```
Chapter 1: Getting Started with R and Machine Learning

Warning message:
In c(1, 3, 5, 7, 9) * c(2, 4) :
longer object length is not a multiple of shorter object length

first second third fourth fifth
1 2 3 4 5

second fourth
2 4

, , first.set

coll col2 col3
row1 1 5 9
row2 2 6 10
row3 3 7 11
row4 4 8 12
```

, ,	3	е	С	0	n	d		3	e	t
-----	---	---	---	---	---	---	--	---	---	---

	col1	col2	col3
row1	13	17	21
row2	14	18	22
row3	15	19	23
row4	16	20	24

, , third.set

	col1	col2	col3
row1	25	29	1
row2	26	30	2
row3	27	31	3
row4	28	32	4

```
[,1] [,2] [,3] [,4]
[1,]
          2
              3
     1
             7
[2,]
     5
         6
                 8
[3,]
     9 10
            11 12
        14
            15 16
[4,]
    13
[5,] 17
        18
            19 20
[6,] 21 22 23 24
```

[[1]]

[1] "row1" "row2" "row3" "row4"

[[2]]

[1] "col1" "col2" "col3"

[[3]]

[1] "first.set" "second.set" "third.set"

[[1]]

[1] "r1" "r2" "r3" "r4" "r5" "r6"

[[2]]

[1] "c1" "c2" "c3" "c4"

c1 c2 c3 c4 r1 1 2 3 4 r2 5 6 7 8 r3 9 10 11 12 r4 13 14 15 16 r5 17 18 19 20 r6 21 22 23 24

M1.c1 M1.c2 M1.c3 2 M1.r1 1 3 M1.r2 4 5 6 7 9 M1.r3 M1.r4 10 11 12 M1.r5 13 14 15

	M2.c1	M2.c2	M2.c3
M2.r1	16	17	18
M2.r2	19	20	21
M2.r3	22	23	24
M2.r4	25	26	27
M2.r5	28	29	30

	M1.c1	M1.c2	M1.c3
M1.r1	1	2	3
M1.r2	4	5	6
M1.r3	7	8	9
M1.r4	10	11	12
M1.r5	13	14	15
M2.r1	16	17	18
M2.r2	19	20	21
M2.r3	22	23	24
M2.r4	25	26	27
M2.r5	28	29	30

	M1.c1	M1.c2	M1.c3	M2.c1	M2.c2	M2.c3
M1.r1	1	2	3	16	17	18
M1.r2	4	5	6	19	20	21
M1.r3	7	8	9	22	23	24
M1.r4	10	11	12	25	26	27
M1.r5	13	14	15	28	29	30

[1] 1 4 7 10 13 2 5 8 11 14 3 6 9 12 15 16 19 22 25 [20] 28 17 20 23 26 29 18 21 24 27 30

	M1.c1	M1.c2	M1.c3
M1.r1	17	19	21
M1.r2	23	25	27
M1.r3	29	31	33
M1.r4	35	37	39
M1.r5	41	43	4.5

	M1.c1	M1.c2	M1.c3
M1.r1	16	34	54
M1.r2	76	100	126
M1.r3	154	184	216
M1.r4	250	286	324
M1.r5	364	406	450

	M2.r1	M2.r2	M2.r3	M2.r4	M2.r5
M2.c1	16	19	22	25	28
M2.c2	17	20	23	26	29
M2.c3	18	21	24	27	30

```
[[1]]
   [1] 1 2 3 4 5
   [[2]]
  [1] "first" "second" "third"
  [[3]]
  [1] TRUE FALSE TRUE TRUE
  [[4]]
  function (x) .Primitive("cos")
  [[5]]
      [,1] [,2] [,3]
   [1,] 1 4 7
  [2,] 2 5 8
[3,] 3 6 9
$even.nums
[1] 2 4 6 8 10
$odd.nums
[1] 1 3 5 7 9
$languages
         "Python" "Julia" "Java"
[1] "R"
$cosine.func
function (x) .Primitive("cos")
```

```
$nums
[1] 1 2 3 4 5
$chars
[1] "a" "b" "c" "d" "e"
$cosine
function (x) .Primitive("cos")
$languages
[1] "R"
         "Python" "Java"
$months
[1] "Jan" "Feb" "Mar" "Apr"
$sine
function (x) .Primitive("sin")
            [[1]]
            [1] 1
            [[2]]
            [1] 2
            [[3]]
```

	real.name	superhero.name	franchise	team	origin.year
1	Bruce Wayne	Batman	DC	JLA	1939
2	Clark Kent	Superman	DC	JLA	1938
3	Slade Wilson	Deathstroke	DC	Suicide Squad	1980
4	Tony Stark	Iron Man	Marvel	Avengers	1963
5	Steve Rogers	Capt. America	Marvel	Avengers	1941

[1] 3

[[4]] [1] 4

[[5]] [1] 5 'data.frame': 5 obs. of 5 variables:

\$ real.name : Factor w/ 5 levels "Bruce Wayne",..: 1 2 3 5 4

\$ superhero.name: Factor w/ 5 levels "Batman", "Capt. America", ..: 1 5 3 4 2

\$ franchise : Factor w/ 2 levels "DC", "Marvel": 1 1 1 2 2

\$ team : Factor w/ 3 levels "Avengers", "JLA", ...: 2 2 3 1 1

\$ origin.year : num 1939 1938 1980 1963 1941

[1] "real.name" "superhero.name" "franchise" "team" "origin.year"

 mpg cyl disp
 hp drat
 wt qsec vs am gear carb

 Mazda RX4
 21.0
 6
 160
 110
 3.90
 2.620
 16.46
 0
 1
 4
 4

 Mazda RX4 Wag
 21.0
 6
 160
 110
 3.90
 2.875
 17.02
 0
 1
 4
 4

 Datsun 710
 22.8
 4
 108
 93
 3.85
 2.320
 18.61
 1
 1
 4
 1

 Hornet 4 Drive
 21.4
 6
 258
 110
 3.08
 3.215
 19.44
 1
 0
 3
 1

 Hornet Sportabout
 18.7
 8
 360
 175
 3.15
 3.440
 17.02
 0
 0
 3
 2

 Valiant
 18.1
 6
 225
 105
 2.76
 3.460
 20.22
 1
 0
 3
 1

	real.name	superhero.name	franchise	team	origin.year
2	Clark Kent	Superman	DC	JLA	1938
3	Slade Wilson	Deathstroke	DC	Suicide Squad	1980
4	Tony Stark	Iron Man	Marvel	Avengers	1963

real.name superhero.name
Clark Kent Superman
Slade Wilson Deathstroke
Tony Stark Iron Man

real.name superhero.name franchise
1 Bruce Wayne Batman DC
2 Clark Kent Superman DC

real.name superhero.name franchise

3 Slade Wilson Deathstroke DC

4 Tony Stark Iron Man Marvel

5 Steve Rogers Capt. America Marvel

id name alias 1 emp001 Harvey Dent TwoFace 2 emp003 Dick Grayson Nightwing 3 emp007 James Bond Agent 007

id name alias id location speciality 1 emp001 Harvey Dent TwoFace emp001 Gotham City Split Persona 2 emp003 Dick Grayson Nightwing emp003 Gotham City Expert Acrobat 3 emp007 James Bond Agent 007 emp007 London Gadget Master

id name alias location speciality 1 emp001 Harvey Dent TwoFace Gotham City Split Persona 2 emp003 Dick Grayson Nightwing Gotham City Expert Acrobat 3 emp007 James Bond Agent 007 London Gadget Master

> \$11 [1] 5.5

\$12 [1] 1010

\$11 [1] 1 2 3 4 5 6 7 8 9 10

\$12

[1] 0.3063285 0.3210605 0.2126607 0.4323474 0.7352608

[6] 0.3211845 0.4266556 0.3350231 0.8402687 0.2214472

\$13

[1] 3.163047 2.316373 2.928157 1.071683 1.961838 1.714548

[7] 1.763979 3.798988 1.429736 2.898258

\$11

[1] 5.5

\$12

[1] 0.4152237

\$13

[1] 2.304661

11 12 13 5.5000000 0.4152237 2.3046606

- [,1] [,2] [,3] [,4] [1,1] [1,1] 0.1195527 0.7539491 1.04947756 -1.12405275 [2,] 0.1265696 -0.3927123 -0.13780092 0.07646778 [3,] 1.1871906 0.9269384 0.05736586 0.34318494 [4,] 0.6123884 1.7748904 -1.57002544 -0.53468646 [5,] 0.2013425 -1.5749354 0.45371789 0.29642974
- [,1] [,2] [,3] [,4] [,5] 25% -0.1913486 -0.20152876 0.2717302 -0.79352120 -0.2427270 50% 0.4367509 -0.03066657 0.6350617 0.03885096 0.2488861 75% 0.8278312 0.08899324 0.9920015 0.90301390 0.3357518
- [1] 1.00000000 2.00000000 3.00000000 4.00000000 5.00000000 [6] 6.00000000 7.00000000 8.00000000 9.00000000 10.00000000 [11] 2.23147539 2.21731733 1.83956388 0.03597464 2.91214941 [16] 3.28026069 2.25403785 2.99538891 3.16527292 1.82685914 [21] 0.02740101 0.19610746 0.34837827 0.25190460 0.72999163 [26] 0.47645627 0.61436625 0.80770405 0.92255269 0.86156925
 - 1 2 3 5.5000000 2.2758300 0.5236431

\$`1` [1] 5.5

\$`2`

[1] 2.27583

\$`3`

[1] 0.5236431

\$`1` [1] 1 10 \$`2` [1] 0.03597464 3.28026069 \$`3` [1] 0.02740101 0.92255269 [[1]] [1] 1 1 1 1 [[2]] [1] 2 2 2 [[3]] [1] 3 3 [[4]] [1] 4

