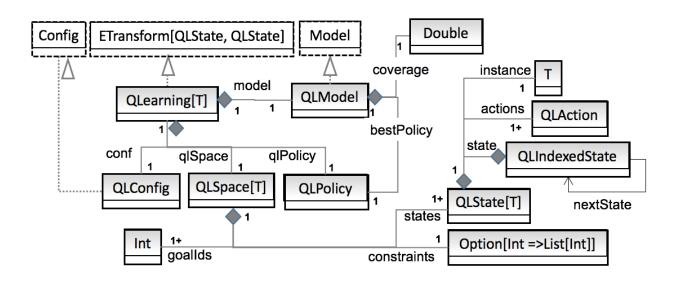
$$V^{*}(s_{t}) = \max_{\pi} V^{\pi}(s_{t})$$

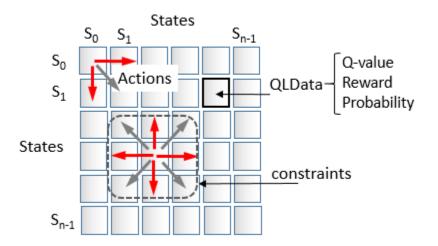


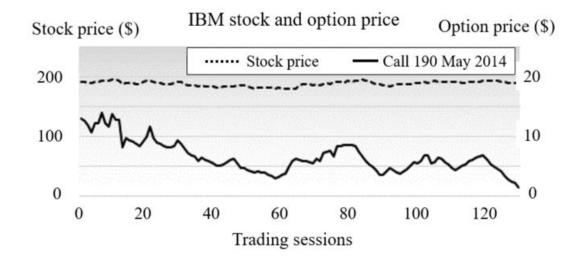
$$\delta_{t} = r_{t+1} + \gamma V(s_{t+1}) - V(s_{t})$$
$$\hat{V}^{\pi}(s_{t}) = V^{\pi}(s_{t}) + \alpha \delta_{t}$$

$$Q_t^{\pi} = Q^{\pi}\left(s_t, a_t\right) = E\left(R_t \mid s_t, a_t\right)$$

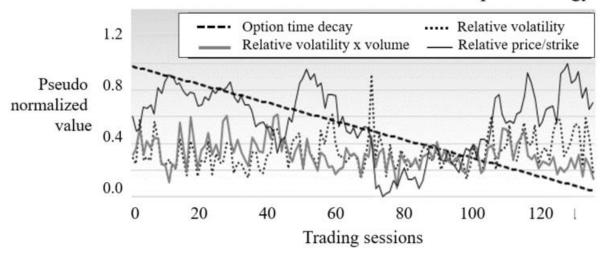
$$\tilde{Q}_{t}^{\pi} = Q_{t}^{\pi} + \alpha \left[r_{t+1} + \gamma \max_{a_{t}+1} Q_{t+1}^{\pi} - Q_{t}^{\pi} \right] Q_{t}^{\pi} = Q^{\pi} \left(s_{t}, a_{t} \right)$$