Statistical Data Analysis

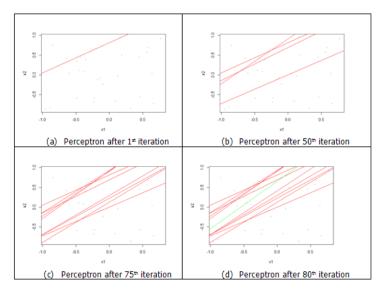
Manuals

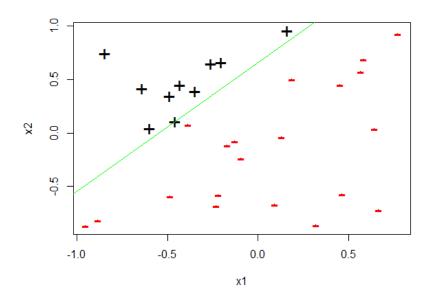
An Introduction to R
Writing R Extensions
R Data Import/Export

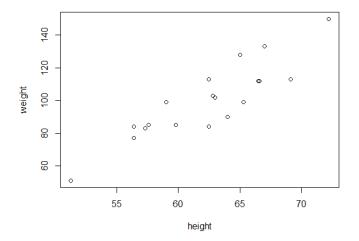
The R Language Definition
R Installation and Administration
R Internals

Reference

<u>Packages</u>

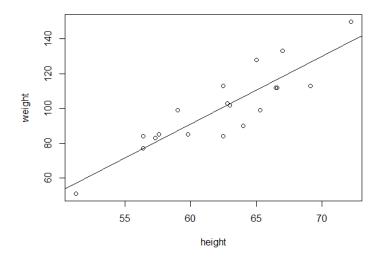

Search Engine & Keywords


Miscellaneous Material

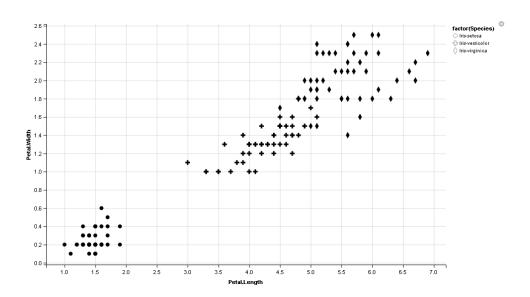

About R License NEWS Authors
Frequently Asked Questions
User Manuals

Resources
Thanks
Technical papers

Chapter 2: Let's Help Machines Learn



Call: lm(formula = weight ~ height)


Coefficients:
(Intercept) height
-143.227 3.905

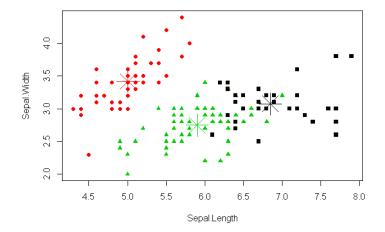

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
           5.1
                        3.5
                                      \tilde{1}.4
                                                  0.2 Iris-setosa
1
2
           4.9
                        3.0
                                      1.4
                                                  0.2 Iris-setosa
           4.7
                        3.2
                                      1.3
                                                  0.2 Iris-setosa
4
           4.6
                        3.1
                                      1.5
                                                  0.2 Iris-setosa
5
                        3.6
                                      1.4
                                                  0.2 Iris-setosa
           5.0
6
           5.4
                        3.9
                                      1.7
                                                  0.4 Iris-setosa
```

```
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "Iris-setosa",..: 1 1 1 1 1 1 1 1 1 1 ...
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100	Iris-setosa :50
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300	Iris-versicolor:50
Median :5.800	Median :3.000	Median :4.350	Median :1.300	Iris-virginica :50
Mean :5.843	Mean :3.054	Mean :3.759	Mean :1.199	
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800	
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500	

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Min. :0.0000	Min. :0.0000	Min. :0.0000	Min. :0.00000
1st Qu.:0.2222	1st Qu.:0.3333	1st Qu.:0.1017	1st Qu.:0.08333
Median :0.4167	Median :0.4167	Median :0.5678	Median :0.50000
Mean :0.4287	Mean :0.4392	Mean :0.4676	Mean :0.45778
3rd Qu.:0.5833	3rd Qu.:0.5417	3rd Qu.:0.6949	3rd Qu.:0.70833
Max. :1.0000	Max. :1.0000	Max. :1.0000	Max. :1.00000

Iris-setosa Iris-versicolor Iris-virginica 50 50 50


[1]	Iris-setosa	Iris-setosa	Iris-setosa	Iris-setosa
[5]	Iris-setosa	Iris-setosa	Iris-setosa	Iris-setosa
[9]	Iris-setosa	Iris-setosa	Iris-setosa	Iris-setosa
[13]	Iris-versicolor	Iris-versicolor	Iris-versicolor	Iris-versicolor
[17]	Iris-versicolor	Iris-versicolor	Iris-versicolor	Iris-versicolor
[21]	Iris-versicolor	Iris-versicolor	Iris-versicolor	Iris-versicolor
[25]	Iris-virginica	Iris-virginica	Iris-virginica	Iris-virginica
[29]	Iris-versicolor	Iris-virginica	Iris-virginica	Iris-virginica
[33]	Iris-virginica	Iris-virginica	Iris-virginica	Iris-virginica
[37]	Iris-virginica	Iris-virginica	Iris-virginica	Iris-virginica
Level	ls: Iris-setosa I	[ris-versicolor]	Iris-virginica	

Cell Contents					
N					
N / Row Total					
N / Col Total					
N / Table Total					

Total Observations in Table: 40

iris.testLabels	iris_model Iris-setosa	Iris-versicolor	Iris-virginica	Row Total
Iris-setosa	12 1.000 1.000 0.300	0.000 0.000 0.000	0.000 0.000 0.000	12 0.300
Iris–versicolor	0.000 0.000 0.000	12 1.000 0.923 0.300	0.000 0.000 0.000 0.000	12 0.300
Iris-virginica	0.000 0.000 0.000	0.062 0.077 0.025	15 0.938 1.000 0.375	16 0.400
Column Total	12 0.300		15 0.375	40

```
\begin{split} &L_1 \leftarrow \{large1 - itemsets\} \\ &k \leftarrow 2 \\ &\textbf{while } L_{k-1} \neq \theta \\ &C_k \leftarrow \left\{a \cup \left\{b\right\} \middle| a \in L_{k-1} \land b \not\in a\right\} - \left\{c \mid \left\{s \mid s \subseteq c \land \mid s \mid = k-1\right\} \not\subset L_{k-1}\right\} \\ &\textbf{for transactions } t \in T \\ &C_t \leftarrow \left\{c \mid c \in C_k \land c \subseteq t\right\} \\ &\textbf{for candidates } c \in C_t \\ &count \left[c\right] \leftarrow count \left[c\right] + 1 \\ &L_k \leftarrow \left\{c \mid c \in C_k \land count \left[c\right] \geq \varepsilon\right\} \\ &k \leftarrow k + 1 \\ &\textbf{return } \bigcup_k L_k \end{split}
```


$$y = f(w_1x_1 + w_2x_2 + ... + w_nx_n + b) = f(w^Tx + b)$$

$$x_2 = x_1 + 1/2$$

$$y = +1$$
, when $x_2 > x_1 + 1/2$
-1 otherwise

$$y = b_0 + b_1 x$$

$$residual_i = y_i - \hat{y}_i$$

 $Sum \ of \ Squares \ of \ residual = SS(residual_i)$

$$SS(residual_i) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Euclidean – distance
$$(p,q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

$$T = \{i_1, i_2, \dots i_n\}$$

and $T \subseteq T$

$$x_{new} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$X \subseteq_{T} Y \subseteq_{T} X \cap Y = \phi$$

Set of n observations:
$$\{x_1, x_2, \dots, x_n\}$$

Set S of partitions:
$$S = \{S_1, S_2 \dots S_k\}$$

 $Objective {\it is to minimize the with-in cluster sum of squares:}$

$$\arg\min_{s} \sum_{x=1}^{k} \sum_{x \in S_{i}} || X - \mu_{i} ||$$

Chapter 3: Predicting Customer Shopping Trends with Market Basket Analysis

A	Α	В	С	D
1	beer	diapers	bread	
2	diapers	eggs		
3	diapers	beer		
4	beer	diapers	eggs	
5	beer	diapers		
6	diapers	milk		
7	milk	bread		
8	diapers	beer	milk	bread
9	beer	diapers	milk	

$$S(IS_n) = \frac{f(IS_n)}{count(\sum_{i=1}^n IS_i)}$$

$$\frac{6}{9}$$

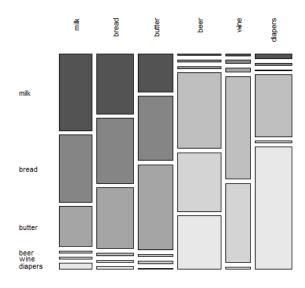
$$S(IS_x \to IS_y) = \frac{f(IS_x \cup IS_y)}{count(\sum_{i=1}^n IS_i)}$$

$$C(IS_x \to IS_y) = \frac{S(IS_x \cup IS_y)}{S(IS_x)}$$

$$C(IS_x \to IS_y) = \frac{f(IS_x \cup IS_y)}{f(IS_x)}$$

$$\frac{6}{6}$$

$$L(IS_x \to IS_y) = \frac{S(IS_x \cup IS_y)}{S(IS_x) \times S(IS_y)}$$


$$\frac{S\Big(\mathit{IS}_{\{\mathit{beer}\}} \cup \mathit{IS}_{\{\mathit{diapers}\}}\Big)}{S\Big(\mathit{IS}_{\{\mathit{beer}\}}\Big) \times S\Big(\mathit{IS}_{\{\mathit{diapers}\}}\Big)}$$