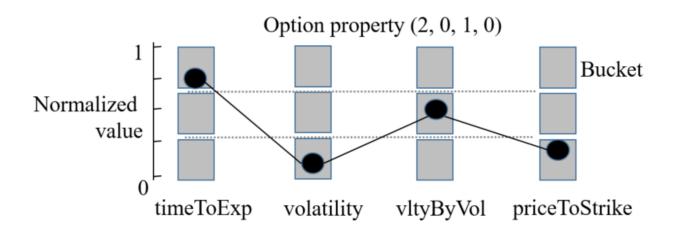


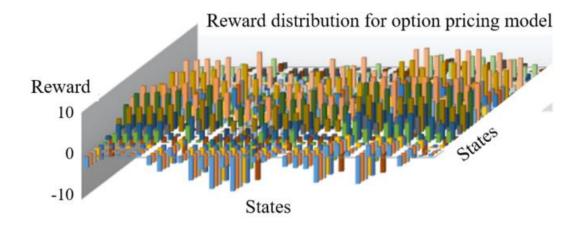


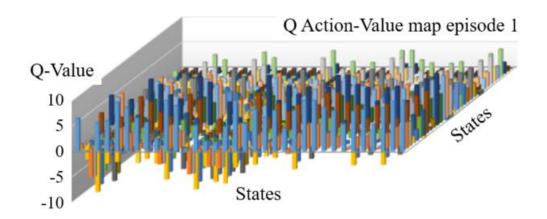


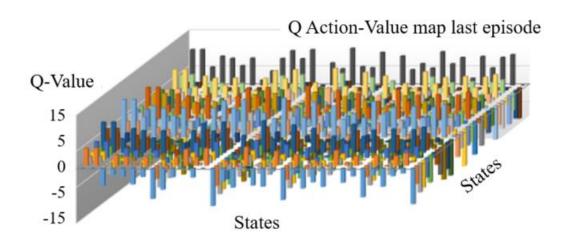
Features for IBM option strategy

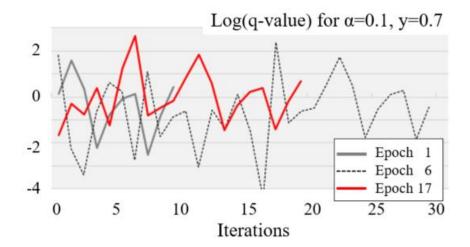


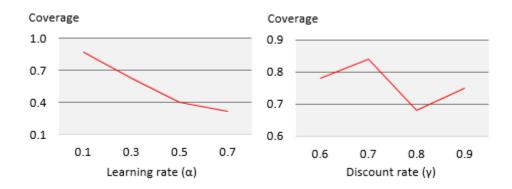


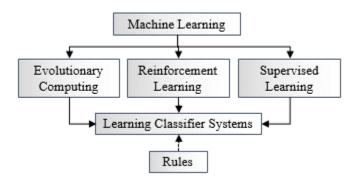


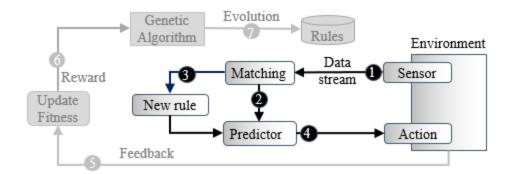


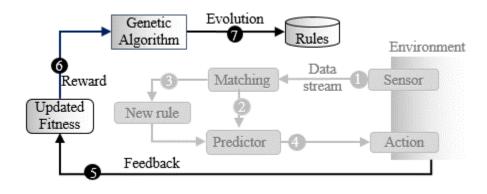


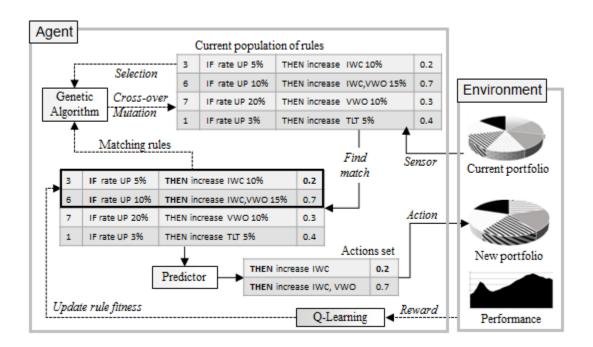


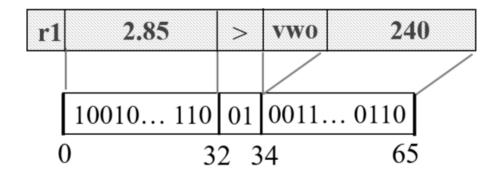












Chapter 16: Parallelism in Scala and Akka

Spark

Partitioner, Accumulator: org.apache.spark

Broadcast: org.apache.spark.broadcast
Resilient datasets: org.apache.spark.rdd.

Data frame: org.apache.spark.sql._

Caching, Shuffling: org.apache.spark._ Listeners: org.apache.spark.scheduler._ Serialization: org.apache.spark.serializer

Akka

Actors, Supervisors: akka.actors._

Remote actors: akka.remote
Type actors: akka.actors._

Mailbox management: akka.mailbox._

Clusters: akka.cluster.

Dispatchers: akka.dispatch

Events management: akka.event._ Routing, Broadcast: akka.routing Persistency: akka.persistence.

Scala

 ${\bf Scheduler}: \ scala. actors. scheduler$

Concurrency: scala.concurrent

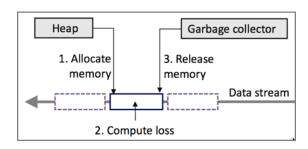
Par. collections: scala.collection.parallel

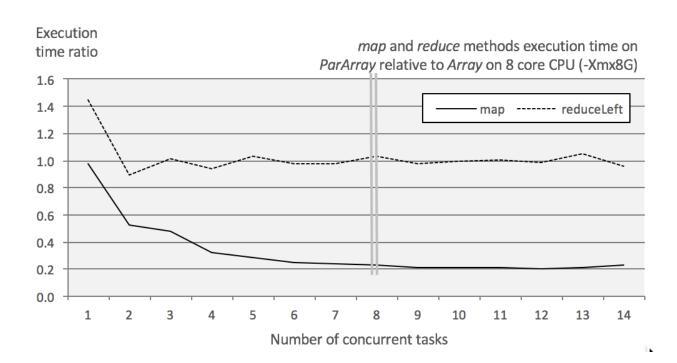
JVM

Threads, executors: java.util.concurrent.*

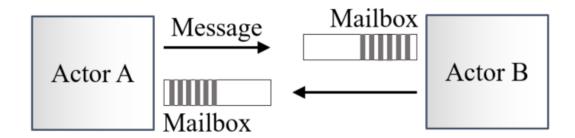
$$\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

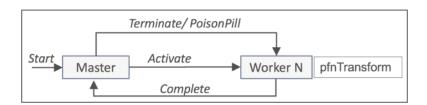
$$\mu_n = \left(1 - \frac{1}{n}\right)\mu_{n-1} + \frac{x_n}{n}$$