$$\frac{6 \div 9}{(6 \div 9) \times (8 \div 9)}$$

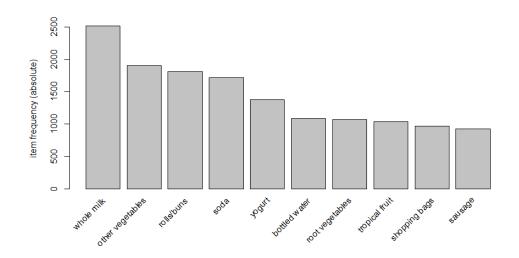
A	Α	В	С	D	Е	F	G
1	Items	milk	bread	butter	beer	wine	diapers
2	milk	10000	8758	5241	300	215	753
3	bread	8758	9562	8865	427	322	353
4	butter	5241	8865	11753	310	447	114
5	beer	300	427	310	12985	10115	9173
6	wine	215	322	447	10115	7825	228
7	diapers	753	353	114	9173	228	18105

	milk	bread	butter	beer	wine	diapers
milk	10000	8758	5241	300	215	753
bread	8758	9562	8865	427	322	353
butter	5241	8865	11753	310	447	114
beer	300	427	310	12985	10115	9173
wine	215	322	447	10115	7825	228
diapers	753	353	114	9173	228	18105

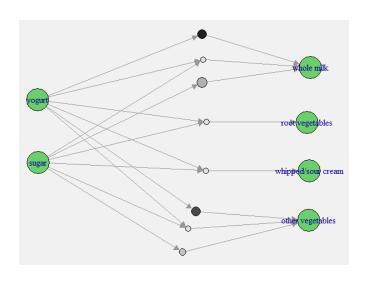
Products Contingency Mosaic Plot

	whole milk	other	vegetables	rolls/buns	soda	yogurt
whole milk	2513		736	557	394	551
other vegetables	736		1903	419	322	427
rolls/buns	557		419	1809	377	338
soda	394		322	377	1715	269
yogurt	551		427	338	269	1372

	whole milk other	vegetables	rolls/buns	soda	yogurt
whole milk	0.25551601	0.07483477	0.05663447	0.04006101	0.05602440
other vegetables	0.07483477	0.19349263	0.04260295	0.03274021	0.04341637
rolls/buns	0.05663447	0.04260295	0.18393493	0.03833249	0.03436706
soda	0.04006101	0.03274021	0.03833249	0.17437722	0.02735130
vogurt	0.05602440	0.04341637	0.03436706	0.02735130	0.13950178


	whole milk	other vegetables	rolls/buns	soda	yogurt
whole milk	NA	_	1.205032		1.571735
other vegetables	1.5136341	NA	1.197047	0.9703476	1.608457
rolls/buns	1.2050318	1.1970465	NA	1.1951242	1.339363
soda	0.8991124	0.9703476	1.195124	NA	1.124368
yogurt	1.5717351	1.6084566	1.339363	1.1243678	NA

Item Association Matrix						
	{beer, bread}	{beer, diapers}	{beer, milk}	{bread, diapers}	{bread, milk}	{diapers, milk}
{beer, diapers, bread}	1	1	NA	1	NA	NA
{diapers, eggs}	NA	NA	NA	NA	NA	NA
{diapers, beer}	NA	1	NA	NA	NA	NA
{beer, diapers, eggs}	NA	1	NA	NA	NA	NA
{beer, diapers}	NA	1	NA	NA	NA	NA
{diapers, milk}	NA	NA	NA	NA	NA	1
{milk, bread}	NA	NA	NA	NA	1	NA
{diapers, beer, milk, bread}	1	1	1	1	1	1
{beer, diapers, milk}	NA	1	1	NA	NA	1

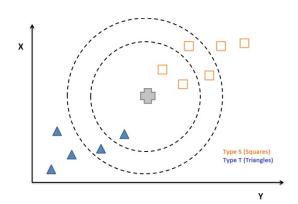

	Itemset	Frequency	Support
1	{beer, diapers}	6	66.67
2	{diapers, milk}	3	33.33
3	{beer, bread}	2	22.22
4	{beer, milk}	2	22.22
5	{bread, diapers}	2	22.22
6	{bread, milk}	2	22.22

	Itemset	Frequency	Support
1	{beer, bread, diapers}	2	22.22
2	{beer, diapers, milk}	2	22.22

yogurt	soda	rolls/buns	other vegetables	whole milk
1372	1715	1809	1903	2513
sausage	shopping bags	tropical fruit	root vegetables	bottled water
924	969	1032	1072	1087


```
lhs
                                      support confidence lift
                              rhs
                          => {whole milk} 0.001118454 0.7333333 2.870009
1 {honey}
2 {tidbits}
                          => {rolls/buns} 0.001220132 0.5217391 2.836542
3 {cocoa drinks}
                        => {whole milk} 0.001321810 0.5909091 2.312611
4 {pudding powder} => {whole milk} 0.001321810 0.5652174 2.212062
5 {cooking chocolate} => {whole milk} 0.001321810 0.5200000 2.035097
                                                                  confidence lift
    lhs
                                             rhs
                                                         support
113 {rice, sugar}
                                           => {whole milk} 0.001220132 1 3.913649
258 {canned fish, hygiene articles}
                                          => {whole milk} 0.001118454 1
                                                                              3.913649
1487 {root vegetables, butter, rice}
                                          => {whole milk} 0.001016777 1
1646 {root vegetables, whipped/sour cream, flour} => {whole milk} 0.001728521 1
1670 {butter, soft cheese, domestic eggs}
                                       => {whole milk} 0.001016777 1
                                                                  confidence lift
                                                      support
53 {Instant food products, soda}
                                   => {hamburger meat} 0.001220132 0.6315789 18.99565
37 {soda,popcorn}
444 {flour,baking powder}
                                  => {salty snack} 0.001220132 0.6315789 16.69779
444 {flour,baking powder} => {sugar} 0.001016777 0.5555556 16.40807 327 {ham,processed cheese} => {white bread} 0.001931876 0.6333333 15.04549 330 {processed cheese,domestic eggs} => {white bread} 0.001118454 0.5238095 12.44364
                                                              confidence lift
     lhs
                                            rhs support
  12 {coffee,misc. beverages}
                                         => {soda} 0.001016777 0.7692308 4.411303
  37 {sausage,bottled water,bottled beer} => {soda} 0.001118454 0.7333333 4.205442
  29 {sausage, white bread, shopping bags} => {soda} 0.001016777 0.66666667 3.823129
  34 {rolls/buns,bottled water,chocolate} => {soda} 0.001321810 0.6500000 3.727551
13 {pastry,misc. beverages} => {soda} 0.001220132 0.6315789 3.621912
  13 {pastry,misc. beverages}
                                                           confidence lift
                                              support
 8 {yogurt, sugar} => {whole milk}
                                             0.003660397 0.5294118 2.071932
 2 {sugar} => {whole milk} 0.00566039/ 0.5254116 2.071932
 7 {yogurt,sugar} => {other vegetables} 0.002846975 0.4117647 2.128064
 4 {yogurt} => {whole milk} 0.056024403 0.4016035 1.571735
                   => {other vegetables} 0.010777834 0.3183183 1.645119
 1 {sugar}
```


Chapter 4: Building a Product Recommendation System


	Dell Inspiron	Mac Book Air	Acer Aspire	Alienware MX101	Mac Book Pro	Dell Vostro
User 1	?	5	2	?	4	1
User 2	4	?	3	?	1	4
User 3	3	?	?	5	4	3

 \subseteq

$$p_{ui} = \overline{r_u} + \frac{\sum_{u' \in N} s(u, u')(r_{u'i} - \overline{r_u})}{\sum_{u' \in N} |s(u, u')|}$$

 $\overline{r_u}$

u'

$$s(u,v) = \frac{r_u . r_v}{\|r_u\|_2 \|r_v\|_2}$$

$$||r_u||_2$$

$$||r_v||_2$$

	iPhone.4 [‡]	iPhone.5S ‡	Nexus.5 ‡	Moto.X ‡	Moto.G ‡	Nexus.6 [‡]	One.Plus.One $^{\diamondsuit}$
1	5	5	1	0	0	0	1
2	1	1	4	0	4	5	0
3	1	0	4	0	0	4	5
4	0	1	4	0	0	5	4
5	5	5	0	0	1	0	1
6	1	0	4	0	0	5	4
7	1	1	0	5	4	4	0
8	0	5	1	0	1	0	1

$$\hat{r}_{ij}$$

$$\hat{r}_{ij} = x_i^T \cdot y_i$$

$$= \sum_{k=1}^K x_{ik} \cdot y_{kj}$$

$$e_{ij}^{2} = (r_{ij} - \hat{r}_{ij})^{2}$$

$$= \left(r_{ij} - \sum_{k=1}^{K} x_{ik} \cdot y_{kj}\right)^{2}$$

$$\frac{\partial \varepsilon_{ij}^2}{\partial x_{ik}} = -2(r_{ij} - \hat{r}_{ij}) \cdot y_{kj}$$

$$= -2e_{ij}y_{kj}$$

$$\frac{\partial \varepsilon_{ij}^2}{\partial y_{ik}} = -2(r_{ij} - \hat{r}_{ij}) \cdot x_{ik}$$

$$= -2e_{ij}x_{ik}$$

$$x'_{ik} = x_{ik} + \alpha \frac{\partial e_{ij}^{2}}{\partial x_{ik}}$$

$$= x_{ik} + 2\alpha e_{ij} y_{kj}$$

$$y'_{kj} = y_{kj} + \alpha \frac{\partial e_{ij}^{2}}{\partial y_{ik}}$$

$$= y_{kj} + 2\alpha e_{ij} x_{ik}$$

$$x'_{ik}$$

$$y'_{kj}$$

$$e_{ij}^{2} = \left(r_{ij} - \sum_{k=1}^{K} x_{ik} \cdot y_{kj}\right)^{2} + \frac{\beta}{2} \sum_{k=1}^{K} (||X||^{2} + ||Y||^{2})$$

$$x'_{ik} = x_{ik} + \alpha \frac{\partial e_{ik}^2}{\partial x_{ik}}$$
$$= x_{ik} + 2\alpha e_{ij} y_{kj} - \beta x_{ik}$$