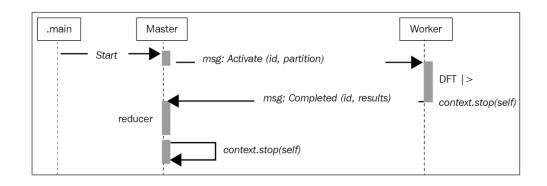


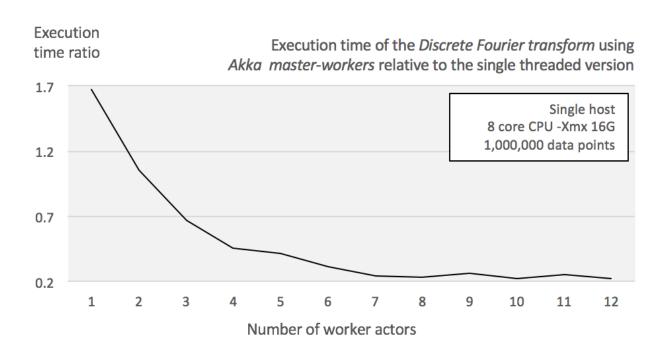


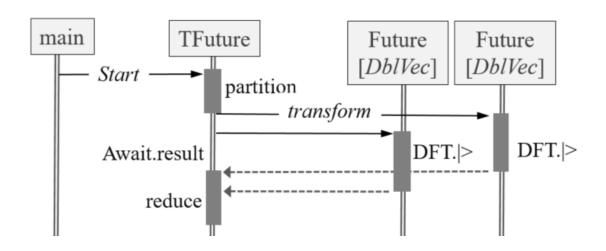


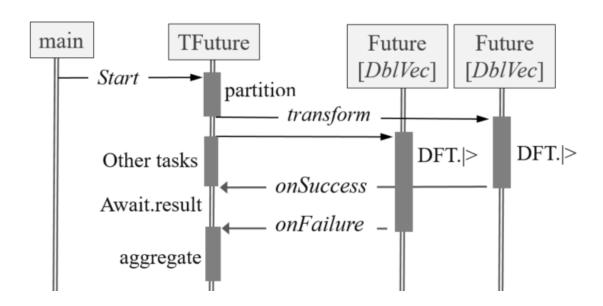




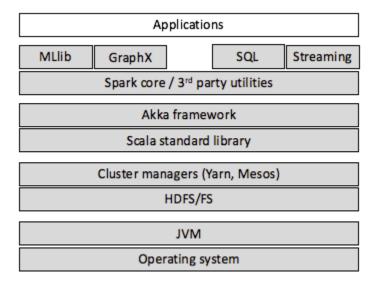


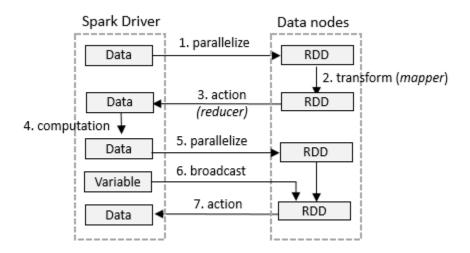


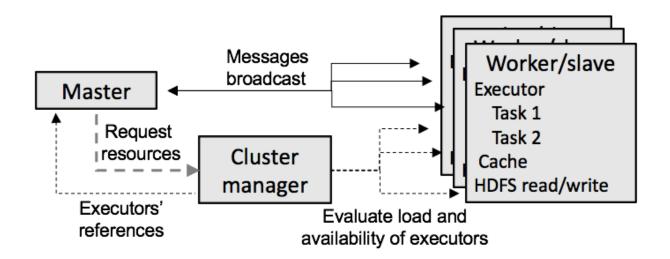


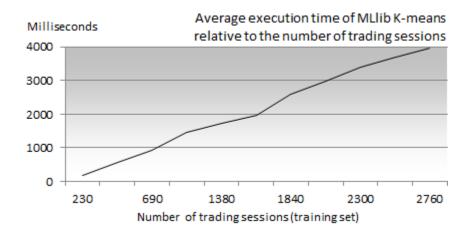


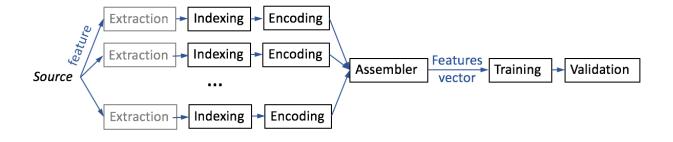
Chapter 17: Apache Spark MLlib











```
root
```

```
|-- date: string (nullable = true)
|-- asset: string (nullable = true)
|-- region: integer (nullable = true)
|-- agent: string (nullable = true)
|-- dateIndex: double (nullable = true)
|-- assetIndex: double (nullable = true)
|-- regionIndex: double (nullable = true)
-- agentIndex: double (nullable = true)
|-- dateVector: vector (nullable = true)
|-- assetVector: vector (nullable = true)
|-- regionVector: vector (nullable = true)
|-- agentVector: vector (nullable = true)
|-- features: vector (nullable = true)
|-- rawPrediction: vector (nullable = true)
|-- probability: vector (nullable = true)
|-- prediction: double (nullable = true)
```

date	asset	region	agent
07/05/2014 08/03/2014	•		aa5 a08

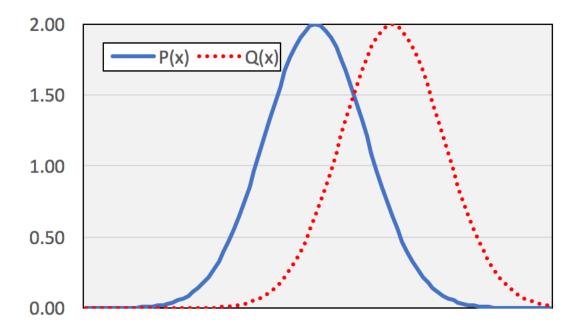
dateIndex	assetIndex	regionIndex	 agentIndex
4.0 3.0			

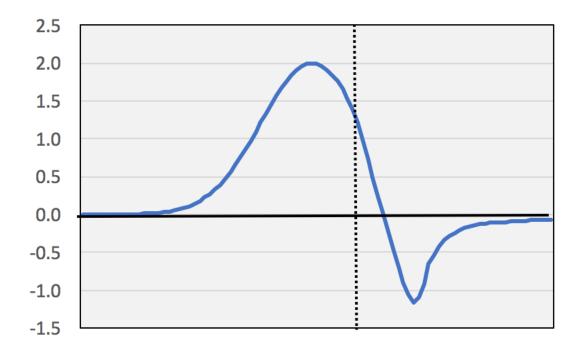
dateVector	assetVector	regionVector	agentVector	features
				(65, [4,20,49,56], (65, [3,17,43,52],

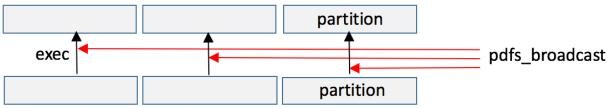
$$TPR = \frac{TP}{TP + FN}$$
 $TFP = \frac{TP}{TP + FP}$

$$D_{KL}(P \parallel Q) = -\int_{-\infty}^{+\infty} p(x) . log \frac{p(x)}{q(x)}$$

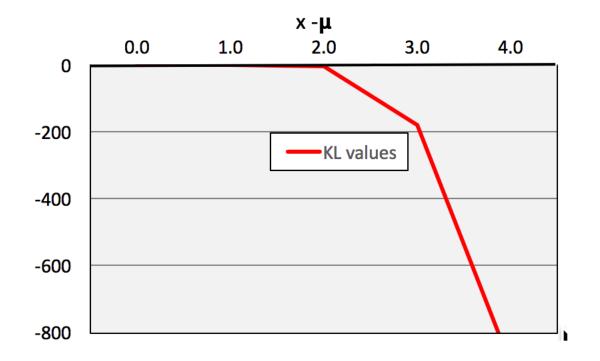
$$D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$$