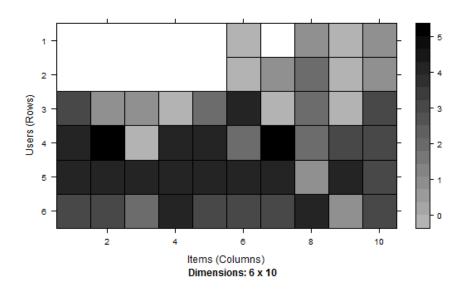
$$y'_{kj} = y_{kj} + \alpha \frac{\partial e_{ij}^2}{\partial y_{ik}}$$
$$= y_{kj} + 2\alpha e_{ij} x_{ik} - \beta y_{kj}$$

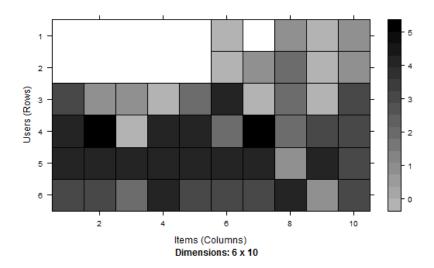
	iPhone.4 ‡	iPhone.5s ‡	Nexus.5 ‡	$\mathbf{Moto.X}\ ^{\Diamond}$	Moto.G $^{\scriptsize \scriptsize $	Nexus.6 ‡	One.Plus.One $^{\Diamond}$
1	4.97	4.99	1.00	3.41	1.01	2.05	0.99
2	1.06	0.99	4.03	5.58	4.20	4.74	4.38
3	0.87	0.80	3.97	5.43	4.14	4.64	4.32
4	1.13	1.06	3.97	5.53	4.14	4.69	4.31
5	4.97	4.99	1.00	3.41	1.00	2.05	0.99
6	1.06	1.00	3.97	5.51	4.14	4.68	4.32
7	1.01	0.95	3.58	4.98	3.73	4.22	3.88
8	4.94	4.96	1.00	3.39	1.00	2.04	0.99

iPhone.4	5
iPhone.5S	5
Nexus.5	1
Moto.X	0
Moto.G	0
Nexus.6	0
One.Plus.One	1

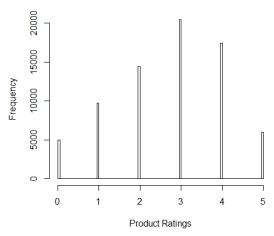
iPhone.5s	4.99
iPhone.4	4.97
Moto.X	3.41
Nexus.6	2.05
Moto.G	1.01
Nexus.5	1.00
One.Plus.One	0.99

(a) Actual Ratings

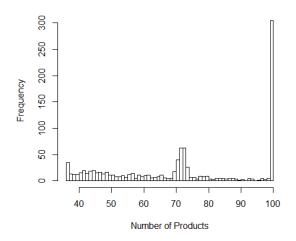

(b) Predicted Ratings


iPhone.4	1	iPhone.4	0.87
iPhone.5S	0	iPhone.5s	0.80
Nexus.5	4	Nexus.5	3.97
Moto.X	0	Moto.X	5.43
Moto.G	0	Moto.G	4.14
Nexus.6	4	Nexus.6	4.64
One.Plus.One	5	One.Plus.One	4.32

(a) Actual Ratings


(b) Predicted Ratings

	UserID ‡	Product ‡	Ratings ‡
1	u10005	prod_5	0
2	u10005	prod_7	0
3	u10005	prod_8	1
4	u10005	prod_13	0
5	u10005	prod_15	1
6	u10005	prod_16	0



Histogram of Product Count Distribution

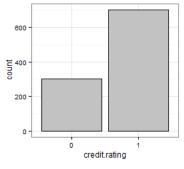
RMSE MSE MAE 1.1628422 1.3522021 0.9099283

RMSE MSE MAE
User Based CF 1.162842 1.352202 0.9099283
Item Based CF 1.221485 1.492025 0.9324538

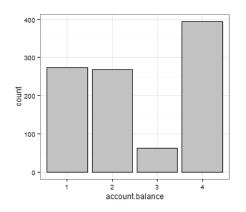
 $r_{ij} = k$, if user has rated the item; where k = 1 to n0, otherwise

$$N \subset U$$

 $R = U \times P^T$ (we take transpose of P as P^T for matrix multiplication) where, $|R| = |U| \times |P|$


$$X = |U| \times K matrix$$
$$Y = |P| \times K matrix$$

$$\begin{split} E &= \sum \left(u_i, p_j, r_{ij}\right) \in S \, e_{ij} \\ &= \sum \left(u_i, p_j, r_{ij}\right) \in S \left(r_{ij} - \sum_{k=1}^K x_{ik} y_{kj}\right)^2 \end{split}$$


Chapter 5: Credit Risk Detection and Prediction - Descriptive Analytics

```
'data.frame': 1000 obs. of 21 variables:
$ credit.rating
                  : int 1 1 1 1 1 1 1 1 1 1 1 ...
: int 1 1 2 1 1 1 1 1 4 2 ...
$ account.balance
$ credit.duration.months
                              : int 18 9 12 12 12 10 8 6 18 24 ...
$ previous.credit.payment.status: int 4 4 2 4 4 4 4 4 2 ...
$ credit.purpose : int 2 0 9 0 0 0 0 3 3 ...
                              : int 1049 2799 841 2122 2171 2241 3398..
$ credit.amount
                              : int 1 1 2 1 1 1 1 1 1 3 ...
$ savings
                             : int 2 3 4 3 3 2 4 2 1 1 ...
: int 4 2 2 3 4 1 1 2 4 1 ...
$ employment.duration
$ installment.rate
                              : int 2 3 2 3 3 3 3 3 2 2 ...
S marital.status
$ quarantor
                              : int 111111111...
$ residence.duration
                              : int 4 2 4 2 4 3 4 4 4 4 ...
                              : int 2 1 1 1 2 1 1 1 3 4 ...
$ current.assets
                             : int 21 36 23 39 38 48 39 40 65 23 ...
: int 3 3 3 3 1 3 3 3 3 3 ...
$ age
S other.credits
                             : int 1 1 1 1 2 1 2 2 2 1 2 1 ...
: int 1 2 1 2 2 2 2 1 2 1 ...
$ apartment.type
$ bank.credits
$ occupation
                              : int 3 3 2 2 2 2 2 2 1 1 ...
$ dependents
                              : int 1212121211...
$ telephone
                              : int
                                     1111111111...
$ foreign.worker
                              : int 1 1 1 2 2 2 2 2 1 1 ...
1000 obs. of 21 variables:
 'data.frame':
```

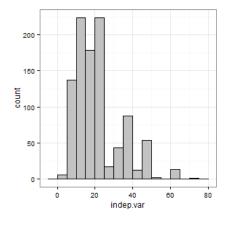
	credit.rating	Frequency	Proportion
2	1	700	0.7
1	0	300	0.3

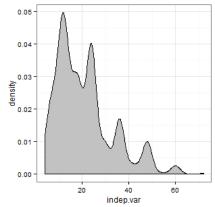
	account.balance	Frequency	Proportion
4	4	394	0.394
1	1	274	0.274
2	2	269	0.269
3	3	63	0.063

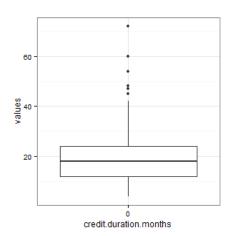
1	indep.var			
dep.var	1	2] 3	Row Total
0	135 0.5	105	60 0.1	300
1	139 0.5	164	397	700
Column Total	274 0.3	269	457 0.5	1000

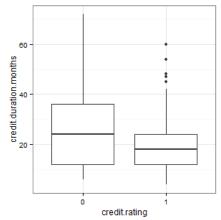
Statistics for All Table Factors

Pearson's Chi-squared test

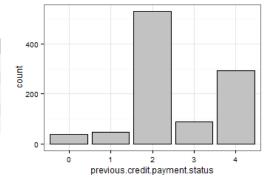

Chi^2 = 120.8438 d.f. = 2 p = 5.742621e-27

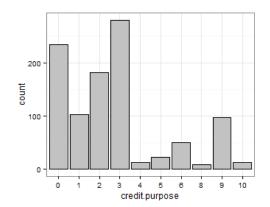

Fisher's Exact Test for Count Data


Alternative hypothesis: two.sided
p = 3.400743e-28

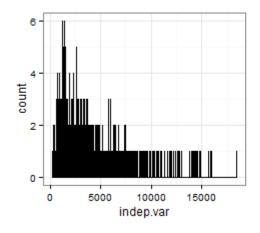

	Contingency table plot						
		0	1				
var	-						
indep.var	2						
	6						
			dep.var				

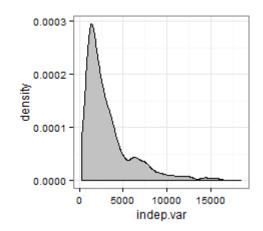
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
credit.duration.months	4	12	18	20.9	24	72

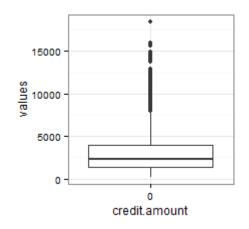


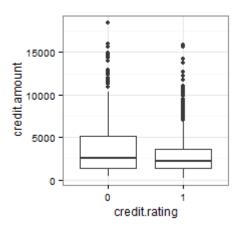

	previous.credit.payment.status	Frequency	Proportion
3	2	530	0.530
5	4	293	0.293
4	3	88	0.088
2	1	49	0.049
1	0	40	0.040

Total Observations in Table: 1000


1	indep.var			
dep.var	1	2	3	Row Total
0	53	169	78	300
I	0.6	0.3	0.2	1
1	36	361	303	700
I	0.4	0.7	0.8	l I
Column Total	89	530	381	1000
1	0.1	0.5	0.4	1


	credit.purpose	Frequency	Proportion
5	3	280	0.280
1	0	234	0.234
4	2	181	0.181
2	1	103	0.103
10	9	97	0.097
8	6	50	0.050
7	5	22	0.022
3	10	12	0.012
6	4	12	0.012
9	8	9	0.009




	indep.var				
dep.var	1	2	3		Row Total
0	17	58	96	129	300
	0.2	0.3	0.3	0.4	1
1	86	123	268	223	700
	0.8	0.7	0.7	0.6	1
Column Total	103	181	364	352	1000
	0.1	0.2	0.4	0.4	1

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
credit.amount	250	1370	2320	3270	3970	18400

dep.var	indep.var 1] 2	3		Row Total
0	217	34		32	300
1	386 0.6	•	94		700
Column Total	603 0.6	103	111	183	

dep.var	indep.var 1	2	3	4	Row Total
0	93	104 0.3	39 0.2	64 0.3	300
1	141	235 0.7	135 0.8	189 0.7	700
Column Total	234	339 0.3	174 0.2	253 0.3	1000

indep.var					
1	2	3	4	Row Total	
34	62 0.3	45 0.3	159 0.3	300	
102	169 0.7	112	317 0.7	700	
136 0.1	231 0.2	157	476 0.5	1000	
	1 34 0.2 102 0.8 136	1 2 	1 2 3 45 45 45 45 45 45 4	1 2 3 4 1 159 1 159 1 100 1 10	1 2 3 4 Row Total

Statistics for All Table Factors

Pearson's Chi-squared test

 $Chi^2 = 5.5$ d.f. = 3 p = 0.14

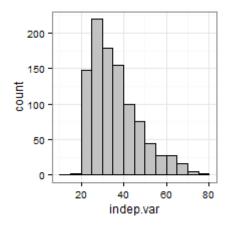
Fisher's Exact Test for Count Data

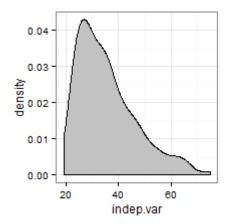
Alternative hypothesis: two.sided

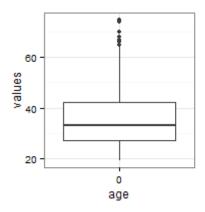
p = 0.15

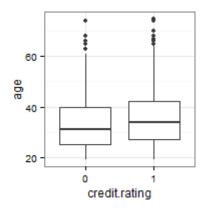
I	indep.var			
dep.var	1	2	3	Row Total
0	129	146	25	300
I	0.4	0.3	0.3	I I
1	231	402	67	700
I	0.6	0.7	0.7	l I
Column Total	360	548	92	1000
I	0.4	0.5	0.1	l I

Fisher's Exact Test for Count Data

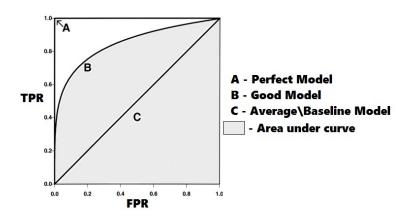

Pearson's Chi-squared test


data: credit.rating and residence.duration p-value = 0.9


alternative hypothesis: two.sided


data: credit.rating and residence.duration X-squared = 0.7, df = 3, p-value = 0.9

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
age	19	27	33	35.5	42	75



Chapter 6: Credit Risk Detection and Prediction - Predictive Analytics

		Actual Labels	
Predicted Labels		0	1
	0	22	20
	1	18	40
Specificity (TNR):		22 / 40 = 0.55	
Sensitivity (TPR):		40 / 60 = 0.67	
Precision (PPV):		40 / 58 = 0.69	
NPV:		22 / 42 = 0.52	
FPR (1-Specificity):		18 / 40 = 0.45	
FNR (1- Sensitivity):		20 / 60 = 0.33	
Accuracy:		62 / 100 = 0.62	
F1 Score:		80 / 118 = 0.68	

Outer resampling method: Cross-Validated (20 fold)

Resampling performance over subset size:

Variables Accuracy Kappa AccuracySD KappaSD Selected

1 0.7167 0.0000 0.01565 0.0000
2 0.7584 0.2892 0.06599 0.2042
3 0.7485 0.2467 0.06253 0.2006
4 0.7551 0.3538 0.07602 0.1877
5 0.7838 0.4382 0.07132 0.1712
6 0.7869 0.4297 0.06066 0.1551
7 0.7768 0.3915 0.04241 0.1220
8 0.7860 0.4047 0.03559 0.1163
9 0.7801 0.3997 0.05498 0.1517
10 0.7869 0.4170 0.05725 0.1665 *
20 0.7567 0.2858 0.05634 0.1856