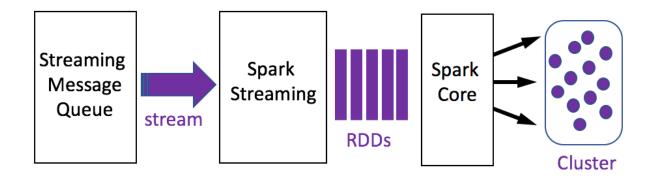




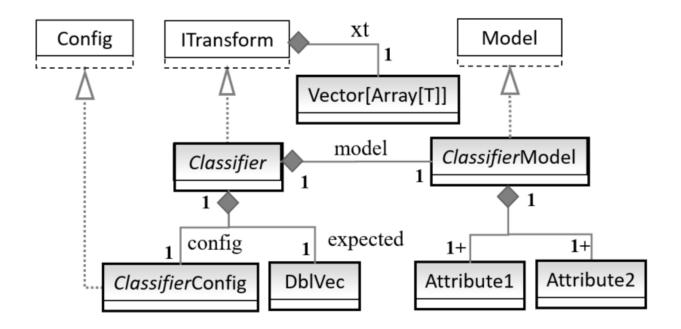


data: RDD[(Double, Double)]





Appendix A: Basic Concepts



$$J(f) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

$$f(x,y) = x^2y + e^{-y} J(f) = \begin{bmatrix} 2xy, x^2 - e^{-y} \end{bmatrix} H(f) = \begin{bmatrix} 2y & 2x \\ 2x & e^{-y} \end{bmatrix}$$

$$x_{(t+1)} = x_{(t)} - \gamma \nabla F(a)$$

$$Ax = b \to \sum_{i=0}^{n-1} \alpha_i p_i x^* = b; p_i . p_j = 0$$

$$F(x) = \sum_{i=0}^{n-1} f_i(x), \ x_{t+1} = x_t - \alpha \sum_{i=0}^{n-1} \nabla f_i(x)$$

$$F(x_t + \Delta x) - F(x_t) \approx F'(x) \cdot \Delta x + F''(x_t) \rightarrow x_{t+1} = x_t - \frac{F'(x_t)}{F''(x_t)}$$

$$H_t p_t = -\nabla F(x_t), \ x_{t+1} = x_t + \alpha_t p_t$$

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t + \Delta \boldsymbol{x}_t; \ \nabla F\left(\boldsymbol{x}_t\right) + \Delta G_t = \Delta \left(\nabla F\left(\boldsymbol{x}_t\right)\right)$$

$$\mathcal{L}(w) = \sum_{i=0}^{m-1} r_i(w)^2; r_i = y_i - F(x_i, w)$$

$$w_{(t+1)} = w_{(t)} - \left\| \frac{\partial r_i \left(w_{(t)} \right)}{\partial w_i} \right\|_{ij}^{-1} r \left(w_{(t)} \right)$$

$$\mathcal{L}(w+\delta) \approx \sum_{i=0}^{m-1} \left(r_i(w) - \frac{\partial F(x_i, w)}{\partial w} \delta \right)^2$$

$$\mathcal{L}(x,\lambda) = f(x) + \lambda (g(x) - c)$$

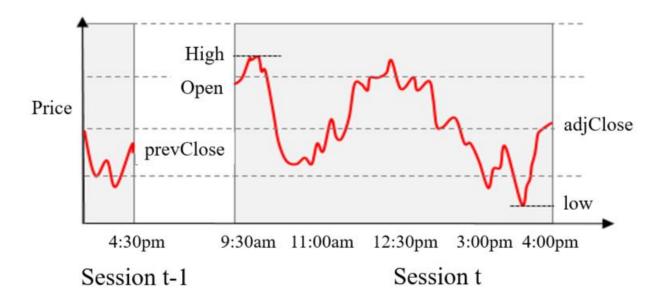
$$\nabla_{x,\lambda} \mathcal{L}(x,y) = 0$$

$$\nabla \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial x_i}, \frac{\partial \mathcal{L}}{\partial \lambda} \right]$$

$$f(x,y) = x^{2} + y^{2} subject x - y = 2$$

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda, \frac{\partial \mathcal{L}}{\partial y} = 2y - \lambda, \frac{\partial \mathcal{L}}{\partial y} = x - y - 2$$

$$x = 1, y = -1, \lambda = -2$$



$$U = p(t) - p(t-1), D = 0$$

Relative Strength Index (RSI)