The top 5 variables (out of 10): account.balance, credit.duration.months, savings, previous.credit.payment.status, credit.amount

```
Call:
glm(formula = formula.init, family = "binomial", data = train.data)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.6551 -0.5141 0.3187 0.6335 2.1838

Coefficients:

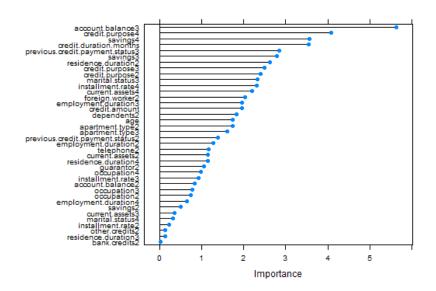
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.156837	1.073803	0.146	0.883876	
account.balance2	0.246170	0.291234	0.845	0.397963	
account.balance3	1.678654	0.298253	5.628	1.82e-08	***
credit.duration.months	-0.545377	0.153737	-3.547	0.000389	***
previous.credit.payment.status2	0.588709	0.420863	1.399	0.161869	
previous.credit.payment.status3	1.225405	0.431435	2.840	0.004507	**

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 62 45 1 68 225

Accuracy: 0.7175


95% CI : (0.6706, 0.7611)

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.03788

Kappa : 0.3252

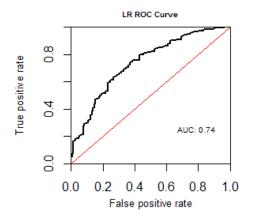
Mcnemar's Test P-Value: 0.03849

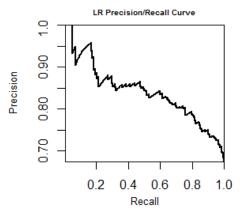
'Positive' Class : 1

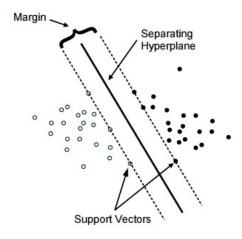
Reference

on 0 1 0 35 16 Prediction 1 95 254

Accuracy: 0.7225 95% CI: (0.6758, 0.7658)


No Information Rate : 0.675 P-Value [Acc > NIR] : 0.02302


Kappa : 0.2492 Mcnemar's Test P-Value : 1.327e-13


Sensitivity: 0.9407 Specificity: 0.2692 Pos Pred Value : 0.7278 Neg Pred Value : 0.6863 Prevalence: 0.6750 Detection Rate : 0.6350

Detection Prevalence: 0.8725 Balanced Accuracy: 0.6050

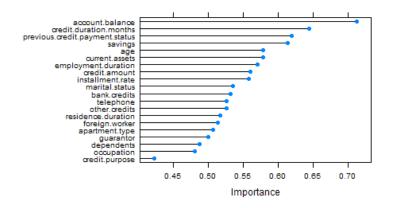
'Positive' Class : 1

Call: svm(formula = formula.init, data = train.data, kernel = "radial", cost = 100, gamma = 1) Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 100 gamma: 1 Number of Support Vectors: 600 (430 170) Number of Classes: 2 Levels: 0 1

Confusion Matrix and Statistics

Reference
Prediction 0 1
0 0 0
1 130 270

Accuracy: 0.675 95% CI: (0.6267, 0.7207)


No Information Rate : 0.675 P-Value [Acc > NIR] : 0.5238

Kappa : 0

Mcnemar's Test P-Value : <2e-16
Sensitivity : 1.000

Detection Prevalence : 1.000 Balanced Accuracy : 0.500

'Positive' Class : 1

Reference Prediction 0 1 0 49 53 1 81 217

Accuracy: 0.665

95% CI: (0.6164, 0.7111)

No Information Rate: 0.675 P-Value [Acc > NIR] : 0.68620

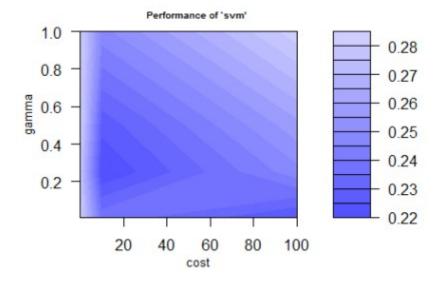
Kappa : 0.1913

Mcnemar's Test P-Value : 0.01968

Sensitivity: 0.8037 Specificity: 0.3769 Pos Pred Value : 0.7282 Neg Pred Value : 0.4804 Prevalence: 0.6750

Detection Rate: 0.5425 Detection Prevalence: 0.7450 Balanced Accuracy: 0.5903

'Positive' Class : 1


Parameter tuning of 'svm':

- sampling method: 10-fold cross validation
- best parameters:

cost gamma

10 0.25

- best performance: 0.22

Reference

Prediction 0 1 0 53 38 1 77 232

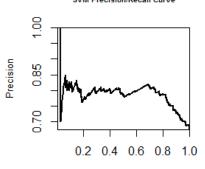
Accuracy: 0.7125

95% CI: (0.6654, 0.7564)

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.0596891

Kappa : 0.2895

Mcnemar's Test P-Value: 0.0003948


Sensitivity: 0.8593 Specificity: 0.4077

SVM ROC Curve

Auc: 0.69 0.0 0.2 0.4 0.6 0.8 1.0

SVM Precision/Recall Curve

Recall

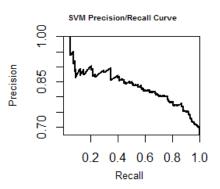
False positive rate

Reference

Prediction X0 X1 X0 52 33 X1 78 237

Accuracy: 0.7225

95% CI: (0.6758, 0.7658)

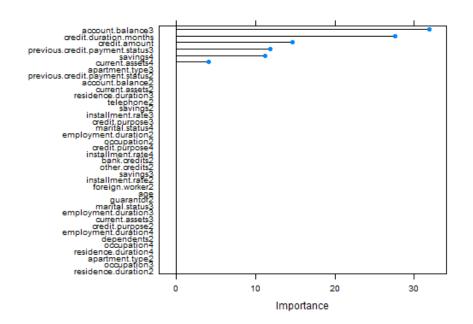

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.02302

Kappa : 0.3052

Mcnemar's Test P-Value : 2.963e-05

Sensitivity: 0.8778 Specificity: 0.4000

Reference Prediction 0 1 0 23 22 1 107 248


Accuracy: 0.6775

95% CI: (0.6293, 0.7231)

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.4812

Kappa : 0.1149

Mcnemar's Test P-Value : 1.406e-13 Sensitivity : 0.9185 Specificity : 0.1769

Reference

Prediction 0 1 0 100 121 1 30 149

Accuracy: 0.6225

95% CI: (0.573, 0.6702)

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.9884

Kappa : 0.2718

Mcnemar's Test P-Value : 2.405e-13

Sensitivity: 0.5519 Specificity: 0.7692

Reference

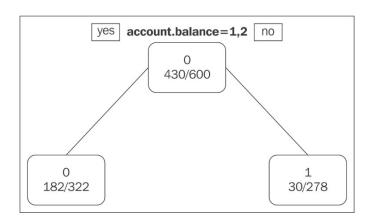
Prediction 0 1 0 23 22 1 107 248

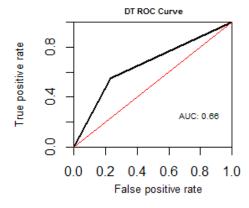
Accuracy: 0.6775

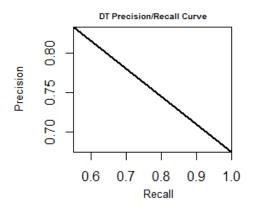
95% CI: (0.6293, 0.7231)

No Information Rate : 0.675 P-Value [Acc > NIR] : 0.4812

Kappa : 0.1149


Mcnemar's Test P-Value : 1.406e-13


Sensitivity: 0.9185 Specificity: 0.1769


n = 600

node), split, n, loss, yval, (yprob)
 * denotes terminal node

- 1) root 600 180.00000 0 (0.7000000 0.3000000)
 - 2) account.balance=1,2 322 76.18605 0 (0.8194936 0.1805064) *
 - 3) account.balance=3 278 74.11765 1 (0.4165513 0.5834487) *

No. of variables tried at each split: 4 OOB estimate of error rate: 23.67%

Confusion matrix:

0 1 class.error 0 61 109 0.64117647 1 33 397 0.07674419

Reference

Prediction 0 1 0 47 24 1 83 246

Accuracy: 0.7325

95% CI: (0.6863, 0.7753)

No Information Rate: 0.675 P-Value [Acc > NIR] : 0.007434

Kappa : 0.309

Mcnemar's Test P-Value : 2.058e-08 Sensitivity: 0.9111

Specificity: 0.3615

Reference

Prediction 0 1 0 55 42 1 75 228

Accuracy: 0.7075

95% CI: (0.6602, 0.7517)

No Information Rate: 0.675 P-Value [Acc > NIR] : 0.090176

Kappa: 0.2864

Mcnemar's Test P-Value: 0.003092 Sensitivity: 0.8444

Specificity: 0.4231

Parameter tuning of 'randomForest':

- sampling method: 10-fold cross validation
- best parameters: nodesize mtry ntree

5 3 500

- best performance: 0.215

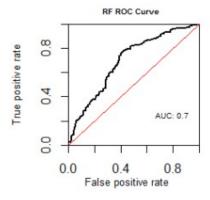
Reference

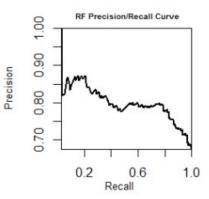
Prediction 0 1

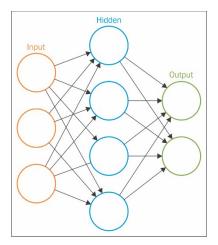
0 55 41

1 75 229

Accuracy: 0.71


95% CI: (0.6628, 0.754)


No Information Rate : 0.675 P-Value [Acc > NIR] : 0.073747


Kappa : 0.291

Mcnemar's Test P-Value : 0.002184

Sensitivity: 0.8481 Specificity: 0.4231

$$\frac{TN}{FP+TN}$$

$$\frac{TP}{FN + TP}$$

$$\frac{TP}{FP + TP}$$

$$\frac{TN}{FN+TN}$$

$$\frac{FP}{FP+TN}$$

$$\frac{FN}{TP+FN}$$

$$\frac{TP+TN}{P+N}$$

$$\frac{2TP}{2TP+FP+FN}$$

$$e_{i}$$

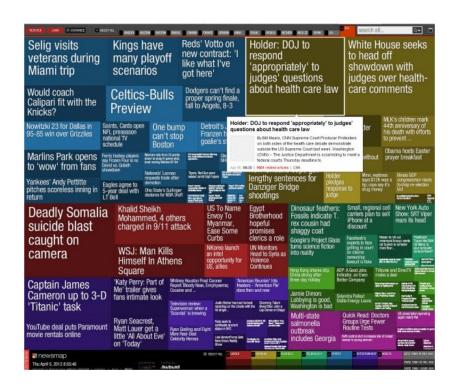
$$Znorm(e_i) = \frac{e_i - \overline{E}}{\sigma(E)}$$

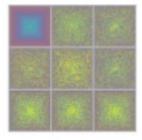
 $\sigma(E)$

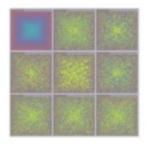
Chapter 7: Social Media Analysis - Analyzing Twitter Data

President Obama @POTUS · 26 Dec 2015

From the Obama family to yours, Merry Christmas! And a special thank you to all our men and women in uniform this holiday season.




1.3 8.2K


₩ 30K

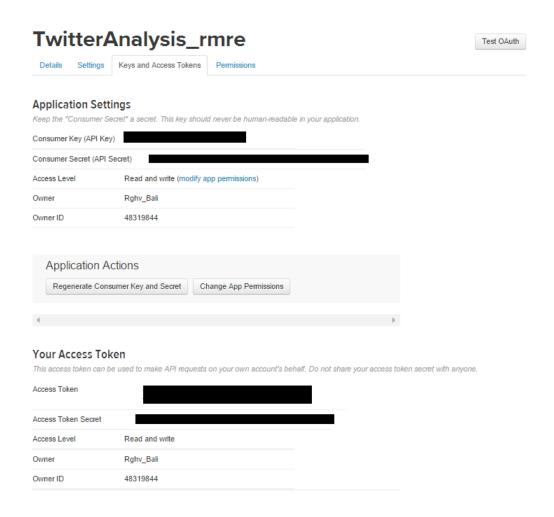

...

TwitterAnalysis_rmre Details Settings Keys and Access Tokens Permissions Permissions

Twitter Analysis App for R Machine Learning by Example Chapter 7-8

https://www.packtpub.com/big-data-and-business-intelligence/r-machine-learning-example

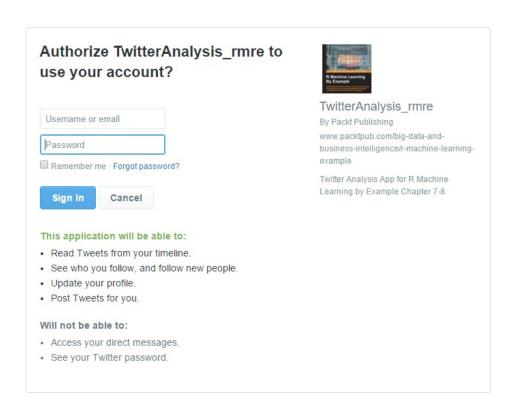
Organization

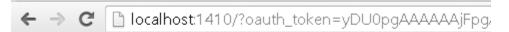

Information about the organization or company associated with your application. This information is optional

Organization Packt Publishing
Organization website https://www.packtpub.com

Application Settings

Your application's Consumer Key and Secret are used to authenticate requests to the Twitter Platform


Access level Read and write (modify app permissions)



[1] "Using browser based authentication"
Use a local file to cache OAuth access credentials between R sessions?
1: Yes

2: No

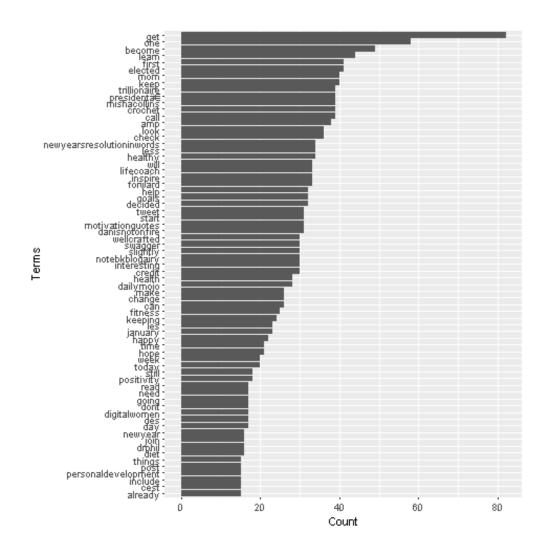
Selection: |

Authentication complete. Please close this page and return to R.

[[1]]
[1] "jack: \xed�\xed�\u0099@KillerMike Represents @BernieSanders in Post-Debate Spin Room /@pitchfork https://t.co/60sdEhZ18f"

[[2]]
[1] "jack: The @NBA goes all-in for MLK Day tribute with impact /@USATODAY https://t.co/SF068gs fuk"

[[3]] [1] "jack: \"The time is always right to do what's right.\" https://t.co/v0fIveLpY8"


```
> # get tweet attributes
> tweets[[1]]$getClass()
Reference Class "status":
                                                                               favorited favoriteCount
                                  text
character
                                                                                                                                                                      replyToSN
character
                                                                                                                                                                                                                                                             truncated
logical
                                                                                                                                                                                                                                                                                                     replyToSID
character
 Name:
                                                                                                                                                                                                                        created
 class:
                                                                                      logical
                                                                                                                                                                                                                        POSIXCT
 Name:
Class:
                                replyToUID statusSource
character character
                                                                                                                                                            retweetCount
numeric
                                                                                                                                                                                                                  isRetweet
logical
                                                                                                                                                                                                                                                             retweeted
logical
                                                                                                                                                                                                                                                                                                         longitude
character
                                                                                                                        screenName
                                                                                                                                                                                                                                                                                                                                                       latitude
                                                                                                                                                                                                                                                                                                                                                     character
                                                                                                                           character
                              urls
data.frame
 class:
Class Methods:
    "setUrls", "getRetweets", "getRefClass", "getUrls", "setTruncated", "setText", "getReplyToSID", "getText", "export",
    "setCreated", "setFavoriteCount", "getCreated", "initialize", "callSuper", "getRetweeters", "initfields", "getClass",
    "setReplyToUID", "import", "setLatitude", "setIsRetweet", "getFavoriteCount", "getRetweetCount", "getIsRetweet", "setId",
    "setScreenName", "getLatitude", "getScreenName", "toDataFrame#twitterobj", "setRetweetCount", "setReplyToSID", "getId",
    "getReplyToUID", "setFavorited", "getRetweeted", "getFavorited", "toDataFrame", "setStatusSource", "setReplyToSN", "copy",
    "usingMethods", "setRetweeted", "field", ".objectParent", "getTruncated", "untrace", "trace", "setLongitude",
    "getLongitude", "getStatusSource", ".objectPackage", "getReplyToSN", "show"
 Reference Superclasses:
"twitterObj", "envRefClass"
> # get retweets count
> tweets[[1]]$retweetcount
[1] 21
> # get favourite count
> tweets[[1]]$favoritecount
[1] 47
```

TD1:	I tweet all the time!			
TD2:	I rarely tweet.			
	TD1	TD2		
tweet	1	1		
all	1	0		
time	1	0		
rarely	0	1		

> which(app]	y(twtrTermDocMatri	ix,1,sum])>=30)
--------------	--------------------	-----------	--------

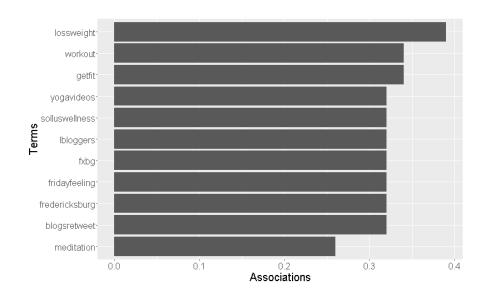
amp	check	credit
66	297	406
dailymojo	get	healthy
425	710	806
inspire	keep	less
901	962	1005
lifecoach	look	motivationquotes
1014	1042	1182
newyearsresolutioninwords	notebkblogairy	one
1229	1246	1281
positivity	swagger	
1417	1807	

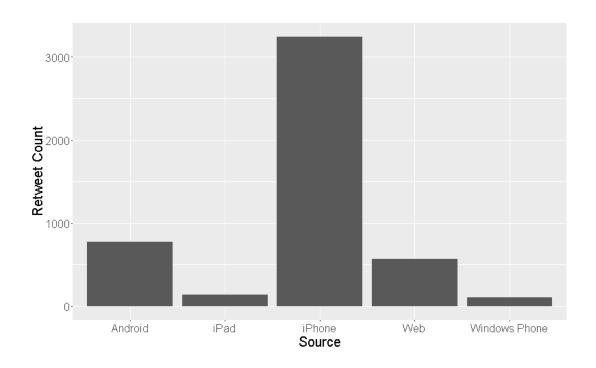
```
amp"
                                                                                                             "book"
                                                                                                              "ca11"
                                                                                                             "change"
                                                                                                             "crochet"
                                                                                                             "dailyquote"
  [19] "danisnotonfire"
[22] "des"
                                                            "day"
                                                                                                             "decided"
 [22] "des"
[25] "dont"
[28] "faith"
[31] "first"
[34] "get"
[37] "goals"
[40] "gym"
[43] "health"
[46] "help"
[49] "include"
[52] "interesting"
[55] "just"
[58] "language"
[61] "les"
[64] "like"
[67] "mishacollins"
                                                            "diet"
                                                                                                             "digitalwomen"
"end"
                                                            "elected"
                                                                                                             "find"
                                                            "femticdev"
                                                            "fitness"
"give"
                                                                                                             "forward"
"goal"
                                                                                                             "golf"
"happy"
                                                            "going"
"habit"
                                                                                                             nappy
"healthyliving"
"horizons"
"inspire"
"join"
"keeping"
                                                            "healthy"
                                                            "hope"
                                                            nope
"infographic"
"january"
"keep"
"learn"
                                                                                                             "learning"
"lifecoach"
                                                            "less"
"look"
                                                                                                             "make"
                                                                                                             "mosalingua"
                                                            "mom"
  [70] "motivation"
[73] "need"
                                                            "motivationquotes"
                                                                                                             "narechh
                                                            "networking
                                                                                                             "newyear"
  [76] "newyearsresolutioninwords"
[79] "nous"
                                                            "noellbernard"
                                                                                                             "notebkblogairy"
                                                            "one"
                                                                                                             "personaldévelopment"
  [82] "positivity"
[85] "que"
                                                            "post"
"slightly"
"still"
                                                                                                             "presidentâ€"
"start"
[85] que
[88] "started"
[91] "swagger"
[94] "tips"
[97] "try"
[100] "vos"
                                                                                                             "success"
"time"
                                                            "things"
                                                            "today"
"tweet"
                                                                                                             "trillionaire"
"via"
                                                            "way"
"wellcrafted"
                                                                                                             "weareshapr"
"will"
[100] V05
[103] "week'
[106] "win"
                                                            "work"
```

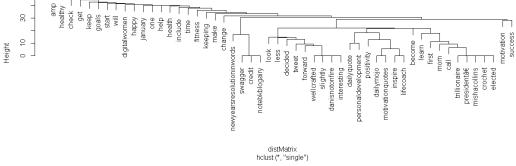

need vos des health wellcrafted week acabaron des with mom danisnotonfire day des still a moment of the week acabaron danisnotonfire day des still a moment of the week acabaron danisnotonfire day danished danisnotonfire day danished dani

> head(subset(trendingTweets.df\$text, grepl("trillionaire",trendingTweets.df\$text)),n=1)
[1] "RT @mishacollins: my #ResolutionsFor2016: 1-call my mom more. 2-learn to crochet. 3-Become the first trillionaire. 4-Get elected President.…"

Misha Collins @mishacollins · 1 Jan 2016


my #ResolutionsFor2016: 1-call my mom more. 2-learn to crochet. 3-Become the first trillionaire. 4-Get elected President. What are yours?




\$fitness		•	•		
lossweight	getfit	workout	blogsretweet	fredericksburg	fridayfeeling
0.39	0.34	0.34	0.32	0.32	0.32
fxbg	lbloggers	solluswellness	yogavideos	meditation	
0.32	0.32	0.32	0.32	0.26	

Cluster Dendrogram

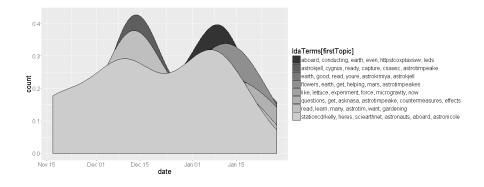
"A topic is a recurring pattern of cooccurring words." now we know what we've been talking about today. #dhtopic

```
Topic 1

"like, lettuce, experiment, force, microgravity, now"
Topic 2

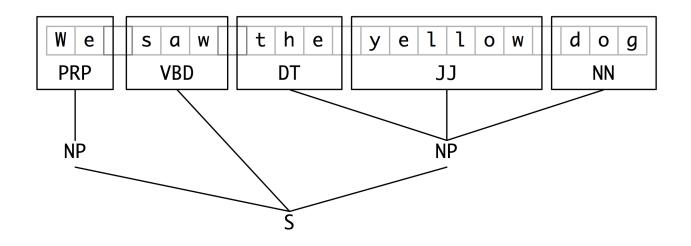
"flowers, earth, get, helping, mars, astrotimpeakes"
Topic 3

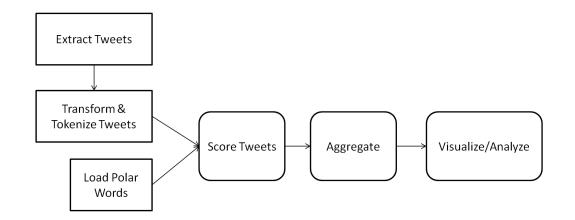
"questions, get, asknasa, astrotimpeake, countermeasures, effects"
Topic 4

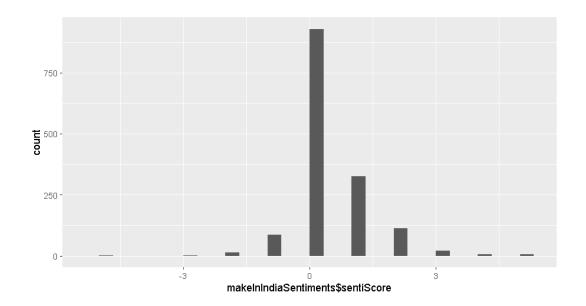

"aboard, conducting, earth, even, httpstcoxptaxswv, leds"
Topic 5

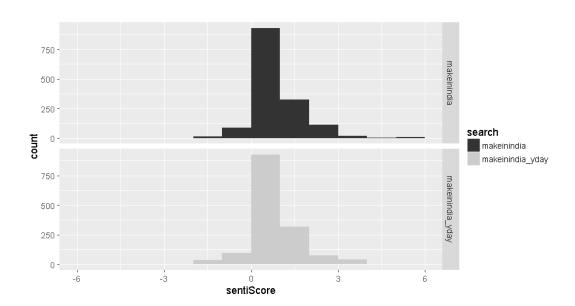
"earth, good, read, youre, astrokimiya, astrokjell"
Topic 6

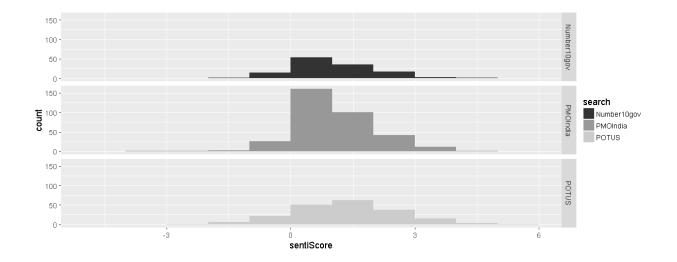
"astrokjell, cygnus, ready, capture, csaasc, astrotimpeake"
Topic 7


"stationcdrkelly, heres, sciearthnet, astronauts, aboard, astronicole"
Topic 8


"read, learn, many, astrotim, want, gardening"
```




Chapter 8: Sentiment Analysis of Twitter Data


Document A		Document B	
Term	Frequency	Term	Frequency
Twitter	3	I	3
internet	2	is	1
text	1	social	1
is	1	network	2

polarity	id	tweet_date	search qu	username	tweettext
4	12	Mon May 11 03:29:20 UTC 2009	obama	mandanicole	how can you not love Obama? he makes jokes about himself.
2	13	Mon May 11 03:32:42 UTC 2009	obama	jpeb	Check this video out President Obama at the White House Correspondents' Dinner http://bit.ly/IMXUM
	1.7	Mon May 11 03:32:48 LITC 2009	ohama	Lylocollors	@Karoli I firmly heliove that Ohama/Pelosi have ZERO desire to be civil. It's a charade and a slogan, but they want to destroy

```
> prop.table(table(tweets[,1]))

negative positive
0.4930362 0.5069638
> prop.table(table(tweets[indexes,1]))

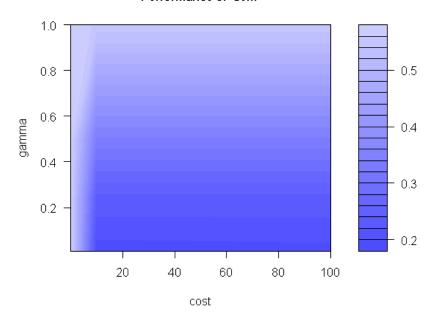
negative positive
0.4920635 0.5079365
> prop.table(table(tweets[-indexes,1]))

negative positive
0.4953271 0.5046729
```

Reference

Prediction negative positive negative 0 0 positive 53 54

Accuracy : 0.5047 95% CI : (0.4063, 0.6028) No Information Rate : 0.5047 P-Value [Acc > NIR] : 0.5386


Kappa : 0 Mcnemar's Test P-Value : 9.148e-13

Sensitivity : 1.0000 Specificity : 0.0000 Pos Pred Value : 0.5047 Neg Pred Value : Prevalence: 0.5047 Detection Rate: 0.5047

Detection Prevalence : 1.0000 Balanced Accuracy: 0.5000

'Positive' Class : positive

Performance of `svm'

Reference

Prediction negative positive negative 40 pošitive 13 47

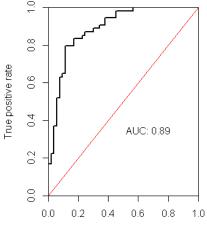
Accuracy: 0.8131

95% CI: (0.7262, 0.8819)

No Information Rate: 0.5047 P-Value [Acc > NIR] : 3.553e-11

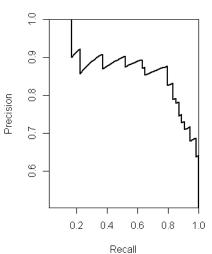
Карра : 0.6257

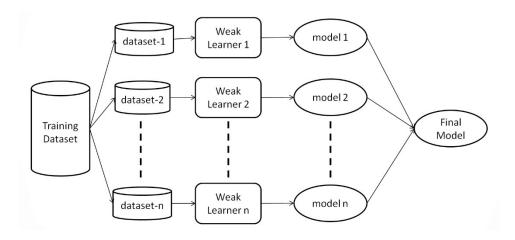
Mcnemar's Test P-Value : 0.2636


Sensitivity: 0.8704 Specificity: 0.7547 Pos Pred Value : 0.7833 Neg Pred Value : 0.8511 Prevalence: 0.5047

Detection Rate : 0.4393 Detection Prevalence: 0.5607 Balanced Accuracy: 0.8125

'Positive' Class : positive




SVM ROC Curve

False positive rate

SVM Precision/Recall Curve

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$

For t = 1, ..., T:

- Train base learner using distribution D_t
- Get base classifier $h_t: X \to \mathbb{R}$
- Choose $\alpha_t \in \mathbb{R}$
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution) Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Reference Prediction negative positive negative 40 10 positive 13 44 Accuracy: 0.785 95% CI: (0.6951, 0.8586) No Information Rate : 0.5047 P-Value [Acc > NIR] : 2.128e-09 карра : 0.5698 Mcnemar's Test P-Value : 0.6767 Sensitivity: 0.8148 Specificity: 0.7547 Pos Pred Value : 0.7719 Neg Pred Value : 0.8000 Prevalence: 0.5047 Detection Rate: 0.4112 Detection Prevalence: 0.5327 Balanced Accuracy: 0.7848 'Positive' Class : positive Fold 1 out of Sample Accuracy = 1 Fold 2 out of Sample Accuracy = 0.9344262 Fold 3 out of Sample Accuracy = 1 Fold 4 out of Sample Accuracy = 0.9310345 Fold 5 out of Sample Accuracy = 1 Fold 6 out of Sample Accuracy = 0.9591837 Fold 7 out of Sample Accuracy = 1 Fold 8 out of Sample Accuracy = 1 Fold 9 out of Sample Accuracy = 1 Fold 10 out of Sample Accuracy = 0.964912 Fold 10 Out of Sample Accuracy = 0.9649123 Fold 1 out of Sample Accuracy = 1 Fold 2 out of Sample Accuracy = 0.9344262 Fold 3 out of Sample Accuracy = 1 Fold 4 out of Sample Accuracy = 0.9310345 Fold 5 out of Sample Accuracy = 1 Fold 6 out of Sample Accuracy = 0.9591837 Fold 7 out of Sample Accuracy = 1 Fold 8 out of Sample Accuracy = 1 Fold 9 out of Sample Accuracy = 1 Fold 10 out of Sample Accuracy = 1 Fold 10 out of Sample Accuracy = 0.9649123 [fill

[10] 0.9649123 \$meanAccuracy [1] 0.9789557

[10] 0.9649123 \$meanAccuracy [1] 0.9789557

$$tfifd(Twitter) = tf(Twitter, Document A).idf(Twitter, Document Set D)$$

= $3X0.3010 = 0.9030$